
Sensors 2010, 10, 9232-9251; doi:10.3390/s101009232

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

An Intelligent Architecture Based on Field Programmable Gate

Arrays Designed to Detect Moving Objects by Using Principal

Component Analysis

Ignacio Bravo *, Manuel Mazo, José L. Lázaro, Alfredo Gardel, Pedro Jiménez and

Daniel Pizarro

Electronics Department, University Alcala, Escuela Politecnica, Campus Universitario, Ctra. Madrid

Barcelona km. 33.6 28871, Alcala de Henares, Madrid, Spain; E-Mails: mazo@depeca.uah.es (M.M.);

lazaro@depeca.uah.es (J.L.L.); alfredo@depeca.uah.es (A.G.); pjimenez@depeca.uah.es (P.J.);

pizarro@depeca.uah.es (D.P.)

* Author to whom correspondence should be addressed: E-Mail: ibravo@depeca.uah.es;

Tel.: +34-918-856-580; Fax: +34-918-856-540.

Received: 2 September 2010; in revised form: 1 October 2010 / Accepted: 10 October 2010 /

Published: 15 October 2010

Abstract: This paper presents a complete implementation of the Principal Component

Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to

high rate background segmentation of images. The classical sequential execution of

different parts of the PCA algorithm has been parallelized. This parallelization has led to

the specific development and implementation in hardware of the different stages of PCA,

such as computation of the correlation matrix, matrix diagonalization using the Jacobi

method and subspace projections of images. On the application side, the paper presents a

motion detection algorithm, also entirely implemented on the FPGA, and based on the

developed PCA core. This consists of dynamically thresholding the differences between the

input image and the one obtained by expressing the input image using the PCA linear

subspace previously obtained as a background model. The proposal achieves a high ratio of

processed images (up to 120 frames per second) and high quality segmentation results, with

a completely embedded and reliable hardware architecture based on commercial CMOS

sensors and FPGA devices.

Keywords: FPGA; PCA; CMOS sensor; object detection; image processing

OPEN ACCESS

Sensors 2010, 10

9233

1. Introduction

One of the main research areas in the field of computer vision is the automatic description of the

features of a given scene [1,2]. The greater demand made by the performance of image processing

algorithms, together with improved spatial resolution and the increased rate of images per second from

the new CMOS sensors, means that the need for computational power is continuously increasing. If

real time performance is to be achieved, the need to reduce algorithm execution time is even greater,

requiring the incorporation of an operating system in the processor capable of executing deterministic

tasks, which in turn increases the cost of the products and makes it more difficult to program.

It is usual for the platforms chosen to carry out these algorithms based on sequential programs, in

which the only improvements currently available consist in applying multi-threading programming

techniques so the power of the new multicore processors may be used. However, from a performance

point of view these processing architectures are not so efficient in many applications like the digital

processing of images, which normally requires a high number of operations to be handled at the bit

level as quickly as possible, by processing in parallel a small number of input samples. Due to the

sequential architecture of conventional computers, a notorious amount of operations cannot be

performed concurrently. Another issue is the amount of data processed in each instruction, which is

limited by the type and width of used communication bus and the image capture board. For this reason,

when a large amount of data must be handled, the system performs slowly. This has given rise to

solutions that make use of coprocessor systems that handle low level preprocessing tasks, where the

amount of data to be processed is high but the operations to be carried out are simple [3]. Our proposal

is to create a hardware platform for a specific purpose (designed specifically for one application), as it

can produce excellent results working in an ad-hoc low-cost platform. In fact the FPGA used to

validate the proposal could be considered as a FPGA with medium/low features (Xilinx V2P7).

The detection of both static and moving objects within a captured area is one of the more common

tasks undertaken by many computer vision applications. Movement analysis is involved, among other

things, in real time applications such as navigation and tracking and obtaining information about static

and moving objects within a scene [4]. Movement analysis, which is closely related to the image

transfer rate from the video sensor, is fundamental for addressing topics such as image sequence

reconstruction, video compression, fixed image capture and multi- resolution, techniques, etc.

Within the field of image processing previous works have partially developed the processing

algorithm of PCA using programmable devices. In [5] for example, all of the PCA is implemented on

the FPGA, however the calculation of eigenvalues is implemented on a PC due to it is mathematically

too complex to be implemented on the FPGA. In [6] on the other hand, a variant of PCA called a

Modular PCA, applied to face recognition, has been implemented on an FPGA, as this version of PCA

has a much lower volume of mathematical operations than the conventional PCA algorithm. In [7] a

system based on FPGA is proposed for detecting objects known a priori by comparing their

eigenvectors. However, as far as the authors know no work has been found on the detection of moving

objects employing PCA that uses FPGAs as the processing element. It is important to point out that in

none of the works found is PCA implemented exclusively on FPGAs, due mainly to the heavy data

dependence and complex mathematical operations involve within PCA. The data dependences cause

several hazards which make difficult the implementation of efficient pipeline systems. On the other

Sensors 2010, 10

9234

hand, the mathematical operations needed by PCA algorithm, are not usual operations used for other

algorithms (e.g., solving eigenproblems). Due to this fact, new specific mathematical cores have been

designed for this algorithm.

These situations make difficult to segment/divide the hardware processing of the different parts of

PCA. For this reason, executing PCA is normally divided between an FPGA and a PC or

microprocessor [5], so that normally an ad-hoc HW/SW partition of the system is made, without

adequately exploring the design space (HW/SW co-design methods).

