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Abstract: Integrating the precise GPS carrier phases and INS sensor technologies is a 

methodology that has been applied indispensably in those application fields requiring 

accurate and reliable position, velocity, and attitude information. However, conventional 

integration approaches with a single GPS reference station may not fulfil the demanding 

performance requirements, especially in the position component, when the baseline length 

between the reference station and mobile user’s GPS receiver is greater than a few tens of 

kilometres. This is because their positioning performance is primarily dependent on the 

common mode of errors of GPS measurements. To address this constraint, a novel 

GPS/INS integration scheme using multiple GPS reference stations is proposed here that 

can improve its positioning accuracy by modelling the baseline-dependent errors. In this 

paper, the technical issues concerned with implementing the proposed scheme are 

described, including the GPS network correction modelling and integrated GPS/INS 

filtering. In addition, the results from the processing of the simulated measurements are 

presented to characterise the system performance. As a result, it has been established that 

the integration of GPS/INS with multiple reference stations would make it possible to 

ensure centimetre-level positioning accuracy, even if the baseline length reaches  

about 100 km.  

Keywords: navigation sensor integration; Global Positioning System (GPS); Inertial 

Navigation System (INS); multiple reference stations 
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1. Introduction 

The carrier phase-based Global Positioning System (GPS) has become an essential technique for a wide 

range of precise positioning applications, such as kinematic positioning and vehicle navigation and 

guidance. However, there are several constraints on the use of this technique. Firstly, an assurance of 

satellite signal line-of-sight is a critical requirement, yet GPS signals can be obstructed by buildings, 

bridges, and even tree foliage. Under these circumstances, the GPS system is unable to continuously carry 

out its positioning task because of the insufficient number of tracked satellites. Furthermore, the impact of 

baseline-dependent GPS errors, such as orbit uncertainties, and atmospheric effects, further constrains the 

applicable baseline length between reference and mobile user receiver to perhaps 10–15 km. These 

constraints have led to the development of several network-based GPS kinematic positioning 

techniques, including the virtual reference station approach [1], and the area correction parameter 

techniques [2]. Additional limitations of using GPS are the relatively low carrier phase data output rate 

(e.g., typically 1–10 Hz), and the need to deploy more than one GPS antenna to derive full attitude 

information. Such constraints can be so restrictive that they may hinder the widespread adoption of 

carrier phases-based GPS techniques for many precise positioning and navigation applications.  

Some of the restrictions of carrier phase-based GPS technology can be addressed by its integration 

with an inertial navigation system (INS). The INS is a self-contained navigation unit providing 

position, velocity and attitude information based on measurements by its ensemble of sensors 

(typically a set of accelerometers and gyroscopes). Its disadvantage is that INS navigation accuracy 

deteriorates rapidly with time due to the presence of sensor biases and a double-integration 

mechanisation algorithm. However, an appropriate integration of INS with GPS can take advantage of 

each technology’s strengths, delivering a high data-rate complete navigation solution with both 

superior short-term and long-term accuracies [3-5]. Even during a GPS signal blockage, it is still 

possible to carry out positioning in the INS stand-alone mode for short periods of time; the so-called 

INS bridging mode. The critical duration of the bridging capability varies as a function of the quality 

of the INS [6]. Nevertheless, the baseline length constraint cannot be overcome using the integrated 

GPS/INS approach as the quality of double-differenced GPS observations decreases with increasing 

baseline length. A solution to this problem would be to combine measurements from a number of 

reference receivers to model the baseline-dependent GPS errors, through applying various 

parameterisation techniques [7-9]. The use of multiple GPS reference receivers therefore permits the 

baseline lengths to be much longer than that in the single reference station scenario. As a result, all of 

the aforementioned constrains of precise kinematic GPS technique would be effectively addressed by 

augmentation of GPS/INS with multiple reference station carrier phase data. 

This paper proposes a GPS/INS integration scheme with multiple GPS references for use in highly 

precise long-baseline kinematic positioning. This approach utilises measurements from multiple 

reference stations to model the GPS baseline-dependent errors and to apply them to mobile receiver 

observations before updating the integration filter. Hence, the applicable baseline length is extended 

with centimetre-level positioning accuracy. After discussing the concept of the employment of 

multiple reference stations with the integrated GPS/INS, some technical issues required for the 

implementation of the algorithm are described. This is followed by the description of measurement 
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simulations and test results with an emphasis on the effects of employing multiple reference stations in 

the integrated GPS/INS data processing.  

