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Abstract: Statistical modeling is essential to SAR (Synthetic Aperture Radar) image 

interpretation. It aims to describe SAR images through statistical methods and reveal the 

characteristics of these images. Moreover, statistical modeling can provide a technical 

support for a comprehensive understanding of terrain scattering mechanism, which helps to 

develop algorithms for effective image interpretation and creditable image simulation. 

Numerous statistical models have been developed to describe SAR image data, and the 

purpose of this paper is to categorize and evaluate these models. We first summarize the 

development history and the current researching state of statistical modeling, then different 

SAR image models developed from the product model are mainly discussed in detail. 

Relevant issues are also discussed. Several promising directions for future research are 

concluded at last.  

Keywords: synthetic aperture radar (SAR) images; statistical models; parameter estimation; 

probability density function (PDF); the product model 

 

1. Introduction 

 

Statistical modeling of SAR images is one of the basic problems of SAR image interpretation. It 

involves several fields such as pattern recognition, image processing, signal analysis, probability theory, 

and electromagnetic scattering characteristics analysis of targets etc. [1]. Generally speaking, statistical 

modeling of SAR images falls into the category of computer modeling and simulation. At present, one 

of the major strategies of SAR image interpretation is to use the methods of classical statistical pattern 

recognition, which are based on Bayesian Theory and can reach a theoretically optimal solution [1,2]. 

To utilize these methods for SAR image interpretation, a proper statistical distribution must be adopted 
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to model SAR image data [1,2]. Therefore, in the past ten years, statistical modeling of SAR image has 

become an active research field [1]. 

Statistical modeling is of great value in SAR image applications. Firstly, it leads to an in-depth 

comprehension of terrain scattering mechanism. Secondly, it can guide the researches of speckle 

suppression [3-9], edge detection [10], segmentation [1,11-13], classification [14-17], target detection 

and recognition [14,18-20] for SAR images, etc. Finally, combining statistical model with ISAR target 

database can simulate various SAR images with variable parameters of aspect, terrain content, region 

position and SCR (signal to clutter ratio), so statistical modeling can provide numerous data for 

developing robust algorithms of SAR image interpretation [21]. 

The research on statistical modeling of SAR images may be traced back to the 1970s. With the 

acquisition of the first SAR image in the U.S., the analysis of real SAR data directly promoted the 

development of statistical modeling techniques. The speckle model of SAR images, proposed by 

Arsenault [22] in 1976, is the origin of these techniques, which established the theoretical foundation of 

the later researches. In 1981, Ward [23] presented the product model of SAR images, which took the 

speckle model as a special case. As a landmark of the development of statistical modeling, the product 

model simplified the analysis of modeling. Since then, many scholars joined this research field and many 

statistical models of SAR images had been developed. 

Since the 1990s, with the coming forth of a series of air-borne or space-borne SAR platforms, the 

acquisition of SAR data is no longer a problem. Due to the urgent demands for analyzing and 

interpreting the obtained image data, statistical modeling has drawn much attention. 

In recent years, many famous research organizations have been studying SAR statistical  

modeling [24], and great progress has been made. According to the collected literatures, from 1986  

to 2004, there were more than 100 papers dealing with SAR statistical modeling published in some 

famous journals such as IEEE-AES, IEEE-IP, IEEE-GRS, and IEE, etc. and at some international 

conferences such as SPIE and IGARSS. The related papers, which use SAR statistical model for the 

purpose of segmentation, speckle suppression, classification and target detection and recognition, are 

uncountable. Much creative research has been made. Professor Oliver, an English scholar, published his 

monograph Understanding Synthetic Aperture Radar Images in 1998 [1]. The book  

includes 14 chapters, two of which discuss the statistical modeling technology. It summarizes related 

techniques on SAR statistical modeling before 1997. After 1997, papers on SAR statistical modeling 

have appeared in renowned journals almost every year. The most attractive achievement among them is 

