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Abstract: This paper presents an overview of the literature on kinematic and calibration 

models of parallel mechanisms, the influence of sensors in the mechanism accuracy and 

parallel mechanisms used as sensors. The most relevant classifications to obtain and solve 

kinematic models and to identify geometric and non-geometric parameters in the 

calibration of parallel robots are discussed, examining the advantages and disadvantages of 

each method, presenting new trends and identifying unsolved problems. This overview 

tries to answer and show the solutions developed by the most up-to-date research to some 

of the most frequent questions that appear in the modelling of a parallel mechanism, such 

as how to measure, the number of sensors and necessary configurations, the type and 

influence of errors or the number of necessary parameters. 

Keywords: parallel mechanism; kinematic; internal sensor calibration; external sensor 

calibration; constraint calibration 

 

1. Introduction  

In recent years a number of specialized papers presenting the most relevant methods for modelling 

and calibrating serial robots have been published, but these methods are not always suitable for parallel 
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robots. With this in mind, this paper is intended to be a guide for those researchers that are familiar 

with designing, modelling and calibrating parallel mechanisms. 

Parallel kinematic systems are closed-chain mechanisms in which the moving platform is joined to 

the base by two or more independent kinematic chains. In recent years these mechanisms have 

developed extensively [1] because of their advantages in terms of high loads, stiffness, speed and low 

moving inertia [1,2]. However, it is difficult to obtain [3-5] the forward kinematic model and the 

analysis of the singularities of the system [6]. The workspace is limited and is difficult to  

calculate [1,7].  

One of the first moving platforms was patented by Gwinnett in 1931 for the entertainment  

industry [8], and in 1942 Pollard developed a five Degrees-Of-Freedom (5-DOF) robot for a spray 

painting machine, featuring three kinematic chains with universal joints [9]. In 1947, Gough designed 

a parallel robot with six actuators to test tyres. This system had an octahedral hexapod structure [10]. 

In 1965, Stewart presented a 6-DOF platform for a flight simulator, based on Gough’s platform. This 

mechanism consisted of six linear actuators joined to the base by universal or spherical ball joints and 

to the moving platform by spherical ball joints—this publication represented the beginning of parallel 

robot development. Hunt pointed out the advantages of parallel mechanisms and in 1993 designed a 

new 6-DOF prototype with rotary actuators [11]. A number of systems have been developed based on 

this design, such as the manipulator presented by Clavel [12] for pick-and-place operations.  

On the basis of these designs, in recent years new families of manipulators have been developed 

with improved performances, obtaining multiple mechanisms of 3-, 4- and 6-DOF. However, few 

researchers have developed 2- and 5-DOF systems due to the fact that constraints have to be added for 

these two types of systems. 

Once the design is developed, a calibration process must be carried out in order to evaluate and 

improve the accuracy of the moving platform. The first decision that the researcher has to make in the 

calibration process is the calibration method. Once the calibration model is defined, the number and 

type of internal or external sensors required, the data acquisition procedure, the necessary 

configurations and the calibration model are determined. The model will determine the nature and 

number of necessary parameters. Finally, the evaluation of the results and the correction model will 

allow the accuracy of the system to be improved. 

The following sections present examples of manipulators with different number of DOFs, focusing 

mainly on prototypes developed in the last ten years. A summary of the most relevant methods is 

presented, with respect to the kinematic model and the calibration of parallel robots, and also new 

trends such as the methods based on matrix computation or computational intelligence.  

2. Parallel Robot Design 

A classification of the most well-known parallel robots depending on their number of DOF can be 

found in [13,14]. This section shows some examples of parallel robots, classified by the number of 

DOF, focusing mainly on the new prototypes developed in the last ten years. Most of them are based 

on the Stewart platform. Table 1 presents the symbols used for denominating the different joints: 
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Table 1. Joint symbols. 

Symbol Joint Type of joint 
U Universal joint 
P Prismatic joint 
R Revolute joint 
S Spherical joint 

Pa Parallelogram joint 

2.1. Two-DOF Designs 

There are little literature focusing on 2-DOF spatial parallel mechanisms. An analysis of different 

alternatives of 2-DOF rotational parallel systems can be found in [15]. The kinematic chains, joined to 

the fixed and moving platforms, result in mechanisms with from 3- to 6-DOF. To reduce the number of 

DOF to 2, constraints must be added.  

Figure 1(a) shows the Canterbury Tracker by Dunlop [16], an antenna tracking mechanism, in 

which two kinematic chains are joined to the platform by revolute joints and the third chain is 

connected via spherical joints, thereby obtaining the azimuth and elevation movements. The  

Omni-Wrist of Rosheim [Figure 1(b)] in [17], is a new 2-DOF system in which two actuators 

connecting two plates control a passive plate. This system is able to turn 90 degrees without 

singularities and it is used in applications such as positioning antennas or robotic surgery. Zeng [15] 

developed a family of 2-DOF rotational parallel mechanisms and analyzed their mobility. All these 

systems have a four-bar linkage and contain a moving platform and a fixed base connected by three 

limbs. An example of parallel mechanism is presented in Figure 1(c). This is a system with three 

chains U-PRU-SPS where the motion of the moving platform is decoupled. Computation is simple and 

the system allows us to perform a fast real-time control. 

In [18], Majarena designed a pan-tilt parallel platform for the positioning and orientation of two 

high-precision cameras. This mechanism has two actuators and two linear optical sensors joined to the 

base and to the platform by high-precision spherical ball joints. The mechanism incorporates a third 

chain, which is fixed to the base and joined to the platform by a universal joint to obtain the two 

rotations desired [see Figure 1(d)]. The sensor accuracy is 1 µm. Given a measurement field of the  

2-DOF structure and fixed sensors, a method to use these sensors to increase the angle resolution 

within this measurement field is presented. The aim of the study is to develop a methodology for 

improving the mechanism design. The algorithm obtains the anchorage spherical ball joint points and 

the inclination of the spherical ball supports to increase movement resolution, assuming a fixed 

feedback resolution on the linear sensor, and, at the same time, decreasing the dimensions of the 

system and allowing the desired workspace to be obtained. This work develops the kinematic model of 

a 2-DOF parallel kinematic platform by combining linear actuators with linear sensors for the external 

measurement of its position and orientation; the elongation of the linear actuators is obtained as a 

function of the movement of the platform. Linear sensors measure actuator elongations and provide 

these values as an input to the mathematical model. 
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Figure 1. Two-DOF parallel robots: (a) Dunlop design (reprinted from [16] with 

permission from Elsevier). (b) Omni-wrist from Rosheim [17] (reprinted with permission 

from Rosheim). (c) Zeng design (reprinted from [15] with permission from IEEE).  

(d) Majarena design [18]. 

       
(a)     (b)    

    
     (c)     (d) 

2.2. Three-DOF Designs  

There are multiple examples of 3-DOF parallel mechanisms, some of which are shown in Figure 2. 

Figure 2(a) shows a manipulator designed by Gosselin [19] where the active joints are revolution 

joints. The software developed to design the mechanism allows the interactive analysis of any 

spherical parallel 3-DOF actuated joint and the representation of the workspace, singularities and 

trajectories. Tsai [20] analyzed a translational platform with three identical kinematic chains 

[Figure 2(b)]. Each chain consists of an upper and a lower arm. Each upper arm is a planar four-bar 

parallelogram, and the two platforms are joined using revolution joints only. The axes of these revolute 

joints are perpendicular to the axes of the four-bar parallelogram for each chain. The mechanism 

constrains the manipulator output to translational motion and mimics the motion of the Delta robot 

moving platform. Cecarrelli [21] also designed a mechanism with three identical chains, but in this 

case, they contained a parallelogram. The connection of the chains was carried out by ball joints and 

prismatic guides to obtain suitable direct kinematics and easy actuation [Figure 2(c)]. Gallardo [22] 

analyzed a simple structure, with two legs and a spherical ball joint, which simplifies the study of the 
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kinematic model [see Figure 2(d)]. This mechanism is not an overconstrained system which simplifies 

the study of the kinematic model. The results from the mathematical model were verified by 

comparing them to the results from a simulated parallel manipulator. Carretero [23] developed a 

manipulator with three identical PRS chains [Figure 2(e)].  

Figure 2. Three-DOF parallel robots: (a) Gosselin design (reprinted from [19] with 

permission from IEEE). (b) Tsai design [20]. (c) Ceccarelli design (reprinted from [21] 

with permission from Elsevier). (d) Gallardo design (reprinted from [22] with permission 

from Elsevier). (e) Carretero design [23]. (f) Ortoglide from Chablat (reprinted from [24] 

with permission from IEEE). (g) HALF-II from Liu (reprinted from [25] with permission 

from Elsevier). (h) Gallardo design [26]. (i) Tyapin design (reprinted from [27] with 

permission from IEEE). 

   
(a)    (b)    (c)  

     
(d)    (e)    (f) 

     
(g)    (h)    (i) 
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The prismatic actuators lie on a common plane and have radial direction of action. The distal end of 

each actuator is joined to the lower end of a constant length leg by means of a passive revolute joint. 

The rotation axis of the revolute joint is perpendicular to the direction of the actuator and parallel to 

the horizontal base plane. The other end of each leg is attached to the moving platform by a passive 

spherical ball joint. The design variables minimize parasitic motion. This mechanism can be used in 

those applications that require elevation perpendicular to the base platform and pointing of a payload. 