One of the main contributions of this work is the FPGA implementation of the complete PCA

algorithm on reconfigurable hardware; indeed it is the first work in the literature to do so. Classic

sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization

has led to the development and implementation of seldom used alternatives for the different stages of

PCA. One example is the calculation of eigenvalues and eigenvectors, matrix multiplication in

hardware or calculation of a dynamic threshold for detecting moving objects. This latter issue is

another major contribution of the paper because the information generated by PCA is used to detect

moving objects. In this work, PCA is implemented on an FPGA to detect moving objects within a

scene, based on the PCA algorithm. To achieve this, a specifically designed intelligent camera has been

implemented based on a CMOS sensor and an FPGA [8]. Thanks to the design and implementation of

this new proposal it can be used in any situation requiring an autonomous system (without PC).

The other sections of this paper are as follows: Section 2 sets out the mathematical foundations of

the PCA algorithm applied to image processing; Section 3 describes the platform design; Section 4

presents the implementation in VHDL of the PCA algorithm on an FPGA; and finally, Sections 5 and 6

set out the results and present the conclusions respectively.

2. The PCA Algorithm

Principal Component Analysis (PCA) is a method that is used in different fields, such as statistics,

power electronics or artificial vision. The main feature of PCA is the reduction of redundant

information, retaining only information that is fundamental (principal components).

Artificial vision is a good example of a field where the PCA technique can be applied directly, as an

image contains a large number of highly correlated variables (pixels). Therefore, applying the PCA

technique to image processing allows us to reduce the redundant information of the initial variables

and determine the degree of similarity between two or more images by analyzing only the basic

features within the transformed space. This last feature is of interest as far as the detection of new

objects within the scene is concerned.

2.1. Obtaining the principal components of an image

The PCA algorithm can be applied to images using the following steps [9,10]:

1. Capturing M images to construct a reference model of the scene. We identify each of M

references image by NN
i

I , with Mi ,...1 and where it is assumed that the spatial

resolution of the images is N x N.

2. Each image is represented as a column vector of the dimensions N
2
 × 1

Sensors 2010, 10

9235

3. Calculating the mean image from the M reference images : 12 N
Ψ given for:

Mi

M

III

M

III

M

III

M

NN
NMNN

M

M

M

i

i ,...,1 ;
...

...

...

...

...

1

1

2

1

,,2,1

2,2,22,1

1,1,21,1

1

22

222





































































 IΨ (1)

where Ii,j is the j (2,...,1 Nj ) element of Ii image.

4. Form a matrix MN 
2

A (3) whose columns are the vectors ΨIΦ  jj (2):

Mi

I

I

I

NNi

i

i

NNNi

i

i

ii ,...,1 ;
..........................

1,

2,

1,

1,

22,

11,

2
2

2
22





























































ΨIΦ (2)

 

2 2 2
2

1.1 2,1 ,1

1,2 2,2 ,2

1

1, 2, ,

....

...

M

M

M

N N M N N M

   
 
    
 
 
    

A Φ Φ (3)

5. Obtaining the covariance matrix,
22 NN C from the matrix A (4):

T

M
AAC 

1
 (4)

6. Obtaining the associated eigenvalues and eigenvectors of the matrix C. Given that matrix A

is of the size MN 2 and generally MN 2 , to reduce the number of operations that must be

performed, the eigenvalues and eigenvectors of  AA T are calculated (5):

VλVAA  IT (5)

where MMV is the matrix of the eigenvectors of AA T . The eigenvalues of C match up

with those of AA T while the eigenvectors of C are obtained from (6):

VAU  (6)

7. Obtaining the principal eigenvalues. From the eigenvalues obtained in point 6 the most

significant eigenvalues t are selected, using for example, the criteria the normalized root

mean square error (RMSE) [10,11] given by (7), that is the eigenvalues of greatest value

(t  ...21):

Sensors 2010, 10

9236

PRMSE
M

i
i

M

ti
i











1

1





 (7)

where P is the percentage of necessary eigenvalues required to achieved the most significant

eigenvalues t.

The transformation matrix tN
t


2

U is given by (8) where  tuuu ,...,, 21 are the eigenvectors

associated to the eigenvalues t  ...21 :

 tt ,...,, uuuU 21 (8)

An important issue is the quantification of the value M , which is the number of captured reference

images used to build the background. Theoretically, it is a good idea to employ a high M value that

allows different lighting conditions of the same scene to be considered. However the use of a high M

number implies a significant increase in computational load and memory storage. The features of

external memory in which background images will be loaded, will determinate the size of M . Due to

this fact, the bus width of used external memory (128 bits) and according to the results shown in [12]

in our case, it has been chosen size of 8M associated to the same scene without moving obstacles

and under soft natural lighting variations. Thanks to this size and CMOS features, it is possible to read

from the sensor 8 pixels in each clock period.

According to the results shown in [12] in our case, a size of 8M has been chosen. Once the

transformation matrix tU has been obtained, the next step is to determine whether in a newly captured

image of the scene new objects have appeared. To do this the following steps must be performed:

1. Projection onto the transformed space. The first step is the projection onto the transformed

space using (9):

 j) (j
T
t

T
t ΨIUΦUΩ  (9)

where 1 t
Ω is characterized by a vector of dimension t (T

t],...,,[21 Ω), where each

component i represents the contribution of each eigenvector in the representation of jI .

