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Abstract: Remote sensing, the science of obtaining information via noncontact recording, 

has swept the fields of ecology, biodiversity and conservation (EBC). Several quality 

review papers have contributed to this field. However, these papers often discuss the issues 

from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the 

spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., 

it is organized in the context of state-of-the-art remote sensing technology, including 

instruments and techniques. Herein, the instruments to be discussed consist of high spatial 

resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR 

sensors; and the techniques refer to image classification, vegetation index (VI), inversion 

algorithm, data fusion, and the integration of remote sensing (RS) and geographic 

information system (GIS). 
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1. Introduction 

In general, ecological research refers to the investigation of organisms and their surrounding 

environment, including biotic and abiotic entities. Due to the multifaceted nature of biodiversity, it is 

difficult to simply express and measure biodiversity. Biodiversity should be related to not only the 

variation of life forms, but also the ecological complexes of which they are a part. Conservation has 

become an indispensable way of dealing with the accelerated native ecosystem conversion and 

degradation, which have a significantly negative effect on biodiversity. Remote sensing, the science of 

obtaining information via noncontact recording [1], has swept the fields of ecology, biodiversity and 

conservation (EBC). Remote sensing can provide consistent long-term Earth observation data at scales 

from the local to the global domain. In addition, remote sensing is not labor-intensive and time-

consuming, compared with field-based observations. The review papers of Kerr and Ostrovsky and 

Turner et al., published in the journal of “Trends in Ecology and Evolution”, has been cited hundreds 

of times by scientists from around the world who are involved in remote sensing of EBC [2,3].  

Turner et al. stated two categories of approaches, namely direct and indirect remote sensing 

approaches [3]. The direct approach refers to the direct observation of individual organisms, species 

assemblages, or ecological communities from airborne or satellite sensors, such as the application of 

high spatial resolution and hyperspectral sensors (e.g., [4]). Indirect approaches rely on environmental 

parameters derived from remotely sensed data as proxies. For example, habitat parameters, such as 

land cover, species composition, etc., can be considered as a surrogate for precise estimates of 

potential species ranges and patterns of species richness [5]. The Foothills Research Institute Grizzly 

Bear Program (FRIGBP, formerly called Foothills Model Forest Grizzly Bear Research Program) has 

successfully applied this kind of approach in west-central Alberta (Canada) [6]. Kerr and Ostrovsky 

described ecological remote sensing in three main areas [2]. First, land cover classification, the 

physiographical characteristics of the surface environment, can be used to identify very specific 

habitats and predict the distribution of both individual species and species assemblages at a large 

spatial extent (e.g., [7]). Secondly, integrated ecosystem measurements offer the urgently needed 

measurements of functions at different spatial scales, including whole ecosystems, such as the 

derivation of leaf area index (LAI) and net primary productivity (NPP) mostly based on the normalized 

difference vegetation index (NDVI, e.g., [8]). Thirdly, change detection provides near-continuous, 

long-term measurements of key ecological parameters in order to monitor ecosystem through time and 

over significant areas, such as the application of climate change and habitat loss (e.g., [9]). 

Additionally, several quality review papers have contributed to this field, such as [10-14].  

Most existing review papers too often discuss an issue from the viewpoint of ecologists or 

biodiversity specialists. For instance, Aplin reviewed the remote sensing of ecology as it relates to the 

significance of remote sensing in ecology, to spatial scale, and to terrestrial and marine ecological 

applications [11]. Gillespie et al. discussed the development of measuring and modeling biodiversity 

from space with a focus on species and land-cover classifications, modeling biodiversity, and 

conservation planning [14]. This review, on the other hand, focuses on the spaceborne remote sensing 

of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-

of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to 

be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite 
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constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index 

(VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic 

information system (GIS). 

 

2. Advanced Instruments in Remote Sensing of EBC 

 

Based on the current status of remote sensing instruments, their existing applications in the 

literature, and future potential contributions to EBC, the aforementioned five types of instruments: 

high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR 

sensors, were selected. In order to avoid overlapping between high spatial resolution and hyperspectral 

sensors, the hyperspectral sensors discussed below will mainly refer to sensors with medium spatial 

resolution, such as Hyperion with 30 m spatial resolution. Radar sensors are not selected because their 

applications mostly concentrate on geology, ice and snow, marine surveillance, and agriculture. In 

addition, some uncertainties in radar remote sensing, such as the saturation issue under high vegetation 

biomass, hamper its applications on EBC. 