the statistical modeling on extremely heterogeneous region of SAR images proposed by Frery [24], who 

works in Brazil and has introduced the original idea that for the purpose of statistical modeling, SAR 

images can be divided into homogeneous regions, heterogeneous regions and extremely heterogeneous 

regions, according to their contents.  Furthermore, statistical modeling of SAR images is taken as one of 

the main contents in more than 20 doctoral dissertations found in UMI and in the research reports from 

the Belgian Royal Military Academy. While numerous statistical distributions have been proposed to 

model SAR image data, we are unaware of any surveys on this particular topic. It is necessary to 

categorize and evaluate these models and relevant issues. The main contribution of this survey is the 

classification and evaluation of the statistical models of SAR images existed currently. The vital and 

latest contributions have also been covered in this paper. The survey is organized as follows: Section 2 
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illustrates the classification and the research contents of statistical modeling. In Sections 3 and 4, 

current statistical models are discussed in detail. The relationship of them and their limitations in 

applications are pointed out in Section 5. Major conclusions and developing trends of statistical 

modeling are also presented by Section 6. We conclude the survey in the final section. 

 

2. Model Classification and Research Contents 

 

According to the modeling process, the statistical models of SAR images can be divided into two 

categories [2,25-28]: parametric models and nonparametric models. When dealing with a parametric 

model, several known probability distributions of SAR imagery are given at first. Usually, the 

parameters of these distributions are unknown and have to be estimated according to the real image 

data. Finally, by using some certain metrics, the optimal distribution is chosen as the statistical model of 

the image. While handling a nonparametric model, no distributions have to be assumed, and the optimal 

distribution is obtained in a way of data-driven of image data. The merit of the nonparametric models is 

that they make the process of statistical modeling more flexible and can fit the real data  

more accurate. 

Since nonparametric modeling involves complex computation as well as numerous data, it is usually 

time-consuming and cannot satisfy the requirements of various applications [25]. Consequently, 

parametric modeling is intensively studied. The process of parametric modeling can be described in brief 

as to choose an appropriate one from several given statistical distributions for the image to be modeled. 

The process is shown in Figure 1. According to Figure 1, the process of parametric modeling consists of: 

(1) analyzing several known statistical distribution models; (2) parameter estimation: estimating the 

parameters of different distribution; (3) goodness-of-fit tests: assessing the accuracy of the given models 

fitting to the real data. 

Figure 1. A general flow chart of parametric modeling. 

 

2.1. Parameter Estimation 

 

Several strategies have been proposed in the literature to deal with parameter estimation [26]. The 

two most frequently used methods are probably the “method of moments” (MoM) [1,17,29] and the 

maximum-likelihood (ML) methodology [19,27,30]. Recently, the method of log-cumulants (MoLC) is 

also included as a possible parameter estimation approach [3,17,31]. 
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2.2. Goodness-of-Fit Tests 

 

A number of methods for quantitatively assessing the validity of statistical models in light of sample 

data have been developed over the last hundred years. Many of these methods place the problem in a 

statistical hypothesis testing framework, pitting a null-hypothesis H0, an assertion that the data were not 

generated according to the model, against an alternative hypothesis H1, an assertion that they are not. 

The methods are then implemented by computing some statistic of the random observations that has a 

known distribution if H0 were true. Values of this quantity close to zero are interpreted as evidence that 

H0 should be rejected in favor of H1. The purpose of these methods is to seek the model that best 

describes observed data from a set of specified models, irrespective of whether any model is actually a 

good fit to the data [32]. 

In summary, the major rules for assessing the fitting accuracy includes the χ
2
 matching test [32,33], 

AIC (Akaike information criteria) rule [34], K-S (Kolmogorov-Smirnov) test [32,35,36], K-L distance 

measurement [37,38], D‟Agostino-Pearson test [2,32,39], and Kuiper tests [31] etc. The research on 

parameter estimation as well as accuracy assessment is relatively mature and will not be discussed 

further in this paper. Relevant literature [2,31,32] can be consulted for more information. 