2. Description of Sensor Integration Concept 

The proposed integration approach is comprised of two components, namely the stationary 

reference measurement processing and the mobile positioning instrumentation. The role of the multiple 

GPS reference stations is to generate the so-called network corrections that model the  

baseline-dependent errors at a mobile station, whereas the mobile platform component is an integrated 

GPS/INS device. As illustrated in Figure 1, the mobile component consists of INS mechanisation, GPS 

carrier phase processing, and the Kalman filter that estimates the INS navigation and sensor errors. 

Using such an integration scheme, high positioning accuracy can be maintained through the 

continuous calibration/estimation of the INS errors. The network correction terms substantially reduce 

the baseline-dependent GPS errors at the mobile station compared with the conventional GPS/INS 

integration approach based on a single reference station. 

Figure 1. Configuration of the tightly-coupled GPS/INS integration using GPS multiple 

reference stations. 

 

3. GPS Baseline-Dependent Error Modelling 

The GPS baseline-dependent errors are estimated based on the pre-determined coordinates of the 

reference stations. It is prerequisite to correctly resolve the double differenced (DD) carrier phase 

ambiguities between the reference stations to generate the accurate corrections. For real-time 

measurements with baselines over a few tens of kilometres, several integer ambiguity resolution 

algorithms have been proposed [10-12]. These techniques are characterised by an attempt to form 

linear combinations with longer wavelengths and less noise, using the L1 and L2 carrier phase 

measurements. Due to the considerable magnitude of the ionospheric effect in the L1 and L2 carrier 
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phases, the ambiguities of the wide-lane linear combinations are resolved first, and then the L1 

ambiguities are fixed from the ionospheric-free measurements. This is followed by computing the L2 

ambiguities from those of the resolved L1 and wide-lane combinations. The ambiguity estimation and 

validation procedure are applied for each step of the resolution. While the least squares ambiguity 

decorrelation adjustment (LAMBDA) method is used for the ambiguity estimation, the W-ratio test is 

applied for the validation [13,14]. 

The performance of positioning and navigation with the multiple GPS reference stations is largely 

dependent on the ability of an algorithm to separate the site-dependent errors from the DD residuals 

computed by subtracting the ambiguities and geometric distances from the DD measurements. Figure 2 

illustrates an estimation procedure of the baseline-dependent errors based on a Kalman filtering.  

The 4-states model has been implemented to describe the dynamics of the baseline-dependent errors 

(the 1st–3rd state), and the multipath error (the 4th state). As given in Equation (1), a position, 

velocity, and acceleration (PVA) model is applied for the first three states, whereas the multipath  

(the 4th state) is modelled as a first-order Markov process [15-16]:  
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A detailed expression of the dynamic matrix can be given by: 
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where T is the sampling interval and α is the correction time. 

The error states in Equation (1) are as follows: 

 TMAVPLx 11111   (3) 

 TMAVPLx 22222   (4) 

where P  is the DD baseline-dependent error, V  and A  are the velocity and the acceleration of 

the error respectively, and M is the multipath.  

Figure 2. An estimation procedure for GPS baseline-dependent error utilising the Kalman Filter. 
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4. Integrated Mobile GPS/INS Filtering 

The so-called corrections, modelled by interpolating the baseline-dependent errors at the reference 

stations with respect to the position of a mobile station, should be applied for mobile GPS receiver 

measurements to reduce these errors. Over the past decades, a number of interpolation methods have 

been proposed, including the linear combination model, distance-based linear interpolation method, 

and linear interpolation method [17]. However, the performances of these methods are equivalent 

according to Dai et al. [18]. To interpolate the baseline-dependent errors at three or more stations, the 

coefficients  and   should be computed using the following equation [9]: 

  CAAA TT 1
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as well as ∆X and ∆Y are the plane coordinate differences referred to the master reference station (MR), 

the subscripts Ri indicate the reference station Ri, and the elements of the vector C are the  

baseline-dependent errors. 

The mobile platform within the coverage of the reference network can apply the following 2-D 

linear model to interpolate the baseline-dependent errors: 

MRMRNC YX    (8) 

The integration of GPS with INS has been implemented using a tightly-coupled Kalman filtering 

technique, which utilises a single filter to process all the data in the DD measurements domain. The 

integrated processing procedure employed in this study is presented in Figure 1. The error state vector 

for the filter includes the parameters of the navigation solution and the INS sensor errors. The  

psi-angle model [e.g., Equations (9–11)] is used to describe the behaviour of INS navigation errors [19].  
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where δr, δv, δψ, and ψ are the position, velocity, and attitude error vector respectively, Ω is the 

skew-system form of the frame rotation rate vector,  is the accelerometer error vector, δε is the gyro 
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drift vector, and the superscripts and subscripts indicate coordinate frames (e.g., inertial, ECEF, and 

navigation). The biases and scale factors of the INS sensors are modelled by a random bias and the 

first-order Gauss-Markov process respectively. Hence, a total of 21 error states are considered in this 

research. For a more detailed discussion, see, for example, Grejer-Brezinska et al. [20], Da [21], and 

Lee [22]. 