 

2.1. High Spatial Resolution 

 

Generally speaking, high spatial resolution, also called fine spatial resolution, is less than 10 m, and 

ranges from 0.5–10 m in the commercial domain for environmental research. IKONOS, QuickBird, 

OrbView-3 and SPOT-5 (Satellite Pour l’Observation de la Terre-5) are the commonly used systems 

(see [15] for the high-spatial resolution optical sensors). The benefit of high spatial resolution imagery 

is that it greatly increases the accuracy of identification and characterization of small objects at spatial 

scales which were previously only available from airborne platforms [3,14]. For example,  

Gillespie et al. provided several examples of accurately identifying plant species based on the high 

spatial resolution imagery [14]. Turner et al. have pointed out it is applicable and feasible to directly 

identify certain species and species assemblages at the scale of high spatial resolution [3]. In addition, 

high spatial resolution imagery can be employed to assess the accuracy of remote sensing precuts 

derived from moderate or coarse spatial resolution imagery. For instance, Wabnitz et al. assessed the 

accuracy of Landsat-based large-scale seagrass mapping against patterns detectable with very  

high-resolution IKONOS images [16]. However, the high spatial resolution imagery is still expensive 

to acquire from commercial satellites, at the price of approximately 3,000–5,000 US$ for 10 km2 [14], 

although it has tended to decrease with the emergence of more sensors and the upcoming competition. 

Moreover, data coverage and security restrictions are still a significant hurdle before easily accessing 

high spatial resolution satellite data [17]. 

Due to the large amount of high spatial resolution sensors, the commonly-used IKONOS imagery 

was selected to display their typical applications in 2008 and 2009. First of all land cover, as the 

representative of basic landscape information, can be extracted quickly and reliably based on the high 

spatial resolution data. For example, the object-oriented classification of IKONOS-2 satellite images 

was utilized to explicitly recognize the transitional areas between tree crowns and tree shades (tree 

shadows), and then for the quantification of canopy cover [18]. Further, IKONOS imagery can be used 

to quantify and evaluate the spatial structure of critical habitats and how it affects endemic species, 
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which is essential baseline information for biodiversity monitoring and management (e.g., [19]). In the 

context of marine applications, areas of coastline, with their fertile soil and unique flora and fauna 

which need to be highly protected, were planned for in a sustainable way through mapping the changes 

in land use of the area based on IKONOS imagery in the Cesme Peninsula (Turkey) [20]. Improving 

the science and conservation of coral reef ecosystems, such as the significant fish-habitat relationship, 

is often the objective of marine ecology, and also is an important facet in the application of IKONOS 

imagery [21]. Harborne et al. examined intra-habitat variability in coral-reef fish by mapping habitat 

heterogeneity, which is always considered a surrogate of biodiversity, in order to aid the design of 

networks of marine reserves [22]. Although high spatial resolution satellite remote sensing has been 

hailed as a very useful source of data, Nagendra and Rocchini pointed out that high spatial resolution 

remotely sensed data are one of the most potentially powerfully yet underutilized sources for tropical 

research on biodiversity, and stimulating discussion on the applications should be the first step in 

promoting a more extensive use of such data [17].  

 

2.2. Hyperspectral 

 

Hyperspectral data have the ability to collect ample spectral information across a continuous 

spectrum generally with 100 or more contiguous spectral bands. It is different from multispectral 

sensors which detect relatively few discrete bands [17]. Hundreds of spectral bands with 10-20 nm 

spectral bandwidths offer new possibilities to detect subtle differences between objects of interest. The 

best example is to discriminate fine-scale, species-specific land cover [3], such as vegetation 

categories or soil types [11], which make remarkable contribution to the study regarding biodiversity 

patterns. Moreover, Nagendra and Rocchini summarized that hyperspectral data have been 

successfully applied in recording information regarding critical plant properties (e.g., leaf pigment, 

water content and chemical composition), discriminating tree species in landscapes, and fairly accurate 

identification between different species [17]. What is more, spectral signatures acquired from 

atmosphere-corrected hyperspectral data can be directly compared to the existing spectral library (e.g., 

the Jet Propulsion Laboratory Spectral Library) in order to rapidly identify ground information useful 

in land-cover classification, characterization and change detection [3]. Similar to the situation with 

high spatial resolution imagery, the hyperspectral imagery encountered the same underutilization, and 

a high cost which may put it out of research for many ecologists [14], especially those in developing 

countries who eagerly need the data [17]. 