2. Recovering the projected image. Once the image has been projected onto the transformed

space using (9), then 12ˆ  N
Φ is recovered using (10):

 ˆ
j ΩUΦ  t (10)

3. Determining the existence of new objects in the scene. Finally, the captured image is

compared with the recovered image, thus obtaining what is termed the error recovery. If the

result of the comparison is above a determined threshold)(MDTh it implies the presence of

new objects in the scene (11):

Sensors 2010, 10

9237

scene in the objects new are thereˆ

scene in the objects new no are thereˆ





MDjj

MDjj

Th

Th

ΦΦ

ΦΦ
 (11)

The threshold MDTh is a dynamically obtained value that is adjusted according to the conditions

of the scene.

4. Spatial localization of the detected object. To detect the presence of new objects it is only

necessary to apply expression (11). However, if we want to know in which part of the scene

the new object has appeared a localization method must be found.. With the aim of reducing

the effect of noise, the value of each pixel of the captured image and that of the recovered

image is averaged with that of the adjacent pixels by means of a mask of qq elements. As

a result a matrix known as an average distance map is obtained (
22 NN

V
MD), where

every one of its elements)(, iw corresponds to the Euclidean distance between the

corresponding average pixels of the original and recovered image (12).

Once the VMD has been obtained, the next step is to threshold the map so that the new objects can

be found easily. To do this, a new binary image is built  BW where each element is the result of a

comparison between each VMD pixel and a MDTh threshold (13):

 

  MDwiwiwii

MDwiwiwii

ThBW

ThBW





ΦΦ

ΦΦ

ˆ if 0

ˆ if 255




 (13)

3. Description of the Architecture

The system proposed is based on a high speed CMOS sensor (up to 500 images per second with a

maximum resolution of 1,280 × 1,024 [13]) and an FPGA in which a novel design has been

implemented for managing and capturing the images from the sensor, as well as executing the PCA

algorithm. The system implemented on the FPGA is separated into the following logical blocks as

shown in Figure 1 with green color:

 CMOS sensor controller: This block is responsible for implementing image demands to the

CMOS sensor such as parameterizing its internal registers according to the desired

configuration (images per second, exposure time, etc.).

 Image capture controller: the purpose of this block is to allow the user to select an area of

interest within the image from the CMOS sensor.

 External memory controller: the system is equipped with a 128 MB, SDRAM memory bank

that is external to the FPGA. Images from the CMOS sensor are stored in this bank.

 Communications Controller with the PC: this block controls the communication between the

FPGA and the PC. This is used to transmit commands and results.

 Head Controller: This block is responsible for synchronizing the entire system so that

everything works correctly and at maximum speed.

iwiwiw ,,. Φ̂Φ  Nw ,....2,1 Ni ,....,2,1 (12)

Sensors 2010, 10

9238

 PCA algorithm: This block implements the PCA algorithm and its implementation is the

most important contribution of this work.

Figure 1. Block diagram of the internal architecture of the FPGA.

Sensor

CMOS

Controller

Head

Controller

External

Memory

Controller

Communications

Controller

with PC

PCA

Algorithm

C
M

O
S

S
en

so
r

MEMORIES

P
C

Image

Capture

Controller

FPGA

4. Implementing PCA on FPGAs

The mathematical complexity of the operations of the PCA algorithm presented in Section 2

(calculation of eigenvectors, matrix multiplication, square roots, etc) makes it impractical to implement

them directly on reconfigurable hardware. The proposal and selection of different hardware structures

and computing alternatives in order to obtain an efficient solution to resolve these operations on

FPGAs is essential for the PCA implementation and, thus, constitutes one of the major contributions of

this paper. This section presents the hardware solution found which permits the PCA algorithm to be

implemented on an FPGA. Figure 2 shows a block diagram of the PCA algorithm implemented on the

FPGA, grouping the different modules into three stages: generation of eigenvectors (light yellow),

on-line (light orange), and object detection (light pink). The three phases in which the PCA algorithm

is divided are now described.

4.1. Generating the eigenvectors

The first phase of the PCA algorithm is the generation of the eigenvectors of the reduced

transformation matrix tU . This first phase includes five stages:

1. Calculating the mean of the M images 




  12N
Ψ and the matrix MN 

2

A (3).

2. Obtaining the covariance matrix MMT C (5).

3. Calculating the eigenvectors of the matrix MMV and the posterior matrix of the reduced

eigenvectors tM
t

V .

4. Obtaining the eigenvectors of the matrix tN
t


2

U from MM
t

V where Mt  .

Sensors 2010, 10

9239

5. Calculating the norms of matrix eigenvectors.

Figure 2. Block diagram of the PCA algorithm implemented on an FPGA.

Mean Calculating

Image

AA  T

M

1 Eigenvectors

Calculating

Ut Generation

Eigenvectors Generation Stage

M captured images

Subtraction

With

The Mean
Obtaining Map of Distances

Thresholding

Detected

Object

Dynamic

Threshold

tU

T
C

jΦ

A

On-Line Stage Object Detection

Stage

Ψ

jΦ̂

tV

jI
jΦ̂

4.1.1. Calculating the mean of the M images  Ψ

The hardware architecture that has been developed for this module stores the captured M images in

an SDRAM external memory. The block shown in Figure 3 has been implemented on the FPGA,

where the 8M  images are stored in different memory components (B1). Once the eight pixels have

been extracted, one for each image, the mean calculation process is initiated using a set of cascade

adders (see B2 Figure 3). As this process takes three clock cycles and the aim is for the system to be as

segmented as possible, the eight extracted pixels are inserted into a delay unit consisting of flip-flops

that synchronizes the subtraction process of each pixel with that of the corresponding mean (B6).

