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Abstract: An improved classification of Orthosiphon stamineus using a data fusion 

technique is presented. Five different commercial sources along with freshly prepared 

samples were discriminated using an electronic nose (e-nose) and an electronic tongue  

(e-tongue). Samples from the different commercial brands were evaluated by the e-tongue 

and then followed by the e-nose. Applying Principal Component Analysis (PCA) 

separately on the respective e-tongue and e-nose data, only five distinct groups were 

projected. However, by employing a low level data fusion technique, six distinct groupings 

were achieved. Hence, this technique can enhance the ability of PCA to analyze the 

complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then 

used to further validate and classify the samples. It was found that the LDA performance 

was also improved when the responses from the e-nose and e-tongue were fused together.  

Keywords: electronic nose; electronic tongue; data fusion; PCA; LDA;  

Orthosiphon stamineus 
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1. Introduction 

At present, Orthosiphon stamineus is one of the herbs being commercialized for pharmaceutical 

purposes in Malaysia with most potential. It is said to be rich in health-related benefits for many 

ailments and is normally consumed in the form of a herbal tea. Locally, the commercial potential of 

Orthosiphon stamineus has become very attractive because it is easy to cultivate under tropical climate 

conditions. However, at this moment, there is no rapid technique to assess and evaluate the quality of 

commercial Orthosiphon stamineus products. 

In the case of teas, the quality classification of black tea, green tea, and oolong tea are performed 

using organoleptic methods. Tea samples are prepared according to certain procedures and later tested 

by human panels. Likewise, Orthosiphon stamineus tea quality assessment should follow the same 

approach. However, human panels have many disadvantages such as being prone to fatigue and 

inconsistencies due to overwhelming flavours and aromas in the samples. Due to that reason, many 

researchers have performed e-nose assessments on brewed Orthosiphon stamineus tea to determine the 

‗aroma concentration‘, quality, etc. Unfortunately, discrimination of herbal beverages by electronic 

noses (e-noses) has been known to be physically challenging due to the influence of water vapour and 

temperature drift [1]. Some researchers [2,3], have suggested the use of pre-concentrators to reduce 

this effect, while [4] performed baseline manipulation to overcome the problem. However, no attempt 

has been reported to confirm the effect of water vapour by comparing the aroma of dried and brewed 

Orthosiphon stamineus. Thus, in this paper, the headspace of dried leaves and Orthosiphon stamineus 

tea infusions were measured, compared and further analyzed. This procedure is essential to obtain the 

right experimental setup and sniffing parameters. 

In recent years, there have been a number of reported works on the assessments of agriculture-based 

products using the e-nose and e-tongue, but separately [5-8]. A number of analysis techniques have 

such as multivariate analysis, neural networks and many more that were focused on qualitative and 

quantitative analysis been developed and applied to the data from these sensors.  

Despite of these techniques and methods, the e-nose can only evaluate volatile compounds or the 

aroma of a liquid in the headspace (i.e., evaluating the strength of the aroma concentration), while an 

e-tongue can discriminate the concentration of active compounds in a complex solution [9-11]. For 

example, [5-8] have reported that single modality techniques were able to discriminate various  

agro-based products according to the produce quality, different geographical origin, farming practices 

and postharvest processing. However, these evaluations may be influenced by other factors such as 

temperature drifts, changes in humidity, and not solely on the ability of these single-modal systems. 

This is because the reported work does not provide conclusive justifications.  

The limitations of an e-nose to evaluate active compounds in Orthosiphon stamineus tea products 

lead to the idea of introducing a fusion technique by combining both the e-tongue and e-nose. This 

combination should produce different responses and may provide further information. This is 

somewhat similar to the human sensory system, whereby the smell and taste sensation interact very 

closely with each other [12,13]. Thus, data fusion technique of different modalities [1,14,15] could 

provide better information compared to single modal systems [16-18]. 

This paper presents an investigation which combines information from the two modalities to 

evaluate and discriminate commercial Orthosiphon stamineus tea product samples. This 
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technique can in fact be a fast approximation of analyses performed using the costl y and more 

elaborate High-Performance Liquid Chromatography (HPLC) or Gas Chromatography-Mass 

Spectrometry (GCMS). 