In this GPS/INS integration, the DD GPS carrier phases are used to update the Kalman filter to 

estimate the navigation and INS sensor errors. The DD measurements are formed by differencing 

between two single differences (SD) across two different satellites at each epoch. In the case of a 

medium baseline up to 100 km, the measurements can be mathematically represented as: 

 


Ndrdid   
errorsdependent distance the

 
(12) 

where   denotes differencing between two satellites, so that  represents a double-differencing, λ is 

the wave length of the carrier phase, ρ is the true range or geometric range, dρ is the satellite orbit 

uncertainties, di is the ionospheric effect, dr is the tropospheric delay, N is the integer-ambiguity, and ε 

is the noise.  

By applying the network correction, Equation (12) can be re-written as follows: 

  N  (13) 

However, Equation (13) contains an integer ambiguity term, which should be correctly resolved to 

ensure centimetre-level positioning accuracy. Here, an INS-aided ambiguity resolution scheme 

utilising the INS-predicted position in the float ambiguity estimation has been implemented. This 

approach enhances the performance of the ambiguity resolution by improving the precision of the DD 

range estimation. More details on this approach can be found in Lee et al. [23]. Equation (13) with the 

ambiguity resolved is applied for updating the Kalman filter to estimate its error states, which are fed 

back to correct the inertial solution and sensor measurements. However, it is important to note that the 

term   in Equation (13) contains not only the noise, but also the un-modelled baseline-dependent 

errors, which means that the positioning accuracy of the GPS/INS integration is determined by the 

quality of the corrections modelled by the multiple reference stations.  

5. Testing and Results with Simulated Measurements 

Three sets of simulated GPS and INS measurements have been processed in this section to test the 

performance of the algorithms implemented and to evaluate the achievable accuracy of the position 

and attitude parameter estimation.  

5.1. Measurement Simulation and Processing 

All the test measurements were generated using a GNSS/INS simulator consisting of trajectory 

profile generation, GPS satellite, and INS measurements simulation modules [24]. The original 

software was modified in the following ways to more realistically model GPS errors: (a) the 

ionospheric effect is derived from Klobuchar-style coefficients provided by Centre for Orbit 

Determination in Europe (CODE); (b) the tropospheric delay is computed the Saastamoinen model 
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with the Neil mapping function; (c) the multipath is generated by passing white noise through a first-

order Butterworth low-pass filter. 

The measurement simulation begins with defining a reference trajectory (the time, coordinate, 

velocity, and attitude) for a moving vehicle. In the INS data generation, specific force (acceleration) 

and angular velocity is firstly computed, based on the given trajectory profile. Then, the related sensor 

errors, accelerometer/gyro bias, scale factor and noise, as well as the effects associated with the 

Earth’s rotation and gravity, are computed and added to the generated true measurements. All the data 

generated are stored in a binary format at a rate of 64 Hz. On the other hand, the geometric distances 

between the receiver and the satellite are initially computed to simulate the GPS observations. The 

biases, errors and measurement noise are then added to the geometric distance. These simulations were 

performed with respect to a tactical-grade INS (e.g., gyro drift 5 deg/h and accelerometer bias 500 μg) 

and dual-frequency geodetic GPS receivers.  

Figure 3 shows a layout of the multiple reference stations and testing area, considered in the 

simulations. GPS measurements at the four reference stations were generated for a time period  

of 2,238 seconds, with a separation of 115 km and 95 km in the latitudinal and longitudinal direction 

respectively.  

Figure 3. Layout of the GPS multiple reference station and testing areas. 

 

Three different scenarios, denoted as CASE1, CASE2, and CASE3, were considered in the 

GPS/INS simulation, depending on baseline length between the master reference and the mobile 

station. Because MREF is selected as the master reference station, the baseline lengths range  

from 57 km to 101 km in these scenarios. Figure 4 depicts an example of the generated reference 

trajectories (e.g., CASE1), which contains 63 segments defining the vehicle dynamics (e.g., 

acceleration, deceleration, attitude change). The trajectories were generated with the consideration of 

an airborne environment, which is a typical example of long-baseline positioning and navigation. The 

vehicle flew with an average velocity of 55 m/sec (200 km/h) excluding the vehicle turning manoeuvre 

at the end of flight path. In addition, the flying height above the ground was about 600 m. It was 
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assumed in the trajectory generation that the velocity component along the H-(Up) axis of the 

navigation frame was zero m/sec unless the pitch and roll angles were changed.  