Chablat [24] presented the Orthoglide [Figure 2(f)], a 3-DOF translational parallel system for 

machining applications. This mechanism, in which three fixed parallel linear joints are mounted 

orthogonally, provides a regular Cartesian workspace shape. The linear joints can be actuated by linear 

or rotary motors with ball screws. The end-effector is joined to the linear joints by three 

parallelograms. The chains are three identical PRPPaR legs. Other advantages of this design are 

uniform performances in all directions, low inertia, intrinsic stiffness and good dynamic performances. 

Liu [25] presented a manipulator with high rotational capability. This design utilizes a four-bar 

parallelogram which allows the output link to remain at a fixed orientation with respect to an input 

link. The moving platform is joined to the base by three non-identical chains. All joints that appear in 

the rotational DOF are with single DOF to obtain the high rotational capability [Figure 2(g)]. 

Moreover, the planar parallelogram, being as a leg, can improve the kinematic performance of the 

system, and this design allows us to obtain the desired number of DOF and to increase the system 

stiffness. In [26], Gallardo analyzed a family of 3-DOF manipulators with three identical RPS chains 

[Figure 2(h)]. The prismatic joints were actuated independently to provide the required number of 

DOF. Tyapin [27] proposed a new design optimization of the Gantry-Tau manipulator to avoid 

collisions between links and to maximize the reachable workspace [Figure 2(i)]. The mechanism 

consists of three-link arm, and two of them are mounted in a triangular constellation. Three linear 

actuators move the three arms independently. The developed algorithm allows us to obtain the internal 

link collisions. The author concluded that the design of the mechanism is crucial to avoid link 

collisions. The optimization step is based on the geometric descriptions of the workspace, unreachable 

area and the functional dependency of collisions. 
 
2.3. Four-DOF Designs  

 

Four-DOF manipulators are extensively used for pick-and place applications. These mechanisms 

are divided into two important groups—mechanisms based on the Delta robot [12] and mechanisms 

based on the Scara robot [28,29]. Krut [29] developed a new parallel mechanism for Scara motions 

which produces three translations and one rotation about a given axis [see Figure 3(a)]. In [30], Nabat 

presented a parallel robot in which prismatic joints were replaced by revolute joints because of 

constraints caused by speed and acceleration, and it was considered that the dynamics can affect the 

design. The robot developed offers high speed while avoiding singularities [Figure 3(b)]. Wang [31] 

analyzed the static balancing of four types of spatial 4-DOF parallel mechanisms using counterweights 

and springs [Figure 3(c)]. The static balancing using counterweights consists in redistributing the link 

masses to maintain the center of mass of the mechanism fixed. Therefore, the weight of the links does 

not produce any torque or force at the actuators and the mechanism is statically balanced for any 

direction of the gravity vector. This is a great advantage for those portable mechanisms which can be 
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mounted in different orientations. The static balancing using springs consists in selecting spring 

stiffness and locations. This method assures that the total potential energy of the mechanism is always 

constant. Therefore, the actuators do not have to support the weight of the moving links. 

Figure 3. Four-DOF mechanisms: (a) Krut design (reprinted from [29] with permission 

from IEEE). (b) Nabat design [30] (reprinted with permission from Krut). (c) Wang 

analysis (reprinted from [31] with permission from Elsevier). 

   
(a)     (b) 

  
       (c) 

2.4. Five-DOF Designs  

Few researchers have focused on 5-DOF spatial parallel mechanisms. Gao [32] proposed composite 

pairs and new sub-chains for the design of different mechanisms and presented a 5-DOF parallel 

manipulator utilizing composite limbs such as 4-PSS and a prismatic joint connected with a  

3-UU chains. This 3-UU chain was connected to a spherical ball joint [Figure 4(a)]. In [33], Maurin 

presented a prototype for medical applications. This manipulator is based on revolute joints, and 

consists of three serial chains joining the base to the platform. The third chain is added to obtain the 

desired number of DOF, and only five joints are actuated [Figure 4(b)]. This mechanism offers 

mobility, compactness and accuracy around a functional point. 
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Figure 4. Five-DOF mechanisms: (a) Gao design (reprinted from [32] with permission 

from Elsevier). (b) Maurin design [33]. 

       
(a)    (b) 

2.5. Six-DOF Designs  

There are numerous examples of 6-DOF mechanisms in the literature. Many of these designs are 

based on the Stewart platform and try to improve its performance. The design proposed by Shim [34] 

is intended to be used as a wrist of a robot [see Figure 5(a)]. This mechanism consists of linear 

actuators and optical position sensors. The position of the actuator is measured by an optical sensor. 

This sensor consists of a laser diode, two mirrors and a position sensing device (PSD). The position 

sensing resolution of the device is approximately 5 m. A force sensor is installed at each actuating 

link, reading up to 10 N with a resolution of 2.22 × 10−4 N, to reflect accurately the applied forces on 

the mechanism links. The manipulator is controlled by using the position sensor readings of the links. 

These readings are the inputs of the model. The system offers high precision and the capability of pure 

rotation generation, and it is easy to predict the moving platform motion. Yang [1] designed a parallel 

mechanism with three identical RPRS chains. This mechanism has the joint axes, except the three 

spherical ball joints at the chain ends, parallel to each other and perpendicular to the base plane in 

order to decouple motion. This system offers high stiffness in the vertical direction [Figure 5(b)].  

Ben-Horin [35] obtained the 144 different structures of a 6-DOF mechanism having three identical 

kinematic chains. Considering different combinations of chains, this number is larger than 500,000 

[Figure 5(c)]. Figure 2(d) shows a rotary 6-DOF mechanism designed by NASA to simulate vertical 

movements (VMS) [36]. In [37], Zanganeh studied a manipulator with six kinematic chains, connected 

to the base by means of universal joints and to the moving platform via spherical ball joints. Each 

chain consists of two links connected by a revolute joint and actuated by a motor at the base to reduce 

the leg masses and inertias [Figure 5(e)]. Wang [38] developed a parallel manipulator with elastic 

joints to obtain high precision. The system consists of six chains, and each chain is made from four-bar 

linkages [Figure 5(f)]. The elastic joints provide the mechanism with highly precise operation. 
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Figure 5. Six-DOF mechanisms: (a) Shim design (reproduced from [34] with permission 

from Cambridge Journals). (b) Yang design (reprinted from [1] with permission from 

IEEE). (c) Ben-Horin design (reprinted from [35] with permission from IEEE). (d) VMS 

(reprinted from [36] with permission from NASA. (e) Zanganeh design (reproduced 

from [37] with permission from Cambridge Journals). (f) Wang design (reprinted from [38] 

with permission from Elsevier). 

       
(a)    (b)    (c) 

  
(d)    (e)    (f) 

 

Pritschow [39] summarized, in Figure 6, some of the most famous hexapod designs, and developed 

a methodology for the design of parallel mechanisms.  

2.6. Sensor Application of Parallel Mechanisms 
 

Parallel mechanisms are also used in the kinematic structure of several types of sensors. A Stewart 

platform can be used as a wrist force sensor, where six-axis units (multi-axis force-torque sensor) 

measure the three Cartesian coordinates: X, Y and Z. Gaillet and Reboulet [40] developed an isostatic 

six component force-torque sensor based on the octahedral structure of the Stewart platform. A review 

of the first force-torque sensor designs based on parallel mechanisms can be found in [41]. 

In recent years a number of specialized papers have presented new designs based on the Stewart 

platform. Dwarakanath [42] designed a force-torque sensor to achieve well-conditioned transformation 

between the input and output forces. The legs acting as elastic elements were designed as a transducer 

to have resisting and restoring characteristics when dynamic load is applied. The design provides 

sensitivity, small sizing and manufacturing simplicity. 
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Figure 6. Known hexapod systems (reprinted from [39] with permission from Elsevier). 

 

Yao [43] analyzed a pre-stressed six-component force-torque sensor and determined the key 

structural parameters of the sensor to obtain high measurement sensitivity, good isotropy and least 

effect of frictional moment. The author concluded that the errors in the measurement, obtained from 

calibration data, can be due to machining or assembling errors and joint frictional moment. 

Sui [44] developed a static measuring model of a force-torque sensor in which the gravity of the 

links is considered. The sensor consists of a top and a base platform and six links. A link contains a 

single-axis bidirectional force transducer and two link rods, and finally, two spherical ball joints 

connect the links with the platforms. The developed model is a generalizable model where the link and 

top platform weight is compensated. To verify the model, the force is measured by applying loads to 

the sensor in different directions.  

Chen [45] presented a six-axis force-torque sensor and derived the analytical equations to obtain 

high sensitivity isotropy and sensitivity. These characteristics are determined by four parameters: the 

radius of the upper platform, the radius of the lower platform, the length of the link and the position 

angle difference of the two platforms. The experiments show that when the radius of the upper 

platform, the radius of the lower platform and the length of the link are simultaneously increased or 

reduced, the torques will be changed, but the sensitivity isotropy, sensitivity of force and the shape 

performance will remain constant. 

Frigola [46] designed and analyzed a touch pad based on a parallel platform. The developed model 

obtains force and torque feedback by means of sensor readings of the leg forces. This work 

demonstrated how the integrated effect of the dry friction, in the twelve spherical ball joints, degrades 

the static measurements and how the mechanical resonance degrades the dynamic ones. To use a 

structure with a self-stress could solve these problems. 
  



Sensors 2010, 10                            

 

10266

3. Kinematic Model 

The mathematical model of a mechanism can be divided into two phases: the kinematic model and 

the dynamic model. Some authors have called these phases the geometric and the dynamic  

model [47,48], although in this paper we will use the first nomenclature because it is widely used in 

the specialized literature. 