 

3. Statistical Models 

 

The purpose of statistical modeling of SAR images is to determine a statistical model for  

single-polarimetric images or multi-polarimetric images. The multi-polarimetric SAR images are a 

combination of four basic kinds of polarimetric images represented by the scattering matrix. For any one 

of the polarimetric images, its statistical characteristics are no different from those of a  

single-polarimetric image. The single-polarimetric statistical model can be extended to describe the 

multi-polarimetric images [40-43]. Therefore, studying the statistical models of single-polarimetric SAR 

images is of basic significance. This section mainly discusses this kind of models. 

It is more than 30 years since the SAR statistical model has been first studied. Researchers have 

proposed various statistical models, among which the statistical model family based on the product 

model outperforms other models [2], so we would like to comprehensively summarize current statistical 

models using the product-model-based ones as a thread. 

 

3.1. Nonparametric Models 

 

The nonparametric models are an effective kind of models which can estimate the probability density 

function (PDF) of SAR image data based on the nonparametric method. The basic idea is to use the 

weighted sum of different kernel functions to obtain the estimation of the statistical distribution. Typical 

methods include: the Parzen window technique [27,44,45] the artificial neural networks (ANN) method 

[46,47], the support vector machine (SVM) method [48-50] etc. The characteristic of the 

nonparametric models is that it is a data-driven model and suitable for estimating the complex unknown 

PDF. Nonparametric modeling has high estimation accuracy, but it usually needs a large sample data set 

as well as complex operations and is a time-consuming task. Consequently, it‟s seldom used in any 
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applications, except several reports focus on the problem of ship target detection in SAR images with 

simple sea backgrounds [44]. 

 

3.2. Parametric Models 

 

The underlying idea of parametric modeling is to use the parameter estimation method to determine 

the statistical model of SAR image data according to some known distributions. During the past 20 

years, the parametric model has been widely and thoroughly studied. With the analysis of data from 

different sensors and the scattering mechanism of different kinds of terrain, many concrete SAR 

statistical distributions for different cases have been proposed. 

 

4. Classification of Parametric Models 

 

The parametric models can be classified into four categories according to its main idea  

(see Figure 2): (1) the empirical distributions; (2) the models developed from the product model (PM); 

(3) the models developed from the generalized central limit theorem (GCLT); 4) other models. 

Figure 2. Four major categories of parametric modeling Note: PM represents the product 

model; CLT represents the central limit theorem; GCLT represents the general central  

limit theorem. 

 

4.1. The Statistical Models Developed from the Product Model 

 

 The product model is widely used in SAR image analyzing, processing and modeling. Most of the 
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in Figure 3. 
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Figure 3. Process of developing a statistical model from the product model. 

 

 

The speckle model, proposed by Arsenault [22], is deduced from the coherent imaging mechanism of 

a SAR system, under the ideal circumstance that the imaged scene has a constant RCS (i.e., speckle is 

fully developed and homogeneous surfaces appear as stationary fields).The deducing process based on 

the coherent imaging mechanism begins with the six reasonable hypotheses as follows [1,26,51,52]:  

 Each resolution cell contains sufficient scatterers;  

 The echoes of these scatterers are independently identically distributed;  

 The amplitude and phase of the echo of each scatterer are statistically independent  

random variables;  

 The phase of the echo of each scatterer is uniformly distributed in [0,2π];  

 Inside a resolution cell, there are no dominant scatter- ers;  

 The size of a resolution cell is large enough, compared with the size of a scatterer.  

Secondly, with the six hypotheses mentioned above and the central limit theorem (CLT) [53], it can 

be proven that the energy of each resolution cell has a negative exponential distribution with the mean 

value equal to the real RCS value of the resolution cell. Finally, according to the hypothesis of constant 

RCS background, each resolution cell can be considered as a stochastic process, with the ergodic 

property (i.e., each resolution cell is statistically independent). Therefore, the whole image has a 

distribution identical to that of a single resolution cell. 