Figure 4. Generated reference trajectory. 

 

All the simulated measurements were processed in post-mission mode using self-programmed 

software to estimate the navigation parameters. However, it is important to note that all the algorithms 

are applicable for the real-time implementation. Although the main goal of this study was to 

investigate the impact of including the multiple reference stations in the GPS/INS integration in terms 

of the accuracy of the position and attitude estimation, the performance of the implemented algorithms 

at each step of data processing was tested, which includes the baseline-dependent errors estimation, the 

network correction modelling, and the ambiguity resolution 

5.2. Network Correction Modelling 

The data processing of the integrated GPS/INS with multiple reference stations begins with the 

carrier phase ambiguity resolution between the stations. By applying the procedure described in 

Section 3, it was possible to fix the ambiguities to their correct values within a few seconds. Because 

MREF was selected as a master reference station, three baselines, denoted as MREF-REF1,  

MREF-REF2, and MREF-REF3, were composed in the data processing.  

The Kalman filters processed the DD residuals computed at the reference stations in parallel to 

estimate the baseline-dependent errors with the minimising impact of the site-dependent errors. For 

example, the results from the filtering for the L1 and L2 of space vehicle (SV) 8 in CASE I are shown 

in Figures 5(a,b). In these figures, the graphs in the first column represent state estimates obtained, 

whereas those in the second column depict their standard deviations extracted from the diagonal 

components of the updated covariance matrix. It should be noted from the plots in the second columns 

that the entire filter states converge with respect to time. To closely observe the impact of the Kalman 

filtering, the DD residuals of SV8 and those processed by the filter (e.g., the estimated baseline-

dependent errors) are illustrated in Figure 6, indicating that the site-dependent errors are reduced.  
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Figure 5. Filtering results to generate the GPS baseline-dependent errors of SV8 (CASE I). 

(a) L1 carrier phases. (b) L2 carrier phases. 

 
(a)         (b) 

Figure 6. Impact of Kalman filtering in the estimation of the GPS baseline-dependent 

errors of SV8(CASE I). 

 

Figure 7 shows the interpolated satellite-by-satellite and epoch-by-epoch L1 and L2  

baseline-dependent errors, the so-called network corrections, with respect to the mobile platforms. As 

illustrated in Figure 8(a), the true DD residuals of the mobile receivers were computed with respect to 

the reference trajectories to evaluate the performance. Due to the long-baseline between the master 

reference and the mobile receivers, ranging from 57 km to 101 km, some values mostly representing 

the baseline-dependent errors may reach a few tens of centimetres, as seen in the figure. To evaluate 

the accuracy of the modelled network corrections, the DD residuals were re-calculated by applying the 

network corrections, plotted in Figure 8(b). It can be found from the results that the DD residuals are 
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significantly reduced to a few centimetres in all the cases by applying the network corrections, which 

represents the achievable modelling accuracy of the corrections in these tests.  

Figure 7. Interpolated GPS baseline-dependent errors (network corrections). 

 

Figure 8. DD residuals of mobile receivers. (a) Single-reference station mode.  

(b) Multiple-reference stations mode. 

 
(a)        (b) 

5.3. Integrated GPS/INS Processing 

Ambiguity resolution (AR) is one of the most crucial procedures for achieving the goal of high 

accuracy carrier phases-based GPS positioning and navigation applications. Due to the existence of the 

baseline-dependent errors, the ability to correctly resolve the integer ambiguities is restricted to 

relatively short distances between the reference station and the mobile receiver. To correctly resolve 

the ambiguities, the residual errors of the DD carrier phases should be theoretically smaller than a  

half-wavelength, corresponding to about 10 cm and 12 cm for the L1 and L2 phase observations, 
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respectively. It is almost impossible to resolve the correct ambiguities using the single reference AR 

technique in the case of the medium baseline. However, the proposed integration technique is expected 

to correctly fix the ambiguities by modelling the baseline-dependent errors based on the multiple 

reference stations and using the INS-predicted position obtained from its mechanisation. An 

instantaneous AR procedure with single-epoch observations was carried out to demonstrate its 

performance. The results are summarised in Table 1 in terms of the success rate of the ambiguity 

resolutions. As expected, the table shows that the instantaneous AR becomes possible with the 

proposed approach.  