The position kinematic model establishes mathematical relations between actuated joint coordinates 

of the mechanism and the end-effector pose. The end-effector position is defined by its spatial position 

and orientation with respect to a global reference system. The local relations between two successive 

reference systems are expressed in function of variables which allow us to describe every change in the 

end-effector position and orientation.  

The differential kinematic model, or velocity kinematic model, obtains the relations between the 

velocities of the joint movements and the velocity of the end-effector, and it is expressed by means of 

the Jacobian matrix. 

The dynamic model obtains the relations between the generalized accelerations, velocities, 

coordinates of the end-effector and the joint forces. This model analyzes the influence of forces, 

inertias, gravity, torques and non-geometric effects due to friction, gear transmission or backlash. 

Some authors [49-57] have considered the influences due to the mechanism dynamics in the kinematic 

model, absorbing dynamic errors of the mechanisms by means of the non-geometric parameter 

calibration. 

The first known studies on parallel robot kinematics were performed by Fichter [58] and  

Merlet [59]. Fichter analyzed the Stewart platform, determined the equations to obtain the leg lengths, 

directions and moments of the legs and derived these equations. To obtain the force and the torque of 

the manipulator he developed the dynamic analysis, but he assumed that the legs are massless and 

exert pure forces. Merlet developed the Jacobian, derived the dynamic equations and determined the 

workspace.  

The initial position problem has two different phases: 

(1) Obtaining the non-linear equations that relate the joint variables and the end-effector position 

and orientation, thereby arriving at the forward and inverse position kinematic model 

(2) Solving the non-linear equation system obtained in the previous step 

Depending on the approach to the problem, there are three important groups: 

- Graphical methods 

- Analytical methods 

- Numerical methods 

Graphical methods are especially used in simple mechanisms, and they can be divided into three 

subgroups. Dyadic decomposition methods [60] allow us to obtain the mechanism position by means 

of a compass and a ruler. Interpolation procedures [60] belong to the second group of graphical 

methods. And, finally, the modular approach methods [61], which decompose the mechanism into 

modules that can be independently analyzed. 

An analytic approach is used in the analytical methods, although the solution procedure is usually 

numerical. There are three methods to obtain all the solutions: polynomial continuation methods, 

elimination methods and polynomial Gröbner bases. 
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The polynomial continuation method [14,62,63] is a numerical method that finds all isolated roots 

of a polynomial system from a known initial solution. The elimination method [14,26,62,64] is 

analytical, but usually the polynomial must be solved by a numerical method. In Gröbner  

bases [14,65,66], an invariant polynomial is obtained. Each subsequent equation adds at most one 

variable. The invariant polynomial is solved to find all possible values of one known. The other 

equations obtain the values of the other variables for each solution. The methods described present a 

high computational cost, so the Newton-Raphson method is used to obtain only one solution. 

Computation methods are based on systematic algorithms that allow us to automate the analysis of 

the kinematics of the mechanisms, independently of the number of DOF or complexity of the 

mechanism. For instance, programs based on multibody systems [67,68] are used to model the 

behaviour of interconnected rigid or flexible bodies. These bodies may suffer large translational and 

rotational displacements. Although this method is mainly used to solve the dynamics of a mechanism, 

it can also be used to solve the kinematics [69]. A multibody system models a mechanism by means of 

coordinates that define the position of all their elements in a univocal way. Constraint equations from 

kinematic pairs are applied on the mechanism elements. To solve the problem, one of the initial pose 

problem solutions must be obtained first, and then the model has to be checked for redundant 

constraints. Secondly, the equations that derive from the redundant constraints are eliminated. Finally, 

finite elements analysis is performed, using for example the Newton-Raphson algorithm to solve the 

non-linear system. 

The position kinematic model can be solved by the direct or inverse kinematics, depending on the 

input and output variables.  

The direct position kinematic model (DPKM) is used to calculate the position and orientation of the 

platform, given the values for the joint variables of the mechanism, according to Equation 1: 

1[ , , , , , ] ' ( , .., )nx y z g q q     (1) 

The inverse position kinematic model (IPKM) is used to calculate the mechanism’s joint variables, 

given by (q1, .., qn), for a position and orientation of the platform, (x, y, z, α, β, γ), according to 

Equation 2: 

),,,,,( zyxfq kk   with 1..k n  (2) 

The differential kinematic model is usually used to determine singular configurations or to control 

the mechanism.  

The direct differential kinematic model (DDKM) is used to obtain the velocity of the end-effector, 

given the joint velocities. 

The inverse position kinematic model (IDKM) is used to obtain the joint velocities, given the 

velocity of the end-effector 

The inverse kinematics of closed-chain mechanisms can be solved through geometric [13], 

analytical [13,70-73] or applying the Denavit-Hartenberg (D-H) model [74,75], where the solution is 

usually obtained by numerical methods such as the Newton-Raphson algorithm. Geometric methods 

can be used in simple systems. The Newton-Raphson method is very sensitive to the initial position 

introduced in the algorithm. Therefore, if this position does not draw near to the solution of the system, 

the algorithm cannot converge. Rao [76] proposed the use of a hybrid optimization method starting 
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with a combination of genetic algorithms and the simplex algorithm. This method carries out a global 

search of the initial solution with genetic algorithms and, subsequently, uses the simplex method for 

the local search.  

To solve the direct kinematic problem, the use of analytical methods is complex, given that the 

chains share the same unknown factors; therefore, the most suitable resolution methods tend to be 

numerical [41,71]. However, for systems with 2-DOF a geometric or analytical solution may be easier 

to obtain and more efficient.  

Many studies have developed methods to obtain a mathematical model which allow us to solve the 

direct kinematic of parallel mechanisms. In [77], Innocenti solved the direct position analysis and 

found all the possible closure configurations of a 5-DOF parallel mechanism and in [78], the author 

analyzed a 6-DOF fully parallel mechanism. The developed method finds out all the real solutions of 

the direct position problem of a 6-DOF fully parallel mechanism. This method determines the roots of 

one equation, representative of the direct position analysis, in only one unknown.  

Merlet and Bonev [79,80] suggested using sensors to solve the direct model. Merlet demonstrated 

that the measurement of the link lengths is not usually sufficient to determine the unique posture of the 

platform, and that this posture can be obtained by adding sensors to the mechanism. Sensors can be 

added by locating rotary sensors in the existing passive joints or by adding passive links whose lengths 

are measured with linear sensors. Although the first solution offers less interference between the links, 

the mechanism motion may be reduced. Two sensors on each of these joints allow us to measure the 

direction of the link. The position of the other extremity of the link may be calculated with the link 

length. A unique solution is obtained by adding four sensors on the passive joints, for a general case. 

Three sensors are sufficient for a particular mechanical architecture. 

Bonev solved the direct kinematic problem of parallel manipulators by adding three linear extra 

sensors. Linear Variable Differential Transformers (LVDTs) and Cable Extension Transducers (CETs) 

are linear extra sensors commonly used in parallel mechanisms. The LVDT sensor has a low 

measurement range (0.5 m), it requires support electronics, its installation requires universal joints and 

its price is high. The cable end of a CET is joined to the moving object and the CET is fixed. The cable 

extends or retracts when the object moves. The CET produces electrical signals proportional to the 

movement of their extension cables. And the linear displacement is converted to angular displacement 

with the cable being wound onto a cylindrical spool. A rotary sensor measures the spool rotation. The 

range provided by these sensors is from 0.04 to 40 m, the accuracy is about 0.02% of full scale for 

potentiometers and 0.02% for shaft encoders and the repeatability is 0.02% of full scale. The sensors 

selected to this design were the CETs, and they connect the planar base and the planar moving 

platform at distinct points. The linear extra sensors were implemented considering sensor 

misalignment range, link sensor interference and singularity of a matrix which depends on the 

geometry of the moving platform and the arrangement of the sensor base attachment points and base 

joints. To solve the model, three coordinates are obtained directly from the extra sensory data.  

In [75,81], the authors solved the kinematics of the system by considering each of the mechanism’s 

legs as an open chain. Some authors [82,83] have studied special configurations of the Stewart 

platform obtaining that the explicit expressions for these configurations can offer the geometric 

limitations to motion. Ball [84] announced another methodology based on screw theory and developed 

by Hunt [11]. The velocity fields of systems of interconnected bodies are described by systems of 
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instantaneous screw axes, and the static force systems acting on the rigid bodies are described by 

systems of wrenches, which are vectorially homogenous to the screw systems. Utilizing Ball’s 

reciprocity relationship, it is possible to relate the two types of vectors, and an instantaneous screw 

axis can be represented by a vector pair [85]. This theory allows us to obtain and analyze Jacobian 

matrices and is based on Kennedy–Aronhold centre theory and on Chasles theorem.  

Kennedy–Aronhold centre theory demonstrates that if the instant rotation center of a body is known, 

velocity can be obtained by multiplying its angular velocity by the distance between the instant 

rotation center and the body. Chasles theorem explains that any motion of a rigid body can be achieved 

as a rotation around a geometrical line together with a pure translation along this line, known as the 

screw axis of the motion. In [86], the direct kinematics for a 3-DOF manipulator is solved by means of 

screw theory, obtaining four possible solutions for this mechanism. This methodology is very useful 

when solving velocities and accelerations, but classical methods are usually more convenient for 

obtaining only the position problem. In [26], the position problem is solved by means of classical 

methods and screw theory is used to obtain the mechanism dynamics. 