Shippert listed the existing hyperspectral sensors acquiring imagery from space, including the 

Hyperion sensor on NASA’s EO-1 (National Aeronautics and Space Administration’s Earth 

Observing-1), the CHRIS (Compact High Resolution Imaging Spectrometer) sensor on the European 

Space Agency’s PROBA (PRoject for On-Board Autonomy) satellite, and the FTHSI (Fourier 

Transform Hyperspectral Imager) sensor on the U.S. Air Force Research Lab’s MightySat II  

satellite [23]. Of these sensors, the first-civilian and most commonly used data are derived from the 

Hyperion, which is operated by the EROS (Earth Resources Observation and Science) at a relatively 

low cost to the general public [23]. The EO-1, on which the Hyperion sensor is, was launched in 

November, 2000 as a one-year technology validation and demonstration in support of the LDCM 

(Landsat Data Continuity Mission; [24]). The Hyperion sensor, an upgrade from the LEWIS 
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Hyperspectral Imaging Instrument (HSI), records visible light and other reflected electromagnetic 

energy in 220 spectral bands from 0.4 to 2.5 μm at a 30 m resolution [25]. Table 1 lists the Hyperion 

characteristics. 

Table 1. Hyperion Imaging Spectrometer Characteristics (adapted from [26]). 

Characteristics Values 

Sensor Type Push-broom imager
Wavelength Range 400–2,500 nm 
Number of Spectral Bands 220 
Spectral Resolution 10 nm 
Spatial Resolution 30 m 
Swath 7.5 km 
Digitization 12 bits 
Altitude 705 km 
Repeat 16 day 

 

The recent applications of Hyperion hyperspectral imagery mainly include ecology and biodiversity 

in forest, grassland [27], agriculture [28], and vegetation [29], fragmented ecosystem and ecosystem 

succession, coastal environment [30], etc. For example, vegetation types and densities were classified 

in support of the wildfire management, that is, fire propagation simulation models and fire risk 

assessment were based on a Hyperion classification map with 93% accuracy [31]. Foster et al. 

proposed hyperspectral imagery from EO-1 Hyperion is capable of mapping low-lying woody lianas, 

which are critical to tropical forest dynamics because of their strong influence on forest regeneration, 

disturbance ecology, and biodiversity [32]. Pignatti et al. analyzed the capability of Hyperion data for 

discriminating land cover in a complex natural ecosystem according to the structure of the currently 

used European standard classification system (CORINE Land Cover 2000), and the results showed the 

potential of the imagery up to the 4th level of the CORINE legend, even at the sub-pixel level, within a 

fragmented ecosystem [33]. Besides the application of land cover classification, the relationships 

between LAI and spectral reflectance were studied by [34] using narrowband (EO-1 Hyperion) and 

broadband (Landsat ETM+ [Enhanced Thematic Mapper Plus]) remotely sensed data in Sulawesi 

(Indonesia). Nagendra and Rocchini preliminarily discussed the strengths and drawbacks of 

hyperspatial (i.e., high spatial resolution) and hyperspectral data [17]. Hyperspatial data was 

considered to be best suited for facilitating the accurate location of features such as tree canopies, but 

less suited to the identification of aspects such as species identity. However, conversely, hyperspectral 

data appear capable of identifying features with significantly increasing accuracy. Therefore, the 

integration of Hyperion and IKONOS imagery was proposed to differentiate the subtle spectral 

differences of land-use/land-cover types on household farms in the Northern Ecuadorian Amazon with 

an emphasis on secondary and successional forests, and the promising results supported the integrated 

use of hyperspectral and hyperspatial data [35]. 
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2.3. Thermal Remote Sensing 
 

Thermal remote sensing detects the energy emitted from the Earth’s surface in the thermal infrared 