4.1.2. Obtaining the covariance matrix ()T
C

Generating T
C from matrix A , means the product of two matrices AA T , must be produced on an

FPGA, which entails a complex process. In the case of the PCA the aim is to multiplex the matrix

multiplication module using it to: generate the covariance matrix, generate the eigenvector matrix

(tU), project an image onto the transformed space and recover the projected image. Different

approaches to the matrix multiplication have been analyzed and developed by the authors [14]. After

this study, an ad-hoc matrix multiplier system based on a semi-systolic array proposed by the authors

in [14] has been chosen because the maximum performance for PCA is achieved with this approach

thanks to the possibility to reuse the system for the different types of matrix multiplication that PCA

needs.

Sensors 2010, 10

9240

Figure 3. Block diagram of the proposed circuit for calculating the mean  Ψ of the M

captured images.

Mean

Calculation

MEM

MEM

MEM

…

MEM …

Delay

CLK

Delay

CLK

C
O

V
A

R
IA

N
C

E

C
A

L
C

U
L

A
T

IO
N

i

Ψ

1I

2I

MI

iii I  ,, 11

iiMiM I  ,,

M

iI ,1

iI ,2

iMI ,

B1

B2

+

+

+

+

+

+

+

iI ,8

iI ,7

iI ,6

iI ,5

iI ,4

iI ,3

iI ,2

iI ,1

B3

B6

B6

B5

B5

B4

4.1.3. Calculating the eigenvectors of the matrix ()V

The computation of eigenvalues and eigenvectors represents the greatest computational burden on

the PCA algorithm. Different techniques have been proposed for obtaining the eigenvalues of a matrix

using specific hardware, all of them based on recurrent methods that look to diagonalize the

matrix [15,16]. Once the matrix has been diagonalized, the eigenvalues coincide with the values of the

diagonal. The method proposed in [17] is the most interesting as it allows parallel processing hardware

structures to be implemented [18]. For this reason, the solution developed in this work is based on the

Jacobi method. A previous article by the authors [19] describes the architecture developed.

4.1.4. Obtaining the eigenvectors of the matrix ()tV

The first step in determining the most significant t eigenvectors is to arrange the eigenvalues and

their associated eigenvectors in either ascending or descending order. This step is necessary as the

Jacobi method does not generate the eigenvalues in order. To determine t , the largest t eigenvalues are

found and then their associated eigenvectors are selected depending on how much bigger than the

eigenvalues that have been obtained the user wants them to be (7). In this work, bubble sort has been

used as the sorting algorithm [20].

Sensors 2010, 10

9241

4.1.5. Obtaining the eigenvectors of the matrix
tU

To obtain the matrix
tU , according to (6), the matrix A must be multiplied by

tV . To do this, once

again the semi-systolic array presented in [14] is used.

4.1.6. Calculating the norms of the eigenvectors

The eigenvectors obtained in the previous stage do not possess a unit module so they must be

normalized (14) tnU according to (15):

 
2

2

1

N

j

i

n u


  i, j
 tj ,...,1 (14)











t

tt
tn

nnn

uuu

norms

U
U

2

2

1

1   t

tnnn  1

21 ,...,,norms (15)

To implement in hardware the arithmetical operations shown in expressions (14) and (15) is

extremely complex as a consequence of the square root, and it also uses a large amount of resources.

To avoid calculating the square root when calculating ˆ
jΦ it is only necessary to express this matrix in

accordance with the squared norm, as shown in (16):

4.2. The on-line stage

If there is a new object in the captured image, with respect to the reference scene, it is determined

during the on-line stage. For this to be done, the new captured image is projected onto the transformed

space so that it can be recovered later and studied to determine whether or not there is a new object in

the scene. To do this the following steps are followed:

1. Subtraction of the mean of the present image: If jI is the captured image, jΦ is obtained.

2. Projecting jΦ onto the transformed space and obtaining jΦ̂ : With the aim of reaching the

maximum concurrence possible when executing (16), first the j
T
t ΦU  product is performed

and this result is divided by the squared norms (
 

2norms

ΦU j

T

t 
), and finally

 












 


2
norms

ΦU
U

j

T

t

t

product is performed.

3. Determining the recovery error: In this final stage, the degree of similarity between jΦ and

jΦ̂ is evaluated.

Figure 4 shows the VHDL encoded modular design of this on-line stage. With respect to the internal

workings of the system shown in Figure 4, this starts when a new vector image jI is captured and later

stored in the external memory so that the system has an initial latency of one image. As explained

2
ˆ

norms

ΦUU
ΦUUΩUΦ

j

T

tt

j

T

tntntnj


 (16)

Sensors 2010, 10

9242

earlier, once jΦ has been obtained the next step is to produce the j
T
t ΦU  . To do this, the semi-systolic

array for matrix multiplication is used [14]. It is important to point out at this point that the execution

time of the Matrix Multiplier depends on the number of significant eigenvalues (t). In accordance with

the percentage of significant eigenvalues (see (7)), a value of t equals 6 has been decided upon. This

reduction introduces a recovery error () (17), after analyzing 1,000 images it could be seen that the

induced error is approximately 1%:

 




2

1

2ˆˆ
N

i
jjjj ii

ΦΦ (17)

Figure 4. Block diagram of the modules of the design in VHDL of the on-line stage of the PCA.