Subsequently new contributions appear, trying to search for all the direct kinematic solutions, based 

on a new concept, the multibody system [87]. A multibody system is used to model the dynamic 

behaviour of interconnected rigid or flexible bodies that can move relatively to each other. This 

method can be applied in two different ways [68]. The first way utilizes reference point (or Cartesian) 

coordinates. The derivatives of the position coordinates of the centre of mass of the link and the 

orientation parameters of the link are used. The velocity equation is determined through the constraints 

imposed by the joints. The second way uses fully Cartesian (or natural) coordinates. In this case, the 

position of the nodes on joints and unit vectors on joint axes are used. The kinematic parameters are 

nodal velocities and derivatives of unit vectors, and they are related through derivatives of length 

restrictions and joint constraints. In [88], the author extended the kinematic manipulability to general 

constrained rigid multibody systems. 

In recent years computational intelligence, such as artificial network, genetic algorithms or fuzzy 

logic, is becoming important in solving mechanisms.  

Artificial intelligence is concerned with intelligent behaviour in machines, and it involves 

perception, learning, reasoning, communicating and acting in different environments.  

An artificial neural network is a mathematical model that tries to simulate brain hardware structure 

and reproduce its low level capabilities, such as pattern recognition or data classification, through a 

learning process. It consists of an interconnected group of artificial neurons that process information. 

This method presents the capability to derive meaning from imprecise data or complicated systems, so 

it is used in complex mechanisms where there is not enough data or it is very difficult to obtain the 

kinematic equations by means of classical methods. Other advantages of these artificial systems  

are [89,90]: 

- Adaptive learning: The capability to learn to do tasks based on the data given for training or 

initial experience. 

- Self-organization: The ability to create its own organization or representation of the information. 

- Fault tolerance: The structure is degraded when a partial destruction of a network takes place. 

However, some network capabilities may be retained. 
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- Real time operation: Computations in a neural network can be carried out in parallel in a special 

device. 

Fuzzy systems try to reproduce high level capabilities of the brain, such as approximate reasoning, 

because the capabilities are usually non precise or fuzzy in the real world [89]. This method allows us 

to make decisions with imprecise and incomplete information. Some of these advantages are that 

computations are very simple and allow us the use of non precise terms in the rules. On the contrary, it 

is difficult to estimate the membership function and there are many ways of interpreting fuzzy rules. 

Thus, this method is used in unknown and complex environments. 

Different systems that apply these methods can be found in literature. In [91], a multiple neural 

network structure, called CMAC (Cerebella Model Arithmetic Computer), was developed to solve 

direct kinematic problem of the Stewart platform. This method offers a considerable time saving in 

comparison to the neural network models developed until then and allows us to easily obtain a model 

which provides an approximation to the solution problem. However, it can only be applied directly to 

those configurations for which it has been designed, since the model would have to be modified for 

each new design. Output variables can be obtained by means of input variables without knowing the 

other system variables as occurs in models based on neural networks. Although a priori represents a 

simplification, the system calibration usually requires the understanding of the mechanism behaviour. 

In [92], Sadjadian has compared the accuracy of three numerical methods (neural network,  

quasi-closed solution and 4th Taylor expansion) to solve the forward kinematic problem of a redundant 

parallel manipulator. The author has concluded that the 4th order Taylor series approximation offers 

the best prediction errors of the three. Figure 7 shows a scheme with the different methods analyzed 

for modelling and solving equation systems of parallel kinematic mechanisms. 

Figure 7. Scheme of different methods to modeling and solving parallel kinematic mechanisms. 
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Classical methods or computational intelligence? 

 

In this section it has been shown that neural networks and fuzzy systems have important 

advantages, and they have been applied in different areas such as robotics. These methods can be 

suitable for those systems where it is very complex or impossible to obtain the model by means of 

classical methods, for example, in very complex mechanisms, non well-defined problems, when the 

environment is  

unknown [89] or in those mechanisms where there is a behaviour model for trajectory programming 

tasks [90]. However, in those devices in which a complete performance knowledge requires a careful 

kinematic analysis, computational intelligence allows us to determine inputs and outputs, but it is not 

possible to know the value of the rest of the parameters due to their non-parametric nature. This fact 

makes it difficult to relate geometric and non-geometric parameters. In these situations, it is more 

suitable to solve the kinematic problem by means of the classical methods. 

4. Calibration 

4.1. Principles 

Robot calibration consists of identifying the geometric parameters in order to improve the model 

accuracy. In parallel mechanisms, the objective is to reduce the end-effector position error by means of 

an accuracy identification of the kinematic parameters. This procedure allows us to obtain correction 

models to establish corrections in the measurement results. Moreover, the calibration procedure 

quantifies the effects of the influence variables in the final measurement. The steps to achieve this goal 

can be divided in five phases: determination of the kinematic model by means of non-linear equations, 

data acquisition, optimization or geometric parameter identification, model evaluation and, finally, 

identification of the error sources and implementation of correction models. 

The first step, determination of the kinematic model, consists of obtaining the non-linear equations 

that relate the joint variables with the position and orientation of the end-effector and the initial values 

of nominal geometric parameters. 

The second step is data acquisition. The home position is a position, within the robot working range, 

where all joint angles have a pre-defined value. The displacements of the end-effector are usually 

measured with respect to this defined position. 

The following step, optimization or geometric parameter identification, is usually carried out by 

means of approximation procedures based on least-square fitting. 

Once the optimization is applied, an evaluation of the model in different positions than those used in 

the identification process must be carried out to test the model obtained. 

Finally, an identification of the error sources and a modelling and implementation of the correction 

models can be performed. 

In [93], Everett pointed out the differences that exist between the calibration methods for open-loop 

mechanisms and closed-loop mechanisms. Although in both cases, the objective of the calibration is to 

minimize the error between the measured pose of the end-effector and the calculated pose, in parallel 

mechanisms special care must be taken, since it is not possible to choose the model parameters 
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arbitrarily. This is mainly due to the fact that some parameters are inter-related as they belong to a 

closed chain. This characteristic in parallel robots requires two types of equations in the calibration 

method. On one hand, those transformations that relate the end-effector location with the reference 

system of the base by means of open-loop kinematic chains, and on the other hand, those closed-loop 

transformations which contain the constraints imposed by the closed-loop chains.  

4.2. Calibration Procedure 

As is known, the calibration procedures present three well differentiated levels, level one calibration 

or joint level calibration, level two or kinematic calibration and level three or dynamic  

calibration [94,95]. 

4.2.1. Joint Calibration 

The joint calibration consists of determining the relations between the signal produced by the joint 

displacement transducer and the actual joint displacement. By means of this modelling, two more 

parameters are added for each joint in the mathematical model of the mechanism. For prismatic joints, 

d0i (joint displacement in the model initial pose, with respect to the sensor reference mark) and ki, 

(function curve of the sensor output). In case of rotary joints, these parameters are 0i (joint rotation in 

the model initial pose, with respect to the sensor reference mark) and ki. At this level, data acquisition 

is performed by means of some external measurement devices to determine the actual joint angle 

accurately, or by moving the joint to any known configuration. Usually, easily measureable 

configurations are chosen. In open-loop mechanisms, configurations in which several elements are 

aligned are frequently used. In closed-loop mechanisms, due to their geometry, those configurations 

with a known joint angle are more suitable. In this case, the forward model is required, and in  

closed-loop mechanisms this problem presents more complexity. Another possibility is to place the 

end-effector in a known position and orientation belonging to the workspace, in order to solve the 

problem by means of the inverse kinematics. The equations developed in the modelling phase allow us 

to carry out the parameter identification process. The correction phase ensures that the parameter 

values are precise, using a controller to convert the signal that comes from the joint transducer into a 

representative value of the actual joint angle. In [96], Sommer described how to model the behaviour 

of the joint sensor, according to prismatic or rotary joints, by introducing two more parameters for 

each joint in the mathematical model of the mechanism. The aim of this first calibration level is to split 

up the error sources and to maintain the relation between the physical and mathematical parameters 

during the calibration process. 

4.2.2. Kinematic Calibration 

The kinematic calibration consists of determining the kinematic geometry of the mechanism and the 

correct joint angle relationship. 

(a) Kinematic model 
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Just like in the joint calibration, in this level the first phase is to determine the kinematic model. 

This model allows us to obtain equations which relate the joint variables of the mechanism with the 

position and orientation of the end-effector. 

It is not an easy task to obtain a suitable model that ensures the optimal accuracy of the system, and 

one of the unsolved problems in this working area is that it is very difficult to obtain a generalizable 

model – it is specific to the design under study. 

In a parallel mechanism, the end-effector position is limited by certain restrictions. Calibration will 

obtain this position for several poses of the end-effector or configurations. Constraint equations are a 

function of m geometric parameters of the robot, of the measurements obtained at the position and of 

the n pose parameters of the process of calibration. For N calibration poses, there are (N × c) constraint 

equations with (m + N × n) unknowns, and the number of constraint equations must be greater or equal 

to the number of unknowns. The solution to this non-linear system is usually obtained by means of 

numerical methods, such as minimizing the sum of squares of the constraint equations. 

Everett divided kinematic calibration models into two categories [97]. Models belonging to the first 

category assume that all the joints in the mechanism can be modeled as revolute or prismatic joints. To 

be able to make this assumption, the kinematic model should fulfill three characteristics: complete, 

equivalent and proportional. In these models an objective function is usually minimized, and the 

characteristic of proportionality is very important to guarantee numerical stability. 

The second category includes those models in which it is considered that some of the joints can 

contain higher pairs. In these models, besides revolute and prismatic joints, some additional 

movements can appear and must be expressed as a function of the variable joints. These models add an 

offset to each joint, adding three new parameters to each one. This fact originates a multitude of 

possible functions to model the joint, and the concepts of equivalent and complete model are not 

applied to this category. 
 

What type of errors can appear and how do they influence? 