(TIR, 3 μm to 15 μm), which can be radiated by all bodies above absolute zero. Theoretically, TIR 

sensors measure the surface temperature and thermal properties of targets [36], which are essential for 

developing a better understanding, and more robust models, of land-surface energy balance  

interactions [37]. Moreover, TIR remote sensing is capable of uncovering the principles of ecological 

patterns of structure and function due to the development of ecological thermodynamics [37]. A thermal 

grey level image is generated based on relative radiant temperatures (a thermogram), and light tones 

correspond to warmer temperatures and dark tones to cooler temperatures [36]. TIR remote sensing plays 

an important role in observation of Earth surface characteristics, and is very useful for research regarding 

analysis of biophysical Earth processes, in particular landscape characterization and measurement of land 

surface processes [37]. The well-known sensors with TIR bands include the Advanced Very High 

Resolution Radiometer (AVHRR) onboard the Polar Orbiting Environmental Satellites (POES), the 

Landsat Thematic Mapper (TM) and ETM+, the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) on the Terra Earth observing satellite platform, etc. [37]. 

TIR remote sensing has been developing since 1880, and has proven to be an integral part of 

understanding landscape characteristics [37], although it is relatively rarely used by ecologists [2]. 

However, interests have increasingly focused on the use of TIR remote sensing in EBC. For instance, 

biophysical variables were derived from thermal and multispectral remote sensing data and coupled 

with a Soil-Vegetation-Atmosphere-Transfer (SVAT) model [38]. Duro et al. pointed out the TIR 

region is an important source of information to study environmental disturbance because of the 

negative relationship between vegetation density and land surface temperatures [13]. Mildrexler et al. 

proposed a disturbance detection index using Moderate Resolution Imaging Spectroradiometer 

(MODIS) 16-day Enhanced Vegetation Index (EVI) and 8-day Land Surface Temperature (LST), and 

it was successfully applied to detect continental-scale disturbance events such as wildfire, irrigated 

vegetation, precipitation variability, and the incremental process of recovery of disturbed  

landscapes [39]. Another good use of TIR remote sensing data is to measure evapotranspiration, 

evaporation, and soil moisture. For example, Crow and Zhan analyzed the continental-scale 

performance of surface soil moisture retrieval algorithms depending on satellite passive microwave, 

scatterometer, and thermal remote sensing observations [40]. Petropoulos et al. reviewed Ts/VI 

(surface temperature/vegetation index) remote sensing based methods for the retrieval of land surface 

energy fluxes and soil surface moisture, and suggested one piece of future work should evaluate the 

accuracy of these methods under diverse environments [41].  

 

2.4. Constellation of Small Satellites 

 

A small satellite generally refers to its mass in the range of 1–500 kg and satellite constellation is 

defined as groups of satellites working in concert [42]. Since 1997, six symposia on small satellites 

have been organized by the International Academy of Astronautics (IAA) in Berlin, Germany. Kramer 

and Cracknell reviewed the development of small satellites in remote sensing [43]. With the launch of 

DMC (Disaster Monitoring Constellation, Table 2), the concept of the Earth-observation constellation 
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of low-cost small satellites has been put into action. It is capable of obtaining multispectral images of 

any part of the world every day [24]. The DMC was initially proposed in 1996 and led by SSTL 

(Surrey Satellite Technology Limited), which is a world leader in high performance small  

satellites [42]. Wang et al. briefly introduced the characteristics of DMC imagery and its potential 

applications in environmental science [44]. Also, HJ-1 (Huan Jing-1, also called Environment-1, 

operated by China) is another outstanding constellation system. It is designed mainly for 

environmental protection and disaster monitoring, and the payload instruments onboard consist of a 

CCD (Charge-Coupled Device) camera, an infrared camera, a hyperspectral imager and an S-band 

SAR (Synthetic Aperture Radar, [45]).  

 

Table 2. Disaster Monitoring Constellation (DMC) on Orbit (adapted from DMC 

International Imaging Ltd.). 

Designation Type Imager Launch Waveband 

Alsat-1 DMC 32m MS 2002  MS 
NIR: 0.77–0.90 μm  
Red: 0.63–0.69 μm  
Green:0.52–0.60 μm 
 Pan 
0.50–0.80 μm 

UK-DMC DMC 32m MS 2003 

Nigeriasat-1 DMC 32m MS 2003 

Beijing-1 DMC+4 32m MS/4m Pan 2005 

Deimos-1 DMC 22m MS 2008 

UK-DMC2 DMC 22m MS 2008 

P.S. MS = Multispectral; Pan = Panchromatic 

 