2. Materials and Methods 

2.1. Sample Selection and Preparation 

 

In this experiment, six samples each were taken from five different brands. These 30 samples were 

obtained from commercial sources in different batches, while another six samples were fresh coarsely 

ground dried leaves obtained from home-grown plants (UniMAP‘s Sungai Chuchuh plantation) and 

used as control samples (labeled as Agro). Each sample contained 2 g of dried Orthosiphon stamineus 

tea. In total, 36 samples of dried Orthosiphon stamineus tea from six different sources prepared for  

the experiment.  

For the assessment of dried leaves, each sample were filled up in a vial and sealed. The vials were 

purged with helium before being filled with ground dried leaves. The vials were then kept  

for 10 minutes until the headspace of the vials equilibrated. The measurements were performed under 

room temperature at 26 °C. 

For the Orthosiphon stamineus tea infusions, 200 mL boiled distilled water was used to prepare 

each tea sample. It was brewed for three minutes, filtered and left to cool down to 40 °C before  

e-tongue measurements were taken. The aromas of those infusions were evaluated immediately after 

the e-tongue measurement was completed. A summary of the samples used in this experiment, together 

with the number of replicated measurements by the e-nose (for dried leaves and tea infusion 

assessments) and e-tongue is shown in Table 1. The colour of the tea infusions was recorded based on 

visual observations.  

Table 1. Samples used in the experiments and number of replicated measurements. 

Brands 
Number of 

Samples 

Number of 

replicated e-nose 

measurements
*
 

Number of 

replicated e-tongue 

measurements 

Colour of tea 

infusion 

Tropika 6 10 3 Light yellow 

RainHill 6 10 3 Dark yellow 

Polen 6 10 3 Very light yellow 

Naturale 6 10 3 Light yellow 

BioFeld 6 10 3 Very light yellow 

Agro 6 10 3 Greenish 

* 
Both for dried leaves and tea infusions 

 

2.2. Electronic Tongue Setup and Measurement 

 

The e-tongue, using chalcogenide-based potentiometric sensors, comprise seven distinct  

ion-selective sensors from SENSOR SYSTEM, LLC [19]. These potentiometric sensors were designed 

to be partially selective. The combination of these sensors as an array will introduce a cross sensitivity 
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effect, which may allow the qualitative and quantitative assessments of complex solutions [10].  

Vlasov [10] and Toko [11] have demonstrated that such sensor arrays, together with suitable pattern 

recognition (PARC) algorithms can mimic the human tongue. Table 2 describes the potentiometric 

sensors used in this experiment. This e-tongue system is implemented by arranging an array of 

potentiometric sensors around the reference probe. Each sensor output was connected to the analogue 

input of a data acquisition board (NI USB-6008) from National Instruments [20] and the reference 

probe is connected to the common ground of the board. 

The sensor array was dipped for two minutes in 10% ethanol concentration (stirred at 400 rpm) at 

the beginning of the experiment and later rinsed with distilled water for two minutes. After each 

sampling, the sensor array was rinse twice using distilled water (stirred at 400 rpm for two minutes) to 

remove any residues from previous sample sticking on the e-tongue and contaminating the next 

sample. In each measurement, the sensor array was steeped simultaneously (sensor tip 2 cm below the 

solution level) and left for five minutes, and the potential readings were recorded for the  

whole duration. 

Table 2. Chalcogenide-based potentiometric electrodes used in e-tongue. 

Sensor 

Label 
Description 

Fe
3+

 Ion-selective sensor for Iron ions 

Cd
2+

 Ion-selective sensor for Cadmium ions 

Cu
2+

 Ion-selective sensor for Copper ions 

Hg
2+

 Ion-selective sensor for Mercury ions 

Ti+ Ion-selective sensor for Titanium ions 

S
2−

 Ion-selective sensor for Sulfur ions 

Cr (VI) Ion-selective sensor for Chromium ions 

HI 5311 Reference probe using Ag/AgCl electrode 

 

2.3. Electronic Nose Setup and Measurement 

 

The e-nose employed is the Cyranose320 from Smith Detection
TM

 and has 32 non-selective 

individual sensors made up of different types of polymer matrix, blended with carbon black and 

arranged as an array. The same principle explained above for the e-tongue is adopted by the e-nose to 

discriminate complex odours. Preliminary experiments were performed to determine the optimal  

e-nose measurement parameters. Fifteen seconds baseline purge with 20 s sample draw produced an 

optimal result (result is not shown). Although there are no exact guidelines on this setting, a general 

assumption on the sensitivity and sensors response can still be applied in this case. Longer baseline 

purge was required to ensure residual gases were properly removed, and pump setting was set to the 

lowest speed during sample draw to enhance and maximize the sensor response. Charcoal filter was 

used to remove organic volatiles in the ambient.  