To attain a high level of accuracy, the model must consider the most significant geometric and non-

geometric parameters for the mechanism designed. 

Geometric errors 

Geometric errors may appear from manufacturing errors or from the deviation of the offsets of the 

components. Joints in the links are not perfect, so the axes cannot be perpendicular between them, and 

they cannot intersect in the exact center of the joint. Errors when assembling actuators can cause the 

axis of each actuator not to pass through the center of the joint. Other errors can appear when 

measuring the offset of the components at the location of the mechanism’s joint. 

One of the most widely used geometric methods for modelling an open-loop or a closed-loop 

mechanism is the well-known Denavit-Hartenberg method [98]. This method allows us to model the 

joints with four parameters. One of the limitations of this method appears when it is applied to those 

mechanisms that present two consecutive parallel joint axes. In this case, an infinite number of 

common normals of the same length exist, and the location of the axis coordinate system may be made 

arbitrarily. In [97], Everett mentioned the most relevant publications which propose some solutions for 

this limitation. In [99-102], the authors developed methods to obtain a complete, equivalence and 
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proportional model. Some research has been carried out on obtaining an accuracy model [103,104], in 

which manufacturing tolerances, assembly errors and offsets are studied to develop an algorithm for 

the identification of the kinematic parameters of the Stewart platform. In each joint–link chain three 

types of parameters appear: measurable variables for describing the extension of the prismatic joints, 

un-measurable variables describing joint angles and geometric parameters describing the dimensions 

of the platform. 

Once the kinematic model has been determined the number of parameters will be fixed, and will 

depend on the selected method. Wang [103] determined that the number of geometric parameters to 

define a kinematic chain is 22 [103], and this number can be reduced to 7 if passive joints are 

considered as perfect joints. Kinematic parameters usually correspond to the position of spherical, 

universal or revolute joints. Therefore, each spherical ball joint has three kinematic parameters, and 

each prismatic joint adds a new parameter, corresponding to its elongation [105]. The method 

employed to calibrate the Stewart platform establishes the orientation constraint by maintaining two 

attitude angles of the end-effector constant. 

Non-geometric errors 

The non-geometric errors can appear from backlash, gear transmission, friction, gravity, 

temperature or compliance [106]. The non-geometric models try to predict and compensate these 

errors.  

Some authors [107] have developed non-geometric models to achieve this. In [108], Renders has 

gathered the influence of non-geometric errors. The errors that have the most significant effect on 

accuracy are joint flexibility, link flexibility, gear transmission error, backlash in gear transmission, 

and temperature effect. Flexibility in joints and in links causes 8% - 10% of the position and 

orientation errors of the end-effector, and link flexibility is usually 5%. Joint flexibility errors can be 

reduced by mounting the joint encoders directly on the joint after the transmission units, instead of 

mounting them on the motor shaft. Gear transmission errors are mainly due to runout and orientation 

errors. The contribution of backlash is from 0.5%–1%. The error due to temperature effects causes 

0.1% of the total error. Calibration is usually performed in an environment where the temperature is 

controlled. Next, a correction model that considers the working temperature is applied. Judd [109] 

developed a model to correct problems with robot accuracy resulting from imperfections in the main 

spur and encoder pinion gears, errors in the link and joint parameters and structural deformations. 

Hollerbach [110] introduced a calibration index that considers sensed and un-sensed joints and single 

and multiple loops. In [111], Gong developed an algorithm for non-geometric error identification and 

compensation by means of the inverse calibration of the system, analyzing the effect of geometric 

errors with temperature variation and compliance. These methods separated the influence of the errors 

due to geometric and non-geometric parameters, in order to optimize geometric parameters by means 

of a traditional static calibration, and to model and correct non-geometric errors by means of a 

dynamic calibration. However, they are not generalizable and they do not allow us to know the 

individual influence of each non-geometric component.  

 

 



Sensors 2010, 10                            

 

10275

How many parameters are necessary in the kinematic model? 

To consider all the possible errors in the same kinematic model is a laborious task that, due to the 

complexity of the model, does not always increase the accuracy of the result. Moreover, it can add 

errors in the resolution of the problem, for example in the case where the model adds discontinuous 

functions for backlash or gearing errors, or when parameters are a function of joint variables instead of 

being a function of constants. 

It is not possible to know a priori what parameters must be used in the calibration process to obtain 

the desired accuracy, but the mechanism repeatability must be considered in order to predict the order 

of magnitude of the accuracy that can be reached. 

Everett [112] analyzed models based on forward kinematics and explained that there are a 

maximum number of parameters that must be identified, and that the model accuracy cannot be 

improved by adding extra parameters. The author explained that unless all joints are moved, not all 

parameters can be identified, because if one or more joints do not move, some unknowns can be 

decomposed, shifted and absorbed into others. He determined that four parameters must be considered 

for each revolute joint, two of which must be orientational. And for a prismatic joint two orientational 

parameters are necessary, applied about the non-colinear axes before and perpendicular to the 

translational joint axes. Thus, it is more frequent to add parameters to compensate non-geometric 

errors in the geometric model [113].  

Regardless of the method selected, calibration can be solved by means of inverse or forward 

kinematics. The calibration problem can be formulated in terms of residual measurements. For 

example differences between the joint variable measurements and the values obtained by the inverse 

kinematic model. This model offers significant advantages compared to the one based on forward 

kinematics, since calculations in the latter case are more complex and require more time to be solved. 

Besides, the solution in the inverse model is unique, unlike the forward one in which several possible 

solutions can appear. The inverse model allows us to decouple the calibration problem for every 

kinematic chain, and the constraints can be expressed by analytical equations. This method gives 

numerical efficiency but that measurement of the positions has to be very precise. 

Another possibility is to perform partial measurements of the position, posing the problem in terms 

of errors between measured values and computed values via forward kinematics. In [114], the 

kinematic model was solved using this method. 

In [103], Wang presented a method for the calibration of a 6-UPS robot that uses parallel kinematics 

according to the lengths of kinematic chains and positioning parameters of the platform. Zhuang [115] 

developed a model in terms of residual measurements of the difference between the measurement 

length of the kinematic chain and the one obtained from the model without using forward kinematics. 

The author solved the problem by means of minimizing the sum of squares of the constraint equations. 

Parameter errors are mainly due to errors in the assembly of spherical and universal joints, and 

solutions obtained for some parameters are out of the range provided by the method, which means that 

some constraint equations are not satisfied. In [116], Daney developed an algorithm to perform the 

calibration by means of partial measurements of the position, thanks to the elimination of the rotation 

parameters. This algorithm endeavours to obtain the advantages of the two models, inverse and 

forward, combining the elimination of symbolic variables through numerical optimization, which 
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allows us to obtain numerical stability. The method is applied for three different cases in which the 

number of restrictions and equations to perform the calibration varies. The conclusions are that 

methods that obtain better results do not match those which have a higher algebraic computational 

cost, and that the elimination of the rotation parameters improves the accuracy of initial estimations.  

In [117], the kinematic problem was solved by equalizing constraint equations to a value, εi, to obtain a 

solution.  

 

Data acquisition  

 

This is probably one of the steps with more unresolved questions, mainly due to the difficulty in 

finding a general methodology. Therefore researchers try to find the best procedure, usually applied to 

a specific mechanism. This subsection shows how different authors have dealt with these unsolved 

problems. 

Any measurement error of the external instrument is propagated to the results of the identified 

parameters. Therefore, it is recommended to use an instrument for data acquisition that is, at least, one 

magnitude order more accurate than the mechanism whose parameters are going to be identified. 

The ability to measure the global reference system of the mechanism which is going to be calibrated 

usually determines the different options of data acquisition and the sensors that are going to be used at 

this step. 

If the global reference system can be measured by means of an external measurement instrument 

(for example a laser tracker or a coordinate measuring machine), a direct geometric transformation can 

be established. This transformation obtains the coordinates of the measured points in the global 

reference system of the mechanism. In this case, direct comparisons in the objective function, between 

measured data (or their geometric composition) and mechanism model nominal data, can be made 

providing both are expressed in the same reference system. 

Unfortunately this relation is not usually easy to obtain through a direct measure. In these cases, 

least-square methods can be used with a finite set of data. These methods allow us to obtain an 

approximation of this transformation, which depends on the mechanism error in the points and 

configurations used in data acquisition. Moreover, this approximation is absorbed by the objective 

function. For that reason, it has direct influence on the value of the identified parameters. This method 

is therefore not suitable for parameter identification procedures in which positioning accuracy is 

mandatory or when it is necessary to generalize the positioning accuracy obtained in the identification 

process to other areas of the workspace. 

For all these reasons, the geometric relation between the reference system of the measurement 

instrument and the mechanism global reference system must be established accurately. Otherwise, the 

objective function should be obtained starting from a reference position and evaluating Euclidean 

distances between datasets. 

How can we measure? 

Classical robot calibration methods use additional sensors to measure the position and orientation of 

the end-effector and the joint variables of the ball joints, where the calibration process optimizes the 

error between the measured and computed variables.  
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The type of sensors used in a parallel mechanism affects not only the design process but also the 

calibration procedure. Sensors can be used to measure the variables of the mechanism, usually the 

active ones, in order to obtain the necessary data to solve the kinematic problem. In the calibration 

procedure, mechanism internal sensors are used to obtain information of the system. These data will be 

the input to the mathematical model. The output of the forward model will be the calculated position 

and orientation of the end-effector. In the calibration procedure, the nominal and the calculated 

position and orientation of the end-effector are compared and the mechanism geometric parameters are 

obtained. On the other side, external devices having measurement systems allow us to measure the 

nominal position and orientation of the end-effector. It is important to note that every measurement 

error of the measurement device will be propagated to the calibration results. Therefore, measurement 

devices must be more accurate than the desired accuracy of the mechanism that is going to be 

calibrated. 