Besides the benefits in cost and operation, the constellation of small satellites has two obvious 

advantages in applications, i.e., global surveying and increased revisit frequency [24]. It is relatively 

easy to obtain observation data across the world in a short time for constellation systems. The 

increased revisit frequency can not only satisfy the application of detecting rapid surface changes such 

as crop-growth monitoring and detecting intraseasonal ecosystem disturbance, but also promotes 

acquisition of good-quality imagery with limited cloud-contamination. Wang et al. discussed the issue 

of clouds and cloud shadows in the environmental remote sensing community, and advised looking for 

good solutions to the unavoidable problem in optical remote sensing [44]. The development of a 

constellation of low-cost small satellites is believed to make contributions to this issue at the sensor 

level. Only a few studies of EBC applied the imagery of small-satellite constellation, though Aplin has 

predicted the bright future of this kind of satellite imagery [11]. Qian et al. demonstrated that 

simulated HJ-1B satellite data performed better on smaller and cooler fires than MODIS or AVHRR 

data, and believe it will offer a great opportunity for fire detection [46]. The FRIGBP has started 

testing the applicability of DMC imagery for wildlife large-area habitat mapping in west-central 

Alberta (Canada) [44].  

 

2.5. LIDAR 

 

Light Detection and Ranging (LIDAR), also called Laser altimetry, is an active remote sensing 

technology that utilizes a laser to illuminate a target object and a photodiode to register the backscatter 

radiation [47,48]. The current LIDAR remote sensing can be categorized into two general groups:  
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non-scanning LIDARs, and scanning LIDARs. The non-scanning LIDARs record pulsed ranging that 

measures the travel time between the transmitted and received signal backscattered from the object 

surface, and the scanning LIDARs register continuous wave ranging that is produced in a transmitted 

sinusoidal signal and carried out by modulating the laser light intensity [49]. According to the 

characteristics of LIDAR technology, it has been proven to provide horizontal and vertical information 

at high spatial resolutions and vertical accuracies [47]. For example, Miller stated that 5–30 cm range 

is the typical accuracies for LIDAR-derived vertical information [50]. Airborne LIDAR remote 

sensing systems such as LVIS (Laser Vegetation Imaging Sensor) have been used for bathymetry, 

forestry, and other applications [48,51,52]. For instance, Turner et al. briefly discussed the airborne 

LIDAR remote sensing for biodiversity science and conservation [3]; Lim et al. reviewed the 

application within forest structure (vertical information) [47], e.g., canopy and tree height, biomass, 

and volume; Goetz et al. claimed species distribution models have been improved through airborne 

LIDAR quantifying vegetation structure within a landscape [53]. LIDAR was underlined by [11] as 

one of the strong interests of the remote sensing community in ecology. Besides airborne LIDAR with 

the limitations of large data volumes, footprint size and high costs [54], spaceborne LIDAR has come 

through with the launch of the ICESat/GLAS (Ice, Cloud, and Land Elevation Satellite/Geoscience 

Laser Altimeter System), which is the first laser-ranging instrument for continuous global observations. 

The applications of the GLAS data in EBC, which are seldom reviewed, will be discussed below. 

LIDAR focused on the forest vertical structure, especially forest canopy height and aboveground 

biomass estimation. Lefsky et al. estimated forest canopy height with an RMSE of 5 m (83% of 

variance explained) in varied forest types including evergreen needle leaf, deciduous broadleaf and 

mixed stands in temperate North America, and tropical evergreen broadleaf forests in Brazil [55]. 

Mangrove forests are considered as one of the most biodiverse and productive wetlands on Earth, and 

the mangrove height and aboveground biomass were measured and mapped based on SRTM (Shuttle 

Radar Topography Mission) elevation data, GLAS waveforms and field data [56]. Pflugmacher et al. 

compared GLAS height and biomass estimates with reference data from the Forest Inventory and 

Analysis (FIA) program of the U.S. Forest Service at a regional scale, and promising results were  

obtained [57]. Helmer et al. proposed the combination of Landsat time series and the GLAS to estimate 

the biomass accumulation of the Amazonian secondary forest, and the estimation agreed well with 

ground-based studies [58]. Duncanson et al. tested simulated GLAS data under tough conditions, e.g., 

areas with dense forests, high relief, or heterogeneous vegetation cover, and demonstrated the capability 

of GLAS waveforms as supplemental model input to improve estimates of canopy height [54]. 