Motivated by the speckle model, Ward [23] proposed the product model of SAR images. Figure 3 

shows the process of developing a statistical model from the product model. According to Figure 3, the 

product model combines an underlying RCS component σ with an uncorrelated multiplicative speckle 

component n, so the observed intensity I in a SAR image can be expressed as the product [38,54-58]: 

I = σ ∙ n      (1) 

The speckle model is taken as the special example of the product model with a constant RCS (σ). 

Because the product model is correlated with the underlying terrain RCS (σ), it is usually applied to the 

intensity data (energy or the square of amplitude). That is, I in Equation (1) represents the observed 

value of the intensity. The product model simplifies the analysis of the statistical model of SAR images. 

So it is widely used to develop models which take the RCS fluctuations into consideration. where  P   

represents the RCS component distribution and  P I   is correlated with the distribution of  

speckle component. 
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Since the speckle component has a determinate statistical distribution, only the RCS fluctuation 

component need to be considered when developing the statistical models of SAR images (see Figure 3). 

According to the product model in Equation (1), the PDF of the observed intensity is given by: 

     
0

P I P P I d  


        (2) 

Figure 4 gives the statistical models of constant RCS or RCS fluctuations when the speckle 

component satisfy the central limit theorem. As Figure 4 shows, many classical statistical models, called 

the Gaussian model family, have been derived based on the speckle model, a special example of the 

product model. Either in the high-resolution or low-resolution case, with the hypothesis of a constant 

RCS background and the central limit theorem, both the I and Q components of the speckle are 

Gaussian distributed with unit mean. Thus, as is shown in Figure 4, the single-look amplitude has a 

Rayleigh [1] distribution; the single-look intensity has a negative exponential distribution [1] with unit 

mean; the multi-look amplitude has a square root Gamma distribution; the multi-look intensity has a 

Gamma (or Nakagami-Gamma) [1,26,28,59] distribution with unit mean, etc.  

Figure 4. Statistical models of constant RCS or RCS fluctuations when the speckle 

component satisfy the central limit theorem. 

 

Speckle 

component 

Gaussian I, Q channels 

distribution 

Rayleigh amplitude  

distribution 

Unit-mean negative 

exponential intensity 

distribution 
Square root Gamma amplitude 

distribution 

Unit-mean Gamma intensity 

distribution 

Single 

-look 

Multi

-look 

RCS 

component 

RCS is a constant   

RCS fluctuation is a random 

variable with a certain 

distribution 

The 

product 

model 

Combined 

by Eq.(2) 

 Rayleigh amplitude 

distribution 

 -mean negative exponential 

intensity distribution 

 Square root Gamma 

amplitude distribution 

 -mean Gamma intensity 

distribution 

Single

-look 

Multi 

-look 

Homogeneous region with a 

constant RCS 

In-homogeneous region with 

RCS fluctuations 

Speckle component satisfying the CLT with 

either low or high resolution level 

Combined 

by Eq.(2) 

Gaussian  

Model 

Non-Gaussian  

Model 

  

 

The RCS of a homogeneous region (e.g., the grassland region) in either low-resolution or  

high-resolution SAR images can be expected to correspond to a constant. Actually, most scenes contain 

in-homogeneous regions with RCS fluctuations [1,26,51]. According to Jakeman and  

Pusey‟s [60] investigations, when the number of scatterers in a resolution cell becomes a random 

variable due to fading phenomenon and the population of scatterers to be controlled by a  

birth-death-migration process, it should have a Poisson distribution [1] and the mean of the Poisson 
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distribution in each resolution cell (i.e., the expected number of scatterers) itself is also a random 

variable [24,36,61,62]. If the mean is Gamma distributed, the corresponding intensity data should have 

a K [1,30,60,63-67] distribution. A further research indicates that K distribution can be viewed as the 

combination of two split parts according to Equation (2) in the framework of the product model [1]:  