In parallel mechanisms, the most used internal sensors are lineal optical sensors (for measuring the 

elongation of the actuator), rotary optical sensors (for measuring the motor rotation of the actuator), 

linear variable differential transformer (LVDT) and force-torque sensors (for the dynamic calibration).  

Accuracy of linear and rotary optical sensors is highly dependent on the method used to couple the 

encoder to a shaft. This value can commonly reach 0.5 µm and 1 arcsecond, respectively, and 

resolution 1 nm and 0.02 arcseconds, respectively. LVDTs present a very high reliability. Accuracy 

and resolution are limited only by the signal conditioning electronics and the analog-to-digital 

converters. Resolution can reach the nanometer range. These types of sensors are used to measure 

relative motion between objects whose surfaces only move a little bit with respect to each other. 

Besides, their measurement range is low (about 0.5 m). On the contrary, linear optical sensor 

measurement range is up to 30 m and rotary sensors offer not rotation limit for incremental encoders 

and several turns for absolute encoders. Force-torque sensors are commonly used to measure the 

applied forces on the mechanism links. These devices frequently present a force sensor accuracy of  

6 mN and a torque sensor accuracy of 30 mN·mm  

External devices typically used in the calibration procedure to improve the mechanism accuracy are 

cameras, laser trackers, coordinate measuring machines (CMM) or autocollimators. Cameras and 

autocollimators are non-contact measurement instruments. These devices are therefore more suitable 

when the influence of measurement forces can affect the results. Cameras and 3D imaging sensors 

present compactness, robustness and flexibility [118]. The rapid development of these devices in the 

last decades has significantly improved their accuracy. Another advantage of these sensors is their 

portability. Moreover, the recent development in this technology allows us to perform a massive data 

acquisition. CMMs offer high resolution and accuracy (about a few micrometers). The laser tracker 

volumetric accuracy is about tens of micrometers. A typical measurement range is about  

900 mm × 1,200 mm × 700 mm in a CMM and up to 40 m radius range in a laser tracker. Therefore, 

these last devices are suitable for large parallel mechanisms. Although autocollimator resolution  

(0.1 arcsecond) and accuracy (0.2 arcseconds) is very high too, the measurement range is very low 

(from arcseconds to a few degrees). By contrast, measurements with a CMM take a lot of time. In 

order to obtain a high accuracy and efficiency, optical and contact sensors are used in combination. A 

visual sensor provides global information of the object surface. On the contrary, force and tactile 
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sensors obtain local information. In recent years, several studies have focused on the combination of 

visual and force/tactile sensors to obtain a high knowledge of the mechanism behavior [119]. 

Everett [120] designed a sensor for measurements in the calibration of mechanisms. This sensor did 

not apply external constraint forces on the mechanism. The sensor used three LED/phototransistor 

pairs as optical switches. Each switch used a LED that shone through an optical fiber. The light left the 

fiber and passed through a gap. On the other side, another fiber received the beam, and a 

phototransistor received the light. This work described the sensor construction, the sensor performance 

and calibration. The sensor was installed in the gripper of a robot as a tool. Precision spheres, having a 

diameter of 12.7 mm, were mounted in the workspace of the robot. The spheres were located within an 

area of 1,600 cm2. Firstly, the relative positions of the spheres were measured with a coordinate 

measuring machine. Secondly, the sensor was positioned over these spheres automatically. Three light 

beams defined position with respect to the sensor. Two beams were separated 10 mm and the third 

beam was mounted 30° away from them. The robot was programmed to find the trip point of the 

sensor. This point defined the origin of the sensor coordinate frame. Then, the sensor input was 

examined to determine which light beams were broken. The test obtained 100 trip points and the 

measurement error was calculated as the standard deviation of the position errors. The measurement 

error was 0.06 mm and the repeatability was between 0.06 and 0.08 mm. To calibrate the mechanism 

by means of the developed sensor, the phases are the following: 

- To develop a model that relates measurable joint positions to mechanism pose 

- To measure a sufficient set of joints positions and their corresponding mechanism poses 

- To identify the parameters of the model 

- To determine the spheres centre relative to the fixture datum (for example by the coordinate 

measuring machine) 

- To collect calibration data by the sensor. 

A widespread classification in the kinematic calibration of parallel robots is the one presented by 

Merlet in [13]. Calibration models are classified into three types: external calibration, constrained 

calibration and auto-calibration or self-calibration.  

Although the simplest way of obtaining the necessary data is by using internal sensors, their 

assembly is difficult in most of the systems. In external measurement systems, it is usually necessary 

to establish, in an approximate way, the relation between the measurement system and the reference 

system of the end-effector. And this procedure has the problems described above. 

Self-calibration 

In self-calibration methods, additional sensors are added to passive joints and each pose of the 

mechanism can be used as a calibration pose. These methods require that the number of internal 

sensors is greater than the number of DOF of the mechanism. Self-calibration methods are usually 

low-cost and can be performed on-line. They can be divided into two groups: (a) the mechanism has 

more internal sensors than necessary; (b) a passive chain is added to the mechanism. 

In [121], Yang used built-in sensors in the passive joints and the parameter errors were identified by 

the least-square algorithm. In [122], Hesselbach developed algorithms to determine the resolution of 

the required sensors to reach the desired accuracy. These algorithms can be easily adapted to any  

6-DOF parallel mechanisms that consist of kinematic chains with 6-DOF. Chains must include at least 
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one ball joint. The author designed an absolute angle measuring micro sensor system. This sensor is 

added into passive joints of parallel mechanisms. One of the objectives is therefore to obtain a robust 

compact sensor. The use of passive joint sensors usually simplifies the optimization procedure. In  

self-calibration, the measured passive joint angles and the calculated joint angles, by means of the 

model, can be compared. Hollerbach [123] used nine precision potentiometers to calibrate a 6-DOF 

parallel mechanism. The joint angle offsets and the joint angle gains were the identified kinematic 

parameters. These parameters related the raw analog input data from the potentiometers to the joint 

angles. The mechanism was placed into a number of poses, and the joint angles were read. The 

obtained potentiometer readings were converted to predicted joint angles and to predicted poses by 

solving the forward kinematics. In the following step, these values were compared with the theoretical 

joint angles obtained by means of the inverse kinematics. 

Constrained calibration methods  

Developments based on constraining the mobility do not require extra sensors [124,125]. In [124], 

Ryu analyzed a design which consisted of a link of fixed length with spherical ball joints in its ends. 

The measurement data is obtained by the internal measurement system of six actuators which measure 

the 5-DOF moving platform motion. This information is used in the calibration procedure without 

using any extra sensing device. The results show that the position and orientation error and the 

measurement noise and the link inaccuracy have the same order. Therefore, the calibration accuracy 

depends on the sensor accuracy and on the constraint link. 

Constrained calibration methods decrease the number of DOF of the mechanism restricting the 

movement of the end-effector or the mobility of any joint. In these methods, the mechanism mobility is 

constrained during the calibration, thus some geometric parameters will remain constant in this 

process.  

In [126], the mechanism was constrained in such a way that only platform rotations around a fixed 

point were allowed, and constraint equations were solved by means of the forward model. Chiu [127] 

limited the movement of a 6-UPS mechanism by adding a seventh leg, connected to the base through a 

universal joint linked to the end-effector. However, this design considerably restricts the working 

range and causes interferences between links. Besides, some parameter errors related to immobilize 

joints can occur unseen. In [128], Ren kept two attitude angles of the end-effector constant at different 

measurement configurations using a biaxial inclinometer. 

These methods have lower costs than external calibration, but on the other hand they are more 

complex than self-calibration. Another problem is that not all the workspace is available due to 

constraints, and it is usually a less accurate method than external and self-calibration. 

External calibration methods 

However, in practice it is not easy to add extra redundant sensors or restrictions, so the most 

frequently used method is external calibration in which the necessary information is obtained by means 

of external devices such as theodolite [129], inclinometers [130,131], vision devices [117,132], the 

laser tracker [133,134] or the coordinate measuring machine [135-137]. 

Whitney [129] developed a forward calibration method. The method defined link lengths and joint 

sensor offsets as parameters. The theodolite measurements of tool position and the readings of the 
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robot joint sensors were introduced in the model to perform the calibration procedure. The results 

show that the calibration model predicts theodolite readings with an error of 0.13 mm. Daney [117] 

developed a vision-based measurement method. Although the measurement data, for example the 

measured poses of the mechanism, are given by the sensor, it is necessary to consider the noise of this 

device. The mechanism poses were measured and sensors measured the six leg lengths for every pose. 

Besnard [130] developed a method for the kinematic calibration of a 6-DOF parallel mechanism 

where the calibration model considered the error on the angle between the inclinometer axes. The two 

inclinometers were fixed to the platform. These sensors were used to measure the prismatic joint 

variables and the platform orientation. Each inclinometer measured its orientation from terrestrial 

horizontal, and both inclinometers had a null value when the platform was horizontal. The prismatic 

joint values and the inclinometer values were used to calibrate the geometric parameters for a number 

of configurations. The calibration procedure minimized the residual between the inclinometer 

measured values and the calculated values. The results show that inclinometers with a precision of  

1e-3º and motorized joint sensors with a precision of 0.02 mm are necessary to obtain a position 

accuracy of about 0.4 mm. Rauf [131] developed a calibration method of parallel mechanism with 

partial pose measurements, by measuring the rotation of the end-effector along with its position. The 

device consists of a linear variable differential transformer and a biaxial inclinometer, to measure the 

position, and an optical encoder to measure the rotation. In [105], inclinometers were not used to 

measure precise values, rather to indicate if the values measured in one configuration were equal to the 

ones measured in a different configuration, thereby making the calibration method independent of the 

range of the measurements carried out and the positioning accuracy of the inclinometer. Although is 

not easy to obtain high accuracy and great workspace with conventional inclinometers, results obtained 

in calibration are usually satisfactory. The inclinometers were installed on the end-effector. The 

calibration was performed by keeping two attitude angles of the end-effector constant. The results 

show that the position and orientation accuracy, after calibration, can be 0.1 mm and 0.01°, when the 

inclinometer repeatability is 0.001°. And the precision of the leg length measurements is 0.002 mm. 