The first experiment was carried out using e-nose on dried samples of Orthosiphon stamineus tea as 

shown in Figure 1. The measurement parameters for the e-nose are given in Table 3. The e-nose setup 

for the Orthosiphon stamineus tea infusions is illustrated in Figure 2 and the setting on the sniffing 



Sensors 2010, 10                            

 

 

8786 

cycle is also indicated in Table 3. Silica gel with charcoal filter was used in this setup to provide dry 

and clean air for baseline recovery process. The purging duration was set to 80 seconds. This setup is 

important to reduce the effect of accumulated water vapour inside the sensor chamber. The 

temperature of tea infusions was controlled at 40 °C during the headspace measurement. 

Figure 1. E-nose setup for headspace evaluation of dried Orthosiphon stamineus tea. 

 

 

Figure 2. E-nose setup for headspace evaluation of Orthosiphon stamineus tea infusions. 

 

 

Table 3. E-nose parameter setting for Orthosiphon stamineus tea assessment. 

Sampling setting  Dried leaves Tea infusion 

Cycle Time(s) Pump Speed Time(s) Pump Speed 

Baseline Purge 15 60 mL/min 10 120 mL/min 

Sample Draw 20 60 mL/min 30 120 mL/min 

Idle Time 3 - 3 - 

Air Intake Purge 50 160/min 80 160 mL/min 

 

2.4. Data Analysis  

 

Before the analysis, the fractional measurement method was applied to pre-process the data for both 

modalities. This is often known as baseline manipulation. The baseline (initial value) is subtracted and 

then divided by the sensor response. The result is a dimensionless and normalized Sfrac, where: 

Silica gel 

Hotplate 
Computer  

Bubbler 

Cyranose 320 

Purge Inlet 
Purge Outlet 

Charcoal Filter 

Orthosiphon tea 

RS232 

Ambient Air 

Charcoal Filter 

Purge Inlet 

Notebook 

Sample Inlet 

Purge Outlet 

Vials filled with 2g 

Orthosiphon leaves 

Cyranose320 
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      Sfrac = [Smax – S0]/S0    (Equtaion 1) 

This gives a unit response for each sensor array output with respect to the baseline, which 

compensates for sensors that have intrinsically large varying response levels [4]. It can also further 

minimize the effect of temperature and humidity drifts. For the e-tongue measurements, S0 (baseline 

reading) is the reading of distilled water, while Smax is the sensor readings when steeped in the 

Orthosiphon stamineus tea infusions samples. The steeping cycle was repeated three times for each tea 

sample and the average was obtained. 

In the case of the e-nose, S0 was taken during the baseline purge with ambient air and Smax was 

performed during the sample draw. Each sampling cycle was repeated 10 times and the average was 

obtained for each of the six tea samples from different teas. The procedure was performed on both  

e-nose assessments of dried leaves and tea infusions. 

After the above operation, the data Sfrac was further scaled to zero mean and one standard deviation. 

This is to ensure that all sensor responses were standardized and no particular sensor dominates the 

result. The data from different modality were process separately and all sensors were used in this 

analysis. However, instead of looking at a specific sensor, the multiple sensors‘ responses would give 

more meaningful information [15]. The unsupervised exploratory data analysis technique such as 

Principal Component Analysis (PCA) was identified as a suitable method to visualize patterns in the 

data, especially since the sensors are correlated [21,22]. 

Each individual modality was projected separately by PCA based on correlation matrix. An 

adequate number of dimensions projected by PCA were determined based on principal components 

(PCs) that have achieved cumulative variance of 80% or more. The same method is applied for the  

e-tongue data.  

Further analyses to validate and classify those six different classes were performed using Linear 

Discriminant Analysis (LDA). It was done separately on each modality, as well as on the fused e-nose 

and e-tongue data. The LDA is a supervised pattern recognition method and is based on the 

determination of linear discriminant functions of which inter-group variance is maximized and  

within-group variance is minimized [15]. The PCA and LDA were computed using MATLAB 7.0 and 

SPSS Statistics17.0, respectively. 