(1) the speckle component satisfying the central limit theorem; (2) the Gamma distributed intensity RCS 

fluctuations. The K distribution is deduced with the assumption that the underlying intensity RCS 

fluctuations have a Gamma distribution in a heterogeneous region. The Gamma distribution can well 

describe the characteristics of the RCS fluctuations of a heterogeneous terrain in high-resolution SAR 

images. The deduced K distribution itself has the multiplicative fading statistical characteristics and 

usually provides a good fit to the heterogeneous terrain. Therefore, the K distribution has become one 

of the most widely used and the most famous statistical models in recent years [60,68,69]. Some 

extensive applications of the K distribution can be found [36]. Oliver proposed a correlated  

K distribution [61]; Jao used a K distribution in the case of rural illuminated area [68]; Barakat obtained 

the K distribution in case of weak scattering [70]; and Yueh created and extension of the K distribution 

for multipolarization images [62]. Furthermore, according to the deducing process of the K distribution, 

the homogeneous region with a constant RCS can also be described as a special case of the  

K distribution [1]. MoM turns out to be feasible for the parameter estimation task concerning a  

K-distributed random variable [64,65], whereas no closed form is currently available for ML parameter 

estimation [30,65], thus requiring intensive numerical computations or analytical approximations of the 

PDF itself [1,26]. 

Motivated by the derivation of K distribution, Delignon [36,71] proposed that when the expected 

number of scatterers in every resolution cell has an inverse Gamma intensity distribution [36,71], a Beta 

intensity distribution of the first kind [36,63,71] or a Beta intensity distribution of the second  

kind [36,63,71], the corresponding heterogeneous region will has a B, U or W distribution respectively  

(i.e., the Pearson system of parametric families [17,71]). Similarly, these three kinds of intensity 

distribution models can be seen as the combination of the speckle component and the terrain RCS 

intensity component in the framework of the product model expressed as Equation (2). Figures 4 and 5 

show the statistical models when the speckle component satisfies the central limit theorem. 

The K, U and W distributions have been reported to be appropriate for the heterogeneous terrain 

such as the woodland and the cultivated cropland. But they cannot meet the demand for the statistical 

modeling of complex scenes in high-resolution images. The complexity of the high-resolution scenes 

mainly lies in two aspects [51]: (1) the terrain of the scene is usually extremely heterogeneous, such as 

the urban region containing many buildings, which results in the severe long-tailed part of the image 

histogram; (2) there exist two or more heterogeneous components in a certain scene, such as a 

combination of woodlands and grasslands, etc.  

To solve these problems, Frery deduced a new statistical model, the G model [19,24,72-75] based on 

the product model assuming a Gamma distribution for the speckle component of multi-look SAR 

images and a generalized inverse Gaussian (GIG) law for the signal component [24,26,74,76], as is 

shown in Figure 5. It was Frery who first proposed to divide a region as homogeneous, commonly 

heterogeneous or extremely heterogeneous according to its homogeneous degree when deducing the G 

model. The K and G
0
 (also called B distribution) distributions are two special forms of the G model. 
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Figure 5. Statistical models of RCS fluctuations when the speckle component satisfies the 

central limit theorem. 
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speckle component satisfies the central limit theorem. Theoretically, when the resolution becomes high 

enough, the resolution cell will be so small that the central limit theorem cannot be applied any more. 

Thus, the above models are not appropriate for modeling of the high-resolution SAR images. 

Accordingly, Anastassopoulos [33,80-82] proposed a generalized compound probability distribution 

(GC distribution, see Figure 6) in which the speckle and intensity RCS fluctuation components 

theoretically are generalized Gamma distributed (GГ distribution) [33]. The GC distribution has no 

analytic expression only with a given integral form, so it is difficult to utilize. With a large number of 

experiments, we [38] have proven that even if the resolution is high up to 0.3 m, the speckle component 

still satisfy the central limit theorem. So it is not necessary to adopt the GC distribution for SAR images 

with a resolution lower than 0.3 m. Besides, due to the absence of the higher-resolution data, further 

experiments are needed for validating the rationality of the GC distribution. 