Matrix

Multiplier

BRAM

Normalization

norms2

BRAM

R
ec

o
v
er

 E
rr

o
r

A
n

al
ys

is

jΦ
jtΦU

Projection

Matrix

Multiplier

jΦ̂

Recovering

+

-

ΣjI

Ψ

tU

SDRAM_MEM

2
norms

ΦU jt 

Once the first results from the j
T
t ΦU  product have been obtained, the next step is to divide these

results by norms
2
. As each component of j

T
t ΦU  is generated in one clock cycle, given that they are

output by the semi-systolic array, they are divided by the corresponding squared norm.

To perform the division operation on an FPGA, there are basically two possibilities: either design a

division unit specifically for that purpose, or use a coordinate rotation digital computer (CORDIC)

algorithm [21]. In this work the latter option has been chosen, as it consumes fewer resources than the

former. Dividing two numbers is feasible in CORDIC if it is used in vectorization mode with a linear

coordinate system [22]. To do so, a division module based on a parallel CORDIC architecture has been

implemented.

When the first component of the division has been obtained, the next step to be performed in (16) is

to obtain jΦ̂ . Once again, to perform this fourth matrix multiplication, the semi-systolic array

described in [14] is used.

4.3. Detecting new objects in the scene

This section presents the solution developed for implementing an identification of new objects from

the error recovery () system in reconfigurable hardware (17). It proposes the building of an error

recovery map or Map of Distances (MD) that will permit the new objects to be located spatially. The

size of this map of distances will coincide with the size of the image, where each of its positions is the

pixel to pixel Euclidean distance between jΦ̂ and jΦ . A new Map of Distances (VMD) will be built in

order to reduce the noise effect. The final detection of moving obstacles will be obtained using the

Sensors 2010, 10

9243

dynamic threshold MDTh (11). Calculating MDTh presents difficulties as it must be adaptable and its

value depends on both the features of the scene under analysis and the lighting conditions. For this

reason, in this section we present a new method for dynamically calculating the threshold that

minimizes the false detection of new objects within the scene of interest. Figure 5 shows a block

diagram of this proposal for detecting objects from jΦ̂ and jΦ (green blocks). Next the hardware

solution implemented in each block of Figure 5 is presented.

Figure 5. Proposal for the system consisting of the construction of the MD, detection of

new objects and the updating of the background model.

j̂
Recovering Image

Captured Image
j

MDV Analysis

+

Object Detection

Average MD

using qxq mask

New Object

Detected

Map of Distances

(MD)

Construction

MDV

MD

MDTh

4.3.1. Constructing the Map of Distances (MD) and the Map of average Distances (MDV)

The Map of Distances MD is obtained from (18), i' being the square of the Euclidean distance

between each component jji Φ and jji Φ̂ˆ  2,...,1 Ni  (for images of the size NN ):

2
ˆ'

ii jji  2,...,1 Ni  (18)

Working with the square of the Euclidean distance rather than the Euclidean distance (17),

facilitates the design of hardware associated with this function, as it avoids the need to perform the

square root operation. As such, to obtain MD only requires one subtraction and one multiplication

operation, so that with an adder/subtraction block and a multiplier connected in cascade the segmented

execution of (18) can be performed.

Once the initial components of MD have been generated, the generating of the map of average

distances (VMD) can be started. The use of a mask of q × q components is proposed that averages the

pixels adjacent to MD, applying a 2D low-pass filter. The components that make up the map

VMD are Nwiwvi
,..,1, ;' ,  .

To provide a compromise value to the size of mask q, different sizes applied to different maps MD

have been simulated; all of them are fixed point encoded. The size chosen for q is 3, given that it

provides the algorithm with a certain degree of robustness and reliability, and few hardware resources

are required.

To implement the averaging function with masks of q × q (3 × 3) on the adjacent pixels the

corresponding convolution function is implemented [23]. To select the best alternative for hardware

implementation, several proposals for convolutions have been designed [23], evaluating at all times the

execution time as well as how much of the FPGA’s internal resources are consumed.

Sensors 2010, 10

9244

To perform the convolution between a matrix and a generic mask, nine multiplication operations

and eight accumulation operations must be performed for each resulting component. However, when

all the coefficients of the mask have been identified, as happens in our case, another way of performing

the convolution is according to (19), whereby one that reduces the number of multiplications to one. In

this way, to obtain each
wiv ,

' component of the VMD , it is necessary to perform a nine component sum

backlog and one multiplication for the equivalent factor in fixed point:

 1,1,11,11,,1,1,1,11,1 '''''''''9/1'
,   wiwiwiwiwiwiwiwiwiv wi

 (19)

Figure 6. Example of histogram construction of the maximum of the columns for an

average map of distances (VMD).

1,
'

N
v

1,1
'v

2,1
'v

3,1
'v

4,1
'v

5,1
'v

N
v

,1
'

1,2
'v

2,2
'v

3,2
'v

4,2
'v

5,2
'v

N
v

,2
'

1,3
'v

2,3
'v

3,3
'v

4,3
'v

5,3
'v

N
v

,3
'

1,4
'v

2,4
'v

3,4
'v

4,4
'v

5,4
'v

N
v

,4
'

1,5
'v

2,5
'v

3,5
'v

4,5
'v

5,5
'v

N
v

,5
'

2,
'

N
v

3,
'

N
v

4,
'

N
v

5,
'

N
v

NN
v

,
'

MDV

1,
'max

iv

2,
'max

iv

3,
'max

iv

5,
'max

iv

Niv ,
'max

Histogram of the

maximum of the

columns for

MDV

u 2u 3u 4u

…… …

f·u(f-1)·u(f-2)·u

4,
'max

iv

VMX

4.3.2. Detecting objects from the VMD map

Once the map of average distances (VMD) has been obtained, the next step is to analyze the map to

evaluate whether or not there are new objects in the scene of interest. To do so, a threshold ThMD is

obtained, which, when applied to VMD makes it possible to perform the segmentation and as a

consequence detect the presence of new objects. The value of ThMD must be dynamic as its value must

adapt, amongst other factors, to changes in light within the scene. In order to obtain this dynamic ThMD

different alternatives have been proposed, [12,24,25]. Our proposal calculates the histogram (with f

intervals) of the maximum Euclidean distances of each column of the VMD (Figure 6) and then obtains

the dynamic threshold ThMD from the histogram. This algorithm, implemented on an FPGA, generates

excellent results, as will be seen later in the results section.