 

2.5. Data Fusion  

 

Low level fusion is performed by combining the information provided by different sensors in 

different modalities. There are many methods to perform this fusion i.e., using neural network, 

template methods, and cluster algorithms [14-16]. In this experiment, PCA and LDA were chosen to 

perform the low level fusion. The requirement for this method is that the sensors for both modalities 

must commensurate [23,24].  

PCA was used to analyze the behavior or the grouping of the data [21]. Further training, validation 

and classification between sample groups of the data fusion were performed using LDA.  

Cross-validation using leave-one-out method was carried out and variable selection was accomplished 

using Wilks‘ lambda test. Fisher linear discriminant function was also applied in this analysis. 

The electronic nose data consists of 36 data samples with 32 variables from the sensor response. 
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Data from the tea infusion assessment was selected for the fusion process. It was selected based on the 

total percentage of variance accumulated in the first two principal components (PCs). The e-tongue 

data consists of 36 data samples with seven variables from the sensor response. Hence, the combined 

dataset from the e-nose and e-tongue consists of 36 data samples with 39 variables. To ensure these 

dataset are standardized, this new dataset (after being combined) was scaled before performing the 

PCA and LDA. 

3. Results and Discussion  

3.1. Principal Component Analysis (PCA) 

Each modality (e-nose data and e-tongue data) was processed separately. Prior to PCA projection, a 

number of adequate PCs were determined. The amounts of variance (%) of the first five principal 

components for three different experiments are shown in Table 4. The amount of accumulated variance 

in the first two principal components accounted for more than 80% and this suggests that only the  

first 2 PCs should be considered or adequate enough for further PCA analysis.  

Table 4. The amount of variance (%) of the first five principal components for three 

different experiments. 

Experiment PC1 PC2 PC3 PC4 PC5 

Dried Orthosiphon leaves using e-nose 99.09 0.596 0.142 0.088 0.024 

Orthosiphon tea infusions using e-nose 99.46 0.374 0.086 0.024 0.017 

Orthosiphon tea infusions using e-tongue 85.12 6.095 4.220 1.906 1.526 

 

The aroma of the dried Orthosiphon stamineus from six different sources was measured using an  

e-nose and projected using a PCA plot as shown in Figure 3. Although the data samples were clustered 

into separate groups, the clustering within each group is fairly wide. This implies that the headspace  

of 2 g of dried Orthosiphon stamineus does not produce enough volatiles to excite the sensors. The 

plot also indicates a close resemblance between samples from the Rainhill and Biofeld brands, where 

both are clustered as one group. The rest of the samples can be clustered into several other  

distinct groups.  

The result of the clustering using PCA of the headspace measurements of Orthosiphon stamineus 

infusions is shown in Figure 4. The clustering behavior is similar to that shown in Figure 3. Infusions 

made from samples by the RainHill and BioFeld brands were once again clustered close together and 

may be perceived as one group in the projection plot. Those made from samples by Agro, Polen, 

Tropika, Naturale and Terinai brands were clearly separated from each other. The scales of both axes 

were very small compared to Figure 3. The separations between samples were also insignificant. It is 

possible to some extent, that water vapour affects the measurements. This is one of the common 

drawbacks in conducting polymer based sensor where it is prone to be affected by humidity changes 

unlike human nose that can adapt to these conditions.  

Although the positions of each cluster for the dried and brewed samples shown in Figures 3 and 4 

are different, the grouping behavior is still similar. Hence, it can be assumed that the effect of water 

vapour on the sensors‘ responses due to the use of the bubbler method in this experiment is minimal 
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and can be ignored. In another word, dried or infusions of the different brands can still be 

discriminated by the e-nose. Therefore, the responses of the 32 sensors of the e-nose can be used for 

the next stage of the experiment for the data fusion technique.  

Figure 3. PCA plot of 32 e-nose sensors responses for dried Orthosiphon stamineus.  

 

 

The PCA plot of six different kinds of Orthosiphon stamineus tea using the e-tongue is shown in  

Figure 5. The results of the e-tongue sensors show a different clustering of the infusions made from the 

samples of different sources. Infusions from the RainHill and Polen brands are clustered closely and 

can be assumed as one group. The rest of the groups show good separation. It can also be seen that 

most of the distance within the individual groups is lower than in the case of the PCA plot of e-nose 

measurement as shown in Figure 3. On the other hand, the results of e-tongue measurements show a 

better discrimination than the e-nose. 