Figure 6. Statistical models when the speckle component dissatisfies the central limit theorem. 

 

 

4.2. The Statistical Model Developed from the Generalized Central Limit Theorem 

 

Another thread of statistical modeling is to develop the models based on the generalized central limit 

theorem [51]. According to the knowledge of probability theory, the generalized central limit theorem 

states that the sum of a set of independently identically distributed random variables, no matter their 

variances are finite or infinite, will converge to the α-stable distribution [2,83-85], which is essentially a 
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random process (SIRP) [91]. The SαSGR is a more accurate statistical model of SAR images in theory, 

without any analytic expression. A moment-based estimation strategy is developed in [51] for this 

parametric model. However, it is very difficult to apply. 
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4.3. The Empirical Distributions 

 

The empirical distributions have no sound deduction in theory. They come from the experience of 

analyzing real data. Several empirical models have been used to characterize the statistics of SAR 

amplitude or intensity data, such as Weibull, log-normal, and Fisher PDFs. 

The log-normal distribution was proposed by George [92]. Its major motivation was to adopt a 

homomorphic filter to convert the multiplicative noise in a SAR image to the additive Gaussian white 

noise with the assumption that the logarithmic SAR image was Gaussian distributed. The log-normal 

distribution, with a broad dynamic range, is a familiar statistical model which can describe the  

non-Rayleigh data. But it is a poor representation of the lower part of the SAR image histogram, with 

the data over-fitted phenomenon [51,93]. Fukunaga [94] stated that it was inappropriate to fit the 

logarithmic SAR image to a Gaussian distribution, and that the quarter power domain of the logarithmic 

data was more consistent with a Gaussian distribution. 

The Weibull distribution [95] is also a good statistical model of the non-Rayleigh data. Compared 

with the log-normal distribution, it can fit the experimental data in a broader range. The Rayleigh 

distribution and the negative exponential distribution are two special examples of Weibull distribution 

with specific parameters. Therefore, Weibull distribution can describe single-look images precisely for 

either amplitude or intensity. Experiences have shown the Weibull distribution cannot represent  

multi-look images exactly [1]. 

Recently, the Fisher distribution has also been adopted as an empirical model for the SAR statistics 

over high resolution urban regions [17,96]. The Fisher distribution also is proved to be equivalent to a 

G
0
 PDF [17,26]. 

 

4.4. Other Models  

 

Goodman [17,26,59,97] has presented that when a resolution cell is dominated by a single scatterer, 

the corresponding intensity image has a Rician distribution (or Nakagami-Rice distribution [1]). 

Theoretically, in the case of low resolution, when the strong scatterers representing the targets are 

embedded into the surrounding weak clutter environment, the Rician model is appropriate to describe 

the corresponding image [59,98].  

Blake [37,99] introduced a joint distribution model when considering two or more than two 

heterogeneous terrain types in the scene of a SAR image. Firstly, the optimal statistical model of a 

homogeneous region is analyzed and the K  distribution is proven as the best model by the experiments. 

Secondly, according to the ratio of each terrain to the whole scene, several K distributions weighted 

with the ratios respectively are summed up to describe the image. The unknown parameters of the joint 

distribution model increase several times in number and thus makes the parameter estimation more 

difficult. Generally, such parameter estimation is based on solving a set of nonlinear  

equations [32,64,100], which will impede the application of the joint distribution.  

Blacknell [101,102] proposed a statistical distribution model considering the correlation between 

pixels. Since the pixels of a real SAR image are usually dependent, there is certain correlation between 

the pixels. Blacknell adopted the mixed Gaussian distribution to model the correlation between the 
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pixels and deduced a statistical model. In fact, the mixed Gaussian distribution can describe only the 

simplest case of the correlation between the pixels. Further researches are expected for more 

complicated cases [61,101,102].  