The results show that, before calibration, the errors were from 4 to 8 mm, and after calibration they 

were from −2 to 2 mm. 

Renaud [132] developed a monocular high precision measuring device based on a vision sensor. A 

calibration target was placed in different positions and some images were taken with the vision sensor. 

The mathematical model obtained the pose of the target with respect to the vision sensor. The 

measuring device, based on a vision sensor, presents an accuracy on the order of 10 µm in position and 

5e-4° in orientation; and, in [138], the author performed a calibration for a mechanism having linear 

actuators on the base. The forward model offers more stability, although it cannot converge if there are 

noise problems, and it is possible to perform the calibration by means of partial measurements of the 

end-effector pose.  

In [133], Koseki used a laser tracking coordinate measuring machine. This device consisted of  

4 laser stations and a wide-angle retro-reflector. When the laser beam was incident upon the  

retro-reflector, the reflected beams returned parallel to the incident beam. The retro-reflector had a lens 

whose focus coincided with its spherical surface and the surface mirrors incident beam. The 

interferometer measured the change in distance from the intersection of two axes of pan and tilt to the 

retro-reflector incrementally. Some advantages of this device are non-contact measurement, wide 
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measuring range and ability to measure a high speed object. The results show that the accuracy 

obtained as the distance between measured position and calculated position presents an average error 

of 1.63 mm, before calibration, and 0.30 mm after calibration. 

In [135] three methods were compared: a method using external measurement, a method using 

additional redundant sensors and a method using both. The author affirms that by using the implicit 

calibration, the basic system of equations may be obtained by using only the sensor information. The 

implicit calibration considers the basic system of equations obtained by the closed loop nature of 

parallel robots, and the system is specified by a function of the available data. The kinematic 

parameters can be identified by solving this system. The results show that the kinematic parameters 

were well identified as a function of the dimension of the redundant information on the state of the 

robot, and that the accuracy was higher for the method that used both: external measurements and 

additional redundant sensors. 

In [139], Last classified the calibration techniques following the criteria of degree of automation 

and data-acquisition method. Thus, calibration techniques can be divided in four groups:  

- Type 1: Non-autonomous methods by additional sensors from data acquisition, such as 

calibration by means of a laser tracker, camera systems or an extensible ball bar 

- Type 2: Non-autonomous methods by kinematic constraints from data acquisition, such as 

calibration by contour tracking or by passive joint clamping 

- Type 3: Autonomous methods by additional sensors from data acquisition, such as calibration 

by passive joint sensors or with actuation redundancy 

- Type 4: Autonomous methods by kinematic constraints from data acquisition 

How many sensors are necessary? 

To assure that the number of equations is not smaller than the number of unknowns the minimum 

number of measurements, m, is given by Equation 3: 

m     (3) 

Defining η as the coefficients that relate the transducer signal (corresponding to the joint) to the real 

displacement of the joint and a as the coefficients in the kinematic model,  is the number of elements 

in the vector η and  is the number of elements in the vector a [94]. Besides, the positions chosen for 

data acquisition of the optimization process should guarantee the influence of all the parameters that 

are going to be identified, guaranteeing the generality of the parameters obtained for all the  

workspace [110]. In [140], Driels analyzed the optimum positions for data acquisition, and concluded 

that all the possible variation range of the joints in the mechanism should be covered. Nahvi [141] 

concluded that for performing a calibration, the number of joint sensors must be higher than the 

mobility of the mechanism. The author defined the noise amplification index and demonstrated that 

this index is an indicator of the amplification of the sensor noise and unmodeled errors. Moreover, the 

results show that the effects of sensor noise and unmodeled sources of error dominate the effect of 

length and other kinematic parameter variations of the mechanism. Merlet [13] explained that the 

number of constraint equations must be greater or equal than the number of unknowns. In practice the 

number of equations is usually greater, reducing the sensitivity of calibration to the uncertainty 

associated with measurements. This uncertainty is usually caused by measurement device noise. Thus, 
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it is usual to develop an over-constrained system [142]. Huang [143] identified the parameter errors 

with an endpoint sensor and a dial indicator by measuring the flatness of a fictitious plane, the 

straightness and squareness of two orthogonal axes and the orientation error of the end-effector. These 

methods are usually based on data acquisition for fixed positions similar to work positions. Besides, it 

should be possible to generalize the parameter identification to positions different from those used for 

the identification process.  

How many configurations must be measured? 

The determination of the optimal number of configurations to the data acquisition, in order to 

perform a successful calibration, is still one of the unsolved problems, and in the specialized literature 

different criteria and opinions can be found. Therefore decisions are made without a specific 

methodology to obtain the configurations for a calibration process. According to Zhuang [144], the 

number of necessary configurations is given by n+1, n being the number of DOF of the mechanism.  

In [145], Borm defined the index of observability based on the non-zero singular values of the 

Jacobian matrix, and represented the data scatter. By maximizing this index, the errors of the 

parameters can be better observed. In [146], Sun related five observability indexes and analyzed how 

to minimize the variance of the parameters and minimize the uncertainty of the end-effector position. 

Agheli [147] showed that the boundaries of the workspace should be examined for the maximum 

observability errors. In [121], Yang illustrated the effect of the measurement noise and robot 

repeatability on the calibration results. If the measurement noise exists, more measured end-effector 

poses must be considered. The author simulated 100 end-effector poses (50 poses to calibrate the robot 

and 50 to verify the results), and he concluded that the quantified orientation and position deviations 

and the calibrated initial poses of the modules frames become stable when the number of poses used 

for calibration is greater than 20. The results show that the quantified orientation deviation becomes 

stable in 0.004 radians, and the quantified position deviation becomes stable in 0.09 mm. Bai [148] 

recommended that the calibration should consider more than 10 measured poses to improve the 

calibration accuracy. Moreover, in [105] Ren concluded that selecting an optimal set of configurations 

is more efficient in decreasing the influence of measurement noise. Also, increasing the number of 

measurement configurations will decrease the pose error but only in a limited way, as when the 

number of measurement configurations is increased over a certain amount the improvement is not clear 

but the runtime is increased considerably. The number of configurations needs to be adjusted to reach a 

balance between accuracy and efficiency. On the contrary, Horne [149] studied the effectiveness of 

five pose selection criteria: the geometric mean of the singular values, the inverse condition number, 

the minimum singular value, the noise amplification index and the inverse of the sum of the reciprocals 

of all of the singular values, and the results show that the pose selection criteria did not significantly 

improve the calibration process for the 4-DOF parallel mechanism studied, and moreover some of the 

results using the criteria are worse than those results where no criteria had been used. 

(b) Optimization procedure 

The calibration process can be solved by two ways [93]: (a) by multiplying the constraints by 

Lagrange multipliers and using a modified objective; (b) by solving the constraint equations and 

substituting into the objective functions. 
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In [93,114] authors applied Lagrange multipliers to perform the calibration. The model can be 

solved by means of Newton method. 

The second method presents non-linear equations and the inverse matrix is not easy to obtain, 

however nowadays there are powerful computers that allow us to perform this type of procedure. 

Define the objective function 

The objective of the parameter identification or optimization is to search for the optimum values of 

all parameters included in the model that minimize the position error of the platform.  

The objective function to minimize can be formulated in terms of a linear least-square problem. 

This function is usually defined as the quadratic difference of the error (obtained between the 

measured value of the end-effector position and the value computed by the kinematic model). The 

increment established for parameters must be defined for each iteration, and its value will depend on 

the optimization method chosen. In most of the cases numerical optimization techniques are used to 

minimize the end-effector error.  

Objective function defined in terms of position and orientation of the end-effector (DKM) 

The equation that relates joint variables with the final position of the end-effector by means of the 

forward method is given by the Equation 4: 

( , )iy f p  (4) 

where y is the vector that expresses the position and orientation of the end-effector according to the 

Euler angles, y=[x, y, z, , , ], i, are the joint variables, with i from 1 to the number of DOF of the 

mechanism, and p=[p1, p2,…, pj]
T is the vector of the model parameters. The number of parameters j 

will depend on the model chosen. Thus, it is possible to identify the geometric parameters from vector 

p by iterative optimization methods. These methods minimize the difference between the coordinates 

obtained by the model and the nominal values measured in the same position. These differences are 

denominated residues (see Equation 5): 

1

( ( , )) ( ( , ))
n

T
i i i i

i

y f p y f p  


    (5) 

In this equation, yi is given by the vector of the nominal position and orientation values for the n 

configurations utilized in the parameter identification. In each configuration, the position and 

orientation of the end-effector will be obtained by means of the mechanism model given by f, for the 

joint variables i, corresponding to this configuration. This equation represents the objective function 

to minimize, whose value will be obtained as the sum of squares of the n poses, used in the parameter 

identification of the mechanism. A common way to express this equation is the one shown in  

Equation 6:  

2 2 2 2 2 2

1

[( ) ( ) ( ) ( ) ( ) ( ) ]
i i ii i i i

n

m pi m pi m pi m pi m pi m pi
i

x x y y z z      


             (6) 

where the values with mi sub-index are the external measured values and the pi sub-index values are 

the computed values by means of the mathematical model, for the n identification poses. The optimum 

values will be given by the minimum of the objective function . 
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Traditionally, this equation has been widely used for open chain mechanisms [150], since in these 

systems is easier to obtain the forward kinematics, but in recent years it has also been widely used in 

parallel mechanisms such as in [93,95,104,105,136,143,147,148], where the position and orientation of 

the end-effector is measured and compared with the value given by applying the forward kinematic 

model, in function of model parameters and joint variables. 