Sensors 2010, 10

9245

Analyzing the information supplied by the histogram on the maximums of the VMD columns, it can

be seen how most of the maximum Euclidean distances represented are concentrated in the lower

intervals. However, when a new object appears in the scene being studied, the maximum Euclidean

distances of the VMD columns where the object is located are expressed by a valley in the histogram. If

there is no new object in the scene, then the valley does not appear. On the basis of this last feature of

the histogram, to threshold VMD it is necessary to find the value of ThMD that makes it possible to

discriminate between the new object and the background. The minimum value of ThMD needed to

correctly detect new objects must be the same as the value of the histogram interval that contains the

valley associated with the new object.

The hardware to perform the threshold is shown in Figure 7. Each block in Figure 7 is described

below:

 Block 1: this block is responsible for calculating the maximum of each column of the map of

distances VMD . Internally it consists of a single register that stores the maximum value and

a comparator that evaluates whether the new data is bigger or smaller than the stored

temporal maximum.

 Block 2: After calculating the maximums of the columns of the VMD , Block 2 is responsible

for building the histogram of the maximums of the columns. It is executed in parallel with

Block 1 once the maximum of the first column has been obtained. Every time a maximum is

obtained the histogram interval that belongs to that maximum must be looked for and its

accumulator increased by 1.

 Block 3: This module, which is executed when Block 2 generates the first data, is responsible

for calculating the maximum values of the histogram (VMX of Figure 6). This block works as

follows: every time the maximum of a column is obtained in Block 2, a new value is added

to the corresponding histogram interval and the number of the histogram interval with the

maximum accumulated value is updated. At the same time, in Block 3 the increased value is

evaluated to see whether it is the largest. If it proves to be so, then it is stored so that it can

be compared with the following output from Block 2 and its memory address, which gives

the location of the new maximum, generated by Block 2 is also stored.

 Block 4: Finally, this component is responsible for looking for valleys in the histogram once

Block 2 and Block 3 have finished.

To find a valley, a hardware block has been designed to check the memory of Block 2, which

contains the histogram of the maximums of the columns of VMD . The counter starts from the address

stored in Block 3, that is to say, the address of the histogram interval with the maximum accumulated

value. To find a valley, it is only necessary to find a value in the memory that is bigger than the one

stored in the position before it. If no local minimum exists the system will increase the threshold

(checking the intervals defined by the histogram) until it considers that the threshold is situated in the

extreme interval and then classifies all the pixels in the image as belonging to the background. The

number of histogram intervals (f) has been empirically set at 10, as with this value the developed

proposal works correctly.

Sensors 2010, 10

9246

Figure 7. Block diagram on an FPGA of the dynamic threshold calculating system for

detecting new objects.

Block 4. Valley Searching

Block 2. Histogram Calculation

MEMORY

Histogram Loading

Maximum-

Calculation

Reset

Input Data

End of Column

WE

+1

Histogram

Decoder

Maximum of

each column

address

address

End of Image

address

Maximum-

Calculation

Valley

Search

Load

Image Convolution

Block

1
0

Counter

Load

MDV2

Dynamic Threshold Calculation and Detection of New Objects System

Block 2

Output

Index of maximum

of histogram

Detected Object

Block 1 Block 3

5. Results

This section sets out the results obtained in detecting new objects with a FPGA running PCA

algorithm. All the images presented in this work have been captured by an “intelligent camera”

described in [8].

From a quantitative point of view, in calculating the execution time of the entire proposal presented

in this work (TPCA_TOTAL) from the moment the first M images are captured, the total time consumed is

given by (20), with Table 1 giving a description of each of the times in (20):

OBJMEMIMAGEUW RGENTOTALPCA TLTTT  ___
 (20)

Table 1. Description of the partial times of TPCA_TOTAL.

TGEN_WR

_U

Time the FPGA takes to generate and write in SDRAM the eigenvectors of the

matrix tU .

TIMAGE Time employed in capturing a new image and its subsequent writing in SDRAM.

LMEM Latency of the SDRAM memory, from the time it gives the order to read an image

until the first data is received.

TOBJ Time consumed in detecting new objects after the recovered image (jΦ̂) has

been obtained from the transformed space

When it comes to calculating the number of complete clock cycles employed by TPCA_TOTAL, the

value obtained is not constant as it depends on the number of significant eigenvectors, the size of the

matrix and the number of Jacobi algorithm iterations, as explained in [19]. Adjusting the expression

(20) for six eigenvectors (worst case), capturing eight images (256 × 256 pixels) to build a reference

model (8M), an internal data width of 18 bits (18n) and 23 iterations for the Jacobi algorithm the

value obtained in clock cycles is:

CLKCAMERACLKTOTALPCA TTT 269395131076 __  (21)

Sensors 2010, 10

9247

where TCLK_CAMERA is the signal period of the CMOS sensor’s clock and TCLK the FPGA’s master

clock. Clock Camera is generated by the FPGA using a DCM (digital clock management) block.