Besides, some other models, which are mostly the generalization or modification of the models 

mentioned above, have been proposed in the literature [103-105], but given the length limitations of this 

review, they are not not discussed further. 

 

5. The Relationship among the Major Models and Their Applications 

 

5.1. The Relationship among The Parametric Statistical Models  

 

The statistical model of a single-look image is a special example of the corresponding multi-look 

model when the look number 1n  . Let  IP I  be the PDF of the intensity I  and  AP A  be the PDF of 

the amplitude, then the following relationship holds [1]:  

   22A IP A A P A 
      

 (3) 

or: 

    2I AP I P I I
      

 (4) 

Hence, the statistical distribution of single-look data can be deduced from that of multi-look data; 

and the distribution of the amplitude can be deduced from that of the intensity. Additionally, the  

log-transformed distributions are also deduced easily according to [57]. Based on this conclusion, 

Figure 7 illustrates the relationship among the current major statistical models. Some other models are 

not shown in Figure 7 because no theoretical relationship for them can be established to the models in 

Figure 7. The concrete expressions of various distributions can be seen in [2,19]. 

Figure 7. Relationship among the major statistical models (N is the look number). 

 

 

5.2. Summary of the Applications of the Major Models  

 

According to many researchers‟ experiences [1] and the authors‟ analysis, Table 1 summarizes the 

characteristics and the application areas of the major models discussed in the previous sections. 
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Table 1. Summary of the applications of the major models. 

Model 

families 
Model 

Analytic 

expression? 

Parameter 

estimation 
Application cases Notes 

1 Weibull Yes Complex 
High-resolution, amplitude or intensity, 

single-look 
unsuitable for multi-look images 

 

Lognormal Yes Simple Moderately high-resolution, amplitude Data over fitted phenomenon 

Fisher Yes Simple 

Homogenous, heterogeneous or extremely 

heterogeneous region, multi- or  

single-look, intensity or amplitude 

Be equivalent to a G0
 distribution 

2 Rayleigh Yes Simple Homogenous region, single-look, amplitude Widely used in interpretation algorithms 

 

Exp Yes Simple Homogenous region, single-look, intensity Widely used in interpretation algorithms 

Gamma Yes Simple Homogenous region, multi-look, intensity 
The amplitude distribution corresponding to 

the square root Gamma. 

K Yes Complex 

Moderately heterogeneous region, multi- or 

single-look, intensity or amplitude (having 

corresponding expressions for each case) 

Widely used in interpretation algorithms 

U、W Yes Complex 

Moderately heterogeneous region, multi- or 

single-look, intensity or amplitude (having 

corresponding expressions for each case) 

Seldom used in interpretation algorithms 

G Yes Complex 

Homogenous, heterogeneous or extremely 

heterogeneous region, multi- or  

single-look, intensity or amplitude (having 

corresponding expressions for each case) 

Difficult to apply 

G0 
Yes Simple 

Homogenous, heterogeneous or extremely 

heterogeneous region, multi- or single-look, 

intensity or amplitude (having corresponding 

expressions for each case) 

A special example of the G distribution, also 

called the B distribution, widely used 

 Yes Simple 
Homogenous, heterogeneous or extremely 

heterogeneous region, single-look, intensity 

A special example of the G
0
 distribution, 

widely used 

Gh 
Yes Simple 

extremely heterogeneous urban areas and 

mixed terrian 
A special example of the G distribution 

RiIG Yes Simple Ultrasound images 
Further investigation for SAR images is 

needed 

GC No Complex 
Various image data with an extremely high 

resolution level 

A general form of many other models, 

difficult to apply, further validation is needed 

3 SαS No Complex Real and imaginary components of SAR data 
Used in modeling the woodland regions in 

UWB SAR data 

 SαSGR No Complex Long-tailed amplitude image of urban area Difficult to apply 

4 Rician Yes Complex 
Low-resolution image with targets in weak 

clutter 
Seldom used 

 

jointly 

distribution 
Yes complex Heterogeneous Difficult to apply 

mixed 

Gaussian 
Yes simple Considering the correlation between pixels 

Correlation is simple, further research is 

needed 

Note: “1” represents the empirical distributions; “2” represents the models developed from the product 

model; “3” represents the models developed from the general central limit theorem; “4” represents  

other models. 
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6. Discussion of Future Work 