Objective function defined in terms of distances (IKM) 

Another method to perform the calibration is by comparing the joint variables, which are given by 

the inverse kinematic model [115,117,123,138,141,151,152], by means of Equation 7: 

1

( ( , )) ( ( , ))
n

T
i i i i

i

q g X p q g X p


    (7) 

where qi are the joint variables, which are externally measured and g(Xi, p) are the joint variables 

obtained by means of the inverse model, in function of the position and orientation of the platform and 

the model parameters. 

Another widely used equation for obtaining the error is the representation as differences between 

the measured and the computed distances, dmi and di respectively, obtained by the kinematic model, 

between two points, as it is shown in Equation 8:  

2

1

( )
n

mi i
i

d d


   (8) 

where the sub-index mi indicates the values externally measured, and the values with sub-index i 

correspond to the values obtained by the kinematic model.  

Once the most suitable calibration model has been selected for the mechanism, and the objective 

function is defined, the next step will be to solve the system. These systems are non-linear, thus it is 

not possible to obtain an analytical solution to the parameter identification problem. Non-linear 

optimization iterative techniques are usually used to obtain the optimum parameters that minimize the 

error in the identification poses. For these systems, the most suitable resolution techniques are those 

based on least squares, specially used to adjust a parametric model to a set of data. A usual approach to 

the optimization problem consists of linearizing the equations of the model in an environment of the 

parameter to identify by means of a development in Taylor series. A suitable formulation to the 

optimization problem and a good approach to the function are achieved in a small interval in relation to 

its current value. In parallel kinematics it is usual to use developments in Taylor series for every 

parameter pi. This approach can be first or second order. The optimization problem can be solved 

through several methods:  

(1) Gradient optimization methods 

The simplest ones are those methods based on the gradient, also known as line search. These 

methods are usually used when the objective function to be minimized is approximated through a  

first-order Taylor series development. The following step will be to consider a stop criterion based on 

the convergence of the method or on small increments of parameters between iterations to obtain the 

set of parameters that minimizes the function.  
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(2) Least-square optimization methods  

In the second group we can find those methods that consider second-order approaches in the Taylor 

series development. In this second term the Hessian matrix appears, with components that are the 

second derivatives of the objective function with respect to the vector of parameters. This matrix 

should be invertible. Problems derived from the singularity of this matrix in numerical optimization 

procedures must be solved by choosing a suitable mathematical model and a set of data for the 

optimization, or by employing optimization methods that avoid this singularity.  

Optimization methods based on least-square are different from the previous ones when obtaining 

the direction of search and when defining the increment that parameters should have in this direction. 

One of the most frequently used least-square methods that take into account second order terms is the 

Gauss-Newton method. In this method the Hessian matrix should be positive or semi-defined positive, 

that is all its own values are positive or positives and zero, which will not always be produced for any 

mathematical model and for any set of values of the objective function. Moreover, convergence is not 

always guaranteed. 

(3) Levenberg-Marquardt optimization method 

The methods studied can present problems when processing the objective function, and are 

therefore not always suitable for the parameter identification process. The gradient method ensures that 

a local minimum of the function is found and usually requires more iterations to find it. It also needs 

the objective function to be continuous in every parameter, which not is always the case.  

Numerical problems that appear in the two methods studied are solved by the algorithm developed 

by Levenberg and Marquardt [153,154]. The method adds a positive value  to the Hessian main 

diagonal elements, obtaining a non-singular and therefore invertible matrix. The main problem of the 

Newton Gauss-Newton method with the processing of the second order components is therefore 

solved. To choose , a compromise between the speed of convergence of the method and the 

invertibility of the matrix must be reached in every iteration. This is why the Levenberg-Marquardt 

algorithm results in a combination of the two methods presented above. When parameters are far from 

the optimum solution, the value of  increases and the algorithm behaves similarly to the gradient 

method; when the parameters approach their optimum value, the value of  decreases, behaving in a 

similar way to the Gauss-Newton method in both search direction and parameter increment. This 

method is widely used in the calibration of parallel mechanisms by authors such as in [105,110,115, 

123-126,130,132,135,143,151,155-158]. 

In the specialized literature we can find other alternatives to the Gauss-Newton method problem. 

For example, the singular value decomposition (SVD) [114,116,147,148,156,159]. 

Another alternative is the use of the decomposition QR for parameter identification [125]. In [160] 

an algorithm allows us to introduce range limits of the joints in a configuration selection process and 

avoids the problem of local minimum, although it is a high-cost computational method. In [161,162] 

the problem is solved by means of genetic algorithms. Yu applies the inverse kinematics model and 

improves the accuracy in the parallel robot position by means of an artificial neural network. In [163], 

Stan performs the optimization of a 2-DOF parallel robot using genetic algorithms. The author 

considers transmission quality index, manipulability, stiffness and workspace. In [164] Liu obtains 
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residual measures through inverse kinematics and develops a calibration method using genetic 

algorithms. 

Techniques based on least-square usually present lower computational cost, providing we consider 

as an initial value a solution close to the optimum solution for the set of parameters. However, in 

methods based on genetic and neural networks algorithms this premise is not usually so significant. 

These algorithms are usually used for parameter optimization and identification when it is not known 

whether the initial values are close to the optimum solution. Furthermore, the combinatorial nature of 

these methods is purely stochastic, which avoids problems in the definition of the search direction in 

traditional least-square methods. 

(c) Evaluation of the identified parameters 

The evaluation of the identified parameters consists of evaluating the mechanism behaviour with the 

set of the identified parameters obtained in the previous step. This procedure is performed in 

configurations different from those utilized in the optimization process. This phase must evaluate the 

degree of compliance of the error values obtained in other positions of the workspace. In [133], Koseki 

utilized a laser tracking coordinate measuring system to evaluate the accuracy of a parallel mechanism. 

Cheng [165] analyzed the relationship between original errors and position-stance error of a moving 

platform by means of the complete differential-coefficient theory and evaluates the error model. The 

conclusion is that improving manufacturing and assembly techniques allows us to reduce the moving 

platform error, and that a small change in position-stance error in different kinematic positions proves 

that the error-compensation of software can considerably improve the precision of parallel 

mechanisms. 

(d) Correction model 

To end the calibration process, a correction model can be obtained to improve the accuracy of the 

mechanism. Huang [166] performed the calibration of a parallel mechanism and compensated 

geometrical and position errors in x and y coordinates. Gong [111] identifies non-geometric errors and 

developed a method to compensate these errors with a laser tracker by means of the inverse calibration 

model. An extensive guide of error compensation methods can be found in [167]. In this paper, Oiwa 

explained in detail how to compensate joints errors, link length, forces in a measurement loop and 

frame deformation using a coordinate measuring machine. This method considers thermal effect and 

external forces. The results show that the deflection of measured Z-coordinates is not completely 

eliminated with the compensation system, but compensation using displacement sensors built in 

spherical joints improves moving accuracy of parallel kinematic mechanisms when the mechanism 

moves in a large working space. The thermal and elastic deformations of the limb can be compensated 

by connecting the scale unit with the joints through low expansion material rods. Bringing the rod end 

into contact with the ball of the spherical joint enables the scale unit to measure the joint error and the 

limb deformations. And, the measured position and the orientation of the base platform compensate the 

thermal and elastic deformations of the frame.  

5. Conclusions 

This paper presents an overview of the solutions developed on kinematic and calibration models of 

parallel mechanisms and the influence of sensors in the mechanism accuracy in recent years. The most 
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relevant classifications to obtain and solve kinematic models and to identify geometric and non-

geometric parameters in the calibration of parallel robots are presented. And the advantages and 

disadvantages of these methods, applications of parallel mechanisms as sensors, new trends and the 

identification of unsolved problems are discussed. This overview is intended to be a guide for 

researchers working on parallel mechanisms, in the design, modelling and calibration of these systems. 

In the document, some common questions are answered and the most up-to-date research carried out is 

summarized. The document describes the different phases required to perform a calibration process, 

putting special emphasis on the fact that the first decision made, the calibration method, will determine 

the number and type of necessary sensors, internal or external, from data acquisition, the required 

configurations and the calibration model. The model will determine the nature and number of 

necessary parameters. There are different methods to perform the calibration process, and the choice of 

one or the other must consider the characteristics of the mechanism. Methods based on computational 

intelligence are able to scan a vast solution set and are not as sensitive to bad initial values as classical 

methods. These methods can be suitable for those systems where it is very complex or impossible to 

obtain the model by means of classical methods. On the contrary, in those devices in which a careful 

kinematic analysis is necessary to obtain complete performance knowledge, classical methods are 

more suitable. Depending on the type and number of selected sensors, the cost function will be 

formulated. This function is established in terms of position and orientation of the moving platform 

(DKM) or in terms of distances (IKM). And, finally, the evaluation of the results and the correction 

model will allow us to improve the accuracy of the system.  
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