Thanks to this element and a bank register managed for a FSM (finite state machine), both clocks

working rightly. To obtain a ratio of the number of images the system processes, if the CMOS sensor’s

clock (TCLK_CAMERA) is 66 MHz and the FPGA’s master clock is 100 MHz (frequency reached once the

entire system has been implemented) a minimum of 121 images of 256 × 256 pixels have been

processed per second. This ratio increases notably if any of the following situations occur:

 Number of significant eigenvectors (t) under four. In this case the number of matrix

multiplication operations (6), (9) and (10) are notably reduced. In this way the new

TPCA_TOTAL value would reach an equivalent image per second ratio of 189.

 Selective actualization. Cadence is another very important factor that conditions the number

of images processed per second when updating the eigenvectors of the matrix (background

model). If the eigenvalues of the matrix are not continuously updated, but between one

update and another b images pass, the new ratio of images per second obtained is shown in

Figure 8.

Figure 8. Ratio of images achieved per second with 1b .

100

150

200

250

300

2 5 10 20 50 100 300 500 1000 10000
b

fr
a
m

e
s
/

s

t < 3

t > 4

 As may be seen from this figure, from 100b onwards, independent of the number of

significant eigenvectors, the system reaches its maximum value at around 250 images per

second for 3t and around 190 for 4t . This is because the system segmentation is at its

most efficient at this number of images. In Table 2 a summary of the final amount of

resources consumed by the different blocks implemented on the Xilinx FPGA is presented. It

is important to point out that due to the limited resources of the FPGA every attempt has

been made to optimise the design at all times, with the aim of reducing the use of internal

resources. Thanks to this, from a number of BRAM (block RAM) components and slices

point of view, it has been possible to implement the entire system on a medium to low range

FPGA like the Xilinx XC2VP7.

Sensors 2010, 10

9248

Table 2. Summary of all the resources consumed by the entire developed system on a

XC2VP7.

Area (Slices) BRAM Multipliers fCLKMAX

4225 (86%) 40 (91%) 43 (98%) 112,4MHz

With respect to the frequency of the FPGA clock, according to the reports generated by the

implementation tool, a maximum value of 1,124 MHz for the entire FPGA is assured. However, the

master frequency chosen for our design is 100 MHz as from this value all the other necessary

frequencies can be generated (the camera and external memory frequencies).

As for the real results obtained, Figure 9 shows images captured with the developed platform [8]

with an initial resolution of 1,280 × 1,023 reducing their size to 256 × 256 by applying a binning

process on the FPGA. This sequence was captured in the grounds of the University of Alcala where the

distance between the objects to be detected, in this case people and the camera, is 25 meters.

Figure 9. Sequence of images captured to determine new objects.

img1 img2 img3 img4

img5 img6 img7 img8

img1 img2 img3 img4

img5 img6 img7 img8

Figure 10 shows the detection that was performed. The proposed design has been tested with a bank

of 1,000 images captured under moderate lighting conditions in outside environments. The accuracy

achieved in the test was remarkable (around 97% of true matches). Despite the promising results for an

embedded architecture, it is widely known that when using PCA for modelling strong illumination

changes in the intensity values of the image require a high amount of PCA vectors to train the

background. Besides, due to the fact that illumination changes are non-linear variations of the intensity,

the PCA subspace cannot model such variations properly, which could increase the number of false

detections. In a near future the proposal can be easily applied to other colour spaces, such as the light

invariant space proposed in [26], which maps a RGB image to a scalar image where same surfaces

under different illuminations are mapped to the same intensity value.

Sensors 2010, 10

9249

Figure 10. Sequence of images detected to determine a new object from those captured in Figure 9.

6. Conclusions

This work presents a new image capture and processing system implemented on FPGAs for

detecting new objects in a scene, starting from a reference model of the scene. To achieve this, the

Principle Component Analysis (PCA) technique has been used. The main objective is to parallelize it

in order to achieve a concurrent execution which will enable processing speeds of around 120 images

per second to be reached. This processing speed, including all stages included in the PCA technique

(calculating eigenvalues and eigenvectors, projection and recovery of images to/from the transformed

space, obtaining map of distances, etc.) responds to the requirements of many applications, where the

goal is the detection of new objects in the scene, even in those cases where, for a variety of reasons,

(changes in lighting for example) a continuous update of the background model is required. The

proposed solution is a significant improvement on other hybrid solutions based on the use of a PC and

an FPGA [5]. The complete integrated development of the PCA algorithm on an FPGA was a task that

until now had not been achieved or performed, at least according to our thorough review of related

work done on this topic. Thanks to the designed solution new applications with PCA algorithm could

be implemented for new proposals or applications.

Acknowledgements

This work was made possible thanks to the sponsorship of the Ministry of Education and Science

(MEC) and the projects ESPIRA (REF-DPI2009-10143) and SIAUCON (REF-CCG08-UAH/DPI-

4139), funded by the University of Alcala and the Madrid Regional Government.

References

1. Ratha, N.K.; Jain, A.K. Computer vision algorithms on reconfigurable logic arrays. IEEE Trans.

Parallel Distrib. Syst. 1999, 10, 29-43.

Sensors 2010, 10

9250

2. Magdaleno, E.; Rodríguez, M; Rodríguez-Ramos, J.M. An efficient pipeline wavefront phase

recovery for the CAFADIS camera for extremely large telescopes. Sensors 2010, 10, 1-15.