 

Much progress has been made with the research of statistical modeling of SAR images in the past 

few tens of years, especially during recent years. The related literatures are uncountable. As far as we 

could comprehend, the major conclusions and several promising directions for further research are 

summarized as follows: 

(1) Regarding the deducing process of current statistical models, many assumptions are made to 

acquire the models, so these models can only approximately describe the electromagnetic 

scattering characteristics of the scene in theory, which is the common shortcoming of all the 

statistical modeling of the scene. How to construct models that can exactly describe the 

electromagnetic scattering characteristics of a scene will be a big challenge. 

(2) Among the existing statistical models, those developed from the product model are the most 

widely used and the most promising. This can also be seen from the related literatures. 

(3) The statistical models based on the product model can be divided into two cases according to 

whether the speckle component satisfies the central limit theorem or not. Correspondingly, there 

are two typical models, i.e., the widely used G
0 

model and the GC model with difficulty in 

application. The problem is, what level on earth the resolution is increased to that the speckle 

component doesn‟t satisfy the central limit theorem any longer. No conclusion has been  

made yet. 

(4) It is a novel idea to model a region according to its homogeneousness degree. The G
0 
model (the 

 model at single-look case) is the optimal one among the models developed from the product 

model. On one hand, the parameters of the G
0 

model are sensitive to the homogeneousness 

degree of the observed images. Such a characteristic make it suitable for modeling the 

homogeneous, heterogeneous or extremely heterogeneous, single-look or  

multi-look, intensity or amplitude data. That means it can be universally used. On the other hand, 

many widely used models can be unified to the G
0
 model (see Figure 7). 

(5) All the statistical models, even the G
0
 model, can describe the regions only with relatively simple 

contents and a few terrain types. In other words, the statistical model has the so-called 

“regional” characteristic. For the large- scale scene, whose contents are complex and terrain 

types are extremely numerous, it is impractical to use the statistical models with a few 

parameters to describe the whole image. However, models with too many parameters also cause 

difficulties in applications. Therefore, it is a trend to build a statistical model with the “regional” 

characteristic. Typically, Billingsley [35] assess the fit of Rayleigh, Weibull,  

log-normal, and K-distributions to pixel magnitudes in clutter data and show via the K-S test that 

none fit well over the entire range of magnitudes. 

(6) According to the related literatures, once a model was proposed, it would be applied to diverse 

images with several bands and different view angles. Usually, their results were good. Generally 

speaking, the diversity of the band and the view angle of a sensor within a certain scope have 

slight influence on statistical modeling of the SAR data. 



Sensors 2010, 10                            

 

 

789 

(7) It is also a new idea to consider the correlation among the SAR data. In theory, it can expose 

the statistical characteristics of SAR images more accurately. However, it‟s hard to exactly 

model the correlation. Borghys [100] analyzed the effect on the statistical model caused by the 

correlation among pixels. His conclusion was that through appropriate down sampling, such 

effect could be ignored when modeling SAR images. 

 

7. Conclusions 

 

Statistical modeling of SAR images is one of the basic research topics of SAR image interpretation. 

It is of great significance both in theory and in applications. Based on an extensive investigation on the 

related literatures, this paper begins with the history and current research state of statistical modeling of 

SAR images. Then, statistical modeling techniques are thoroughly reviewed using the product model as 

a thread and some major problems are briefly illustrated in order to attract more attentions in this field. 

We believe that the research will progress widely and deeply due to the demands of SAR image 

interpretation. 
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