Figure 4. PCA plot of 32 e-nose sensors responses for Orthosiphon stamineus infusions.  
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Figure 5. PCA plot of seven e-tongue sensors responses for Orthosiphon stamineus infusions. 

 

 

Figure 6 shows the results of the data fusion with 39 variables from the e-nose and e-tongue data. 

Six distinct classes were shown in this PCA plot. It can be observed that the classification performance 

was greatly improved when both data from the e-nose and e-tongue were combined and complemented 

each other. These classes are well separated and show significant improvement in confidence level  

and consistency.  

Based on the PCA of the fusion method as shown in Figure 6, the Agro cluster shows small  

within-group variance. This control samples were freshly prepared and underwent a consistent 

agricultural practices and postharvest processing. Naturale, Polen and Tropika also exhibit similar 

patterns. Hence, this could imply that the variation between batches were minimal and possibly due to 

consistent agricultural practices. However, for BioFeld and RainHill samples, the data are spread 

widely along the PC2-axis. This again could be due to inconsistencies in their agricultural practices. 

Figure 6. PCA plot using data fusion technique. 
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3.2. Linear Discriminant Analysis (LDA) 

 

For the e-nose data of dried Orthosiphon stamineus, LDA is able to classify six different groups, as 

shown in Figure 7a. The grouping pattern is improved compared to the PCA projection in Figure 4. 

The separations between the groups are also higher and LDA is able to give 100% correct 

classification of the different brands. Discriminant Function (DF)1 and DF2 describe 81.6% and 12.7% 

of the total variance between groups, respectively.  

For the case of Orthosiphon stamineus infusion, the percentage of total variance in both DF1 and 

DF2 has now increased to 83.1% and 12.4% respectively, as shown in Figure 7b. Other than that, the 

pattern of the six different grouping is almost similar. Also, all sensors have strongly contributed to the 

classification of these six different brands, as shown by the Wilks‘ Lambda results in Table 5. 

Figure 7. (a) LDA plot for e-nose measurement of dried Orthosiphon stamineus; (b) LDA 

plot using e-nose measurement on Orthosiphon stamineus infusions. 

 
(a) 

 
(b) 
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Table 5. Wilks‘ Lamda Test.  

  Before Fusion After Fusion 

Modality Sensor Label Wilks' Lambda F Wilks' Lambda F 

E-NOSE  SENSOR01 .209 22.672 .005 1,128.765 

SENSOR02 .200 23.988 .003 1,853.475 

SENSOR03 .290 14.707 .004 1,392.132 

SENSOR04 .161 31.174 .002 2,488.416 

SENSOR05 .366 10.393 .274 15.884 

 SENSOR06 .211 22.449 .229 20.196 

SENSOR07 .045 128.200 .002 2,668.615 

SENSOR08 .180 27.277 .002 3,404.481 

SENSOR09 .022 268.335 .005 1,250.789 

SENSOR10 .015 391.406 .001 5,290.785 

SENSOR11 .036 159.070 .002 2,686.906 

SENSOR12 .169 29.496 .003 2,131.702 

SENSOR13 .037 154.903 .002 2,614.114 

SENSOR14 .038 150.154 .002 2,843.676 

SENSOR15 .028 209.879 .001 6,947.781 

SENSOR16 .024 239.119 .001 4,037.560 

SENSOR17 .020 286.910 .001 5,061.946 

SENSOR18 .120 44.176 .002 3,124.103 

SENSOR19 .239 19.096 .005 1,170.584 

SENSOR20 .266 16.516 .002 2,996.106 

SENSOR21 .031 186.642 .002 2,892.857 

SENSOR22 .019 307.061 .002 3,767.506 

SENSOR23 .298 14.143 .199 24.082 

SENSOR24 .163 30.855 .003 1,821.131 

SENSOR25 .054 105.628 .002 3,826.430 

SENSOR26 .243 18.692 .012 492.505 

SENSOR27 .522 5.499 .005 1,145.081 

SENSOR28 .228 20.373 .010 602.827 

SENSOR29 .031 188.591 .008 722.956 

SENSOR30 .045 126.357 .002 3,636.019 

SENSOR31 .390 9.402 .421 8.246 

SENSOR32 .408 8.693 .004 1,540.924 

E-TONGUE  SENSOR01 .060 93.797 .000 16,946.764 

SENSOR02 .687 2.734 .520 5.547 

SENSOR03 .051 110.770 .194 25.003 

SENSOR04 .070 80.328 .000 30,371.417 

SENSOR05 .817 1.345 .771 1.782 

SENSOR06 .020 296.335 .000 57,563.900 

SENSOR07 .802 1.477 .645 3.305 
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The LDA projection for the e-tongue data is shown in Figure 8. The pattern closely resembles the 