Table 1. Success rate of the ambiguity resolutions (epoch-by-epoch). 

CASE I 2 3 
Success Rate 99.7% 100.0% 99.0%

Figure 9 shows the navigation parameters estimated by the Kalman filter during the vehicle 

manoeuvre. To demonstrate the benefit of including multiple reference stations, the simulated 

measurement sets were processed twice with different modes: the single-reference station mode and 

the multiple-references stations mode. A comparison between the reference trajectories and estimated 

coordinates was used to determine the achievable accuracy. Figure 10(a) shows the coordinate 

differences for the GPS/INS with the single-reference scenario, whereas Figure 10(b) depicts those of 

the GPS/INS with the multiple-reference stations. In addition, Table 2 statistically summarises the 

comparison. It can be observed from the results that the accuracy for the GPS/INS with the  

single-reference reaches a few decimetres, mostly reflecting the baseline-dependent errors in the 

observations. On the other hand, these results reveal that centimetre-level positioning would be 

possible with the proposed integration scheme even if the baseline length is about 100 km. 

Furthermore, although the baseline lengths considered in study are different by a few tens of 

kilometres, the achievable positioning accuracies are similar. This is due to the fact that, as evaluated 

in Figure 8(b), the baseline-dependent errors are modelled with equivalent accuracies. 

Figure 9. Example of the estimated navigation parameters (CASE I). 
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Figure 10. Coordinate differences between the references and estimates. (a) Single-reference 

station mode. (b) Multiple-reference stations mode. 

 
(a)        (b) 

Table 2. Statistical summary of the coordinate differences between the references and 

estimates (unit: centimetres). 

CASE 

Single-reference GPS/INS Multiple-references GPS/INS 

Δ Northing Δ Easting Δ Height Δ Northing Δ Easting Δ Height 

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

I 3.8 ±.16.5 41.5 ±.17.1 41.7 ±23.8 0.3 ±0.7 0.1 ±1.1 1.1 ±1.3 

II 5.1 ±11.4 10.5 ±32.8 11.7 ±34.7 0.0 ±0.7 0.5 ±1.0 0.6 ±1.3 

III 13.4 ±17.5 29.8 ±26.3 32.7 ±31.6 0.1 ±0.7 0.1 ±1.0 0.1 ±1.3 

Table 3 summarises a comparison of the attitude parameters between the reference and estimate 

values. Comparing the results from the single-reference mode with those from the multiple-references 

mode reveals that marginal improvement is only found in the mean values. These results are attributed 

to the fact that the attitude accuracy of an INS does not depend much on the quality of the GPS 

measurements used in the filter update, but is largely determined by gyro drift rates.  

Table 3. Statistical summary of the attitude parameter differences between the references 

and estimates (unit: arc-minutes). 

CASE

S 

Single-reference GPS/INS Multiple-references GPS/INS 

Δ Heading Δ Pitch Δ Roll Δ Heading Δ Pitch Δ Roll 

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

I 2.50 ±2.50 0.69 ±0.72 2.69 ±1.32 1.92 ±2.26 0.53 ±0.64 2.67 ±1.27 

II 2.11 ±2.61 0.72 ±0.77 2.56 ±1.33 1.88 ±2.28 0.53 ±0.64 2.66 ±1.27 

III 2.62 ±2.71 0.74 ±0.77 2.69 ±1.32 1.93 ±2.28 0.53 ±0.64 2.68 ±1.27 
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6. Concluding Remarks 

An integration of GPS/INS with multiple-reference stations for long-baseline kinematic positioning 

has been proposed in this paper, with the objective of improving the accuracy of the position 

estimation in the case of baseline lengths up to about 100 km. The algorithms concerned with 

implementing the proposed scheme are addressed, which include the AR between reference stations, 

the estimation of the baseline-dependent errors, the network correction modelling, and the integrated 

GPS/INS processing with an emphasis on the Kalman filter design. Three GPS and INS simulated 

measurement sets on mobile platforms were processed to characterise not only the performance of the 

algorithms implemented, but also the achievable accuracy of the position and attitude estimation. The 

results show that the accuracy of the position component was significantly improved to be a few 

centimetres through modelling the baseline-dependent errors based on the multiple reference stations. 

Because the accuracy of the attitude estimation based on INS depends primarily on the quality of the 

gyro sensors, marginal improvement was observed in the component. In conclusion, more research on 

quality control algorithms for the integration and further tests with real data sets will be carried out in 

the near future. 
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