3. Talu, H.M.; Igci, E.; Tekin, M.E.; Sevtekin, H.S.; Genç, B.Ç, Heywood, M.I. Reconfigurable

computing implementation of binary morphological operators using 4-, 6- and 8- connectivity. In

Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP'00), Las Vegas, NV, USA, June 2000; pp. 3386-3389.

4. Parra, I.; Fernández, D.; Sotelo, M.A.; Bergasa, L.M.; Revenga, P.; Nuevo, O.M.; García, M.A.

Combination of feature extraction methods for SVM pedestrian detection. IEEE Trans. Intel.

Trans. Syst. 2007, 8, 292-307.

5. Fleury, M.; Self, R.P.; Downton, A.C. Development of a fine-grained parallel Karhunen-Loeve

transform. J. Parall. Distrib. Comput. 2004, 64, 520-535.

6. Gottumukkal, R.; Asari, V.K. An improved face recognition technique based on modular PCA

approach. Pattern Recog. Lett. 2004, 25, 429-436.

7. Zhong, F.; Capson, D.W.; Schuurman, D.C. Parallel architecture for PCA image feature detection

using FPGA. In Proceedings of Canadian Conference on Electrical and Computer Engineering

(CCECE 2008), Dundas, ON, Canada; May 2008; pp. 1341-1344.

8. Bravo, I.; Jiménez, P.; Mazo, M.; Lázaro, J.L.; Martín, E. Architecture based on FPGA’s for

real-time image processing. Lect. Notes Comp. Sci Reconfig. Comput.: Architect. Appl. 2006,

3985, 153-157.

9. Dunteman, G.H. Principal Component Analysis. Sage Publications: Newbury Park, CA, USA,

1989.

10. Jolliffe, I.T. Principal Component Analysis, 2nd ed; Springer Series in Statistics, Springer-Verlag:

New York, NY, USA, 2002.

11. Swets, D.L.; Weng, J.J.; Using discriminant eigenfeatures for image retrieval. IEEE Trans. Patt.

Anal. Mach. Intell. 1996, 18, 831-836.

12. Vázquez, J.F.; Lázaro, J.L.; Mazo, M.; Luna, C.A. Sensor for object detection in railway

environment. Sensor Lett. 2008, 6, 690-698.

13. Aptina Imaging. Datasheets: 1.3-Megapixel CMOS Active-Pixel Digital Image Sensor

MT9M413C36STM. Aptina Imaging Corp.: San Jose, CA, USA, 2004.

14. Bravo, I.; Jimenez, P.; Mazo M.; Lazaro, J.L.; de las Heras, J.J.; Gardel, A. Different proposals to

matrix multiplication based on FPGAs. In Proceedings of the IEEE International Symposium on

Industrial Electronics (ISIE07), Vigo, Spain, December 2007; pp. 1709-1714.

15. Ahmedsaid, A.; Amira, A.; Bouridane, A. Accelerating MUSIC method on reconfigurable

hardware for source localization. In Proceedings of the 2004 International Symposium on Circuits

and Systems (ISCAS'04), Tel Aviv, Israel, December 2004; pp. 369-372.

16. Kim, M.; Ichige, K.; Arai, H. Implementation of FPGA based fast DOA estimator using unitary

MUSIC algorithm. In Proceedings of the IEEE 58th Vehicular Technology Conference (VTC 03),

Jeju, Korea, April 2003; pp. 213-217.

17. Wilkinson, J.H. The Algebraic Eigenvalue Problem; Oxford University Press: Oxford, UK, 1999.

18. Brent, R.P.; Luk, F.T. The solution of singular-value and symmetric eigenvalue problems on

multiprocessor arrays. SIAM J. Sci. Stat. Comput. 1985, 6, 69-84.

Sensors 2010, 10

9251

19. Bravo, I.; Mazo, M.; Lazaro, J.L.; Jimenez, P.; Gardel, A.; Marron, M. Novel HW Architecture

Based on FPGAs Oriented to Solve the Eigen Problem. IEEE Trans. Very Large Scale Integration

(VLSI) Syst. 2008, 16, 1722-1725.

20. Todd, S. Algorithm and hardware for a merge sort using multiple processors. IBM J. Res. Dev.

1978, 22, 509-517.

21. Walther, J.S. A unified algorithm for elementary functions. In Proceedings of AFIPS Spring Joint

Computer Conference, Atlantic City, NJ, USA, May 1971; pp. 379-385.

22. Karabernou, S.M.; Terranti, F. Real-time FPGA implementation of Hough Transform using

gradient and CORDIC algorithm. Image Vis. Comput. 2005, 11, 1009-1017.

23. Bravo, I.; Hernández, A.; Gardel, A.; Mateos, R.; Lázaro, J.L.; Díaz, V. Different proposals to the

multiplication of 3 × 3 vision mask in VHDL for FPGAs. In Proceedings of the IEEE Conference

on Emerging Technologies and Factory Automation (ETFA), Lisbon, Portugal, September 2003;

pp. 208-211.

24. Nakagawa, Y.; Rosenfeld, A. Some experiments on variable thresholding. Pattern Recognit. 1979,

11, 191-204.

25. Manay, S; Yezzi, A. Anti-geometric diffusion for thresholding and fast segmentation. IEEE Trans.

Image Process. 2003, 12, 1310-1323.

26. Finlayson, G.D.; Hordley, S.D.; Lu, C.; Drew, M.S. On the removal of shadows from images.

IEEE Trans. Patt. Anal. Mach. Int. 2006, 28, 59-68

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