PCA plot in Figure 5. The infusions from the RainHill and Polen brands are clustered closely together 

and can be assumed as one group. During the validation process, 92.7% of the 36 samples from six 

different sources were correctly classified. The Wilks‘ lambda in Table 5 shows that all the variables 

contributed towards the classification except sensor 5 and sensor 7 (with values above 0.8), which may 

be removed from the models.  

Figure 8. LDA plot using e-tongue measurement on Orthosiphon stamineus tea infusions. 

 

 

Figure 9. LDA plot using data fusion technique (based on tea infusion assessment of  

e-nose and e-tongue). 

 

 

The LDA of the fused data is shown in Figure 9. Again, the e-nose measurement for the 

Orthosiphon stamineus infusions was selected since it has higher total percentage of variance in both 

DF1 and DF2 compared to the dried samples. The result shows that the LDA is able to give 100% 

correct classification of different group. The amount of variance for DF1 and DF2 were also improved 

using this fusion method. The separation between the groups is also increased. The result of Wilks‘ 

lambda test on the data fusion shows that all 39 sensors ‗interact with each other‘ and contribute to the 

classification of the six different groups (shown in Table 5). All 39 sensors can be seen to have 

significant contribution (values below 0.8 for Wilks‘ lamda). In the previous case (i.e., separate 
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modality), sensors 5 and 7 of the e-tongue were found to be insignificant (as mentioned earlier). 

Hence, the effectiveness of combining the 32 sensors from the e-nose and the 7 e-tongue sensors can 

be clearly seen. 

The performance of LDA to classify the six types is significantly improved using low level data 

fusion. Also, the success of this method to discriminate and classify all five commercial brands and the 

control sample shows that there are differences between the samples.  

4. Conclusions 

The results have shown that the two types of Orthosiphon stamineus sample preparations (dried and 

infusions) demonstrated similar data clustering using PCA. However, the dried samples do not produce 

significant sensor response compared to the infusions. Individual assessments using the e-nose provide 

a weak classification and discrimination between six different samples and similar result was observed 

with the e-tongue.  

The experiments conducted on the Orthosiphon stamineus samples have shown that discrimination 

using PCA can be improved by applying data fusion. This technique can therefore extend the ability of 

e-nose and e-tongue when used together to evaluate and classify complex samples. Using PCA, the  

e-nose was able to discriminate only five out of six different classes. Similar response was observed by 

the e-tongue. It can also discriminate at most five out of six different groups. The use of a low-level 

data fusion technique for the e-nose and e-tongue has enabled the six different kinds of Orthosiphon 

stamineus to be grouped separately. Six different groupings were observed, possibly due to different 

geographical origin, farming practices or postharvest processing among those brands. This fusion 

technique has improved the confidence level and discrimination performance by reducing uncertainties 

and allowing the e-nose and e-tongue to complement each other.  

The performance of LDA to classify complex samples of Orthosiphon stamineus was also improved 

when the data from e-nose and e-tongue were fused together. The total percentage of variance for the 

first two PCs and the separation between the groups were also improved. Similar behavior of data 

clustering between two different types of sample preparations (dried and infusion) were also observed 

when using LDA. When the e-tongue was used separately, two sensors were not significant. However, 

after both e-nose and e-tongue were fused, the cross sensitivity effects among the sensors have been 

increased and all sensors were found to be significant and contributed towards the classification.  

This investigation has proven that different sensor modalities can extract more information and 

hence by combining the modalities, the classification performance can be enhanced. This approach has 

enabled the evaluation and extraction of more information out complex samples which have high 

similarities between them.  

In summary, by applying data fusion, the combined e-nose and e-tongue responses is analogous to 

the human sensing system as both interact and complement each other. Hence, this fusion method has 

strong potential to assist human panels in making decisions, for applications such as herbal  

quality assessments.  
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