 

3. Advanced Techniques in Remote Sensing of EBC 

 

Similar criteria were applied to choose the remote sensing techniques discussed below, including 

promising algorithms or methods in image classification, vegetation index (VI), inversion algorithm, data 

fusion, and the integration of RS and GIS. Although these techniques are reviewed separately, they are 

frequently integrated in practice. For example, data fusion can be implemented to remotely sensed data 

before they are classified by advanced classifiers in order to improve classification accuracy.  
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3.1. Image Classification 

 

Regardless of the variety of uses for remote sensing images, the first goal is to extract landscape 

information from the satellite images [59]. Image classification has been recognized as the most 

effective means to do so since mid-1800s, when humans first identified different types of land-use and 

land-cover in aerial photography [60]. Jensen discussed in detail the fundamental elements of image 

interpretation including grayscale tone, color, height and depth, size, shape, texture, pattern shadow, 

site, association and arrangement [1]. With the widespread of digital computers, special-purpose image 

classification algorithms have been used to extract land-use/land-cover and biophysical information 

directly from remotely sensed data [60]. In order to derive more accurate classifications, new 

approaches have increasingly emerged, and such approaches have made significant contributions to the 

science of EBC, examples of which would be support vector machines (SVMs), one-class classifier, 

object-oriented classification, and fuzzy classifications. 

SVMs consist of many theoretically superior machine learning algorithms, and make use of 

optimization algorithms to find an optimal separating hyperplane (OSH) between classes based on 

training samples [61]. The hyperplane is called support vectors [62]. Foody and Mathur have 

demonstrated the robustness of SVMs through comparison with artificial neural networks (ANNs) and 

machine learning decision trees, especially for small training sets [63]. The SVM was selected by [64] 

to help understand the relationships among spectral resolution, classifier complexity, and classification 

accuracy obtained with hyperspectral sensors for the classification of forest areas. Ichii et al. applied 

SVM-based evapotranspiration estimation to refine rooting depths for ecosystem modeling in 

California [65].  

Commonly, only one specific class is the foci of research interest [66]. Due to the fact that 

conventional multiclass classifier may be suboptimal in terms of the classification accuracy of the class 

of interest, a one-class-classification approach was suggested to focus tightly on the specific class. For 

example, Sanchez-Hernandez et al. applied the one-class classifier based on the support-vector data 

description (SVDD) to map fenland habitat in support of conservation activities [66]. An accuracy of 

97.5% and 93.6% from the user’s and producer’s perspectives was obtained, and it performed much 

better than conventional maximum-likelihood classification. In the same year, the classifier was used 

to map and monitor coastal saltmarsh habitats of high conservation value under the European Union’s 

Habitats Directive [67].  

With the wide availability of high-spatial resolution satellite data, pixel-based classification 

algorithms seem not to be ideal to extract information desired from the data exhibiting high frequency 

components with high contrast and horizontal layover of objects [60]. Therefore, object-oriented 

classification algorithms have been developed to meet this need, and have established improved 

classification accuracy when compared with the traditional methods [5,60]. The basic processing units 

of object-oriented classification are segments, so-called image objects that represent a relatively 

homogenous unit on the ground [68]. Then classification was performed on image objects, and not on 

pixels. One of the most popular algorithms was developed to the software of Definiens’ Developer 

(also called eCognition; [69]). Advantages of object-oriented classification are to make full use of 

meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, 

direction and area of an object, etc.) and topological features (neighbor, super-object, etc.), and the 
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close relation between real-world objects and image objects [68]. Jensen et al. pointed out that the 

advantages include rapid process, and scale flexibility in which users can select different scale levels 

according to their images [60]. A variety of studies applied object-oriented classification into the 

science of EBC. For example, Collingwood et al. classified agricultural areas in Alberta grizzly bear 

habitats based on one of the object-oriented classification techniques – sequential supervised masking 

(SSM), in order to help ecologists understand the relationship between crop types and grizzly bear 

presence [5]. Wang et al. proposed that object-oriented classification may traverse the possible 

Landsat-gap on applications such as landscape pattern analysis or ecological models [44]. 

Traditionally, land cover information is assigned into a finite number of non-overlapping classes, 

and the classes are mutually exclusive [70], which is described as the one-entity-one-class method [71]. 

However, pixels may contain more than one class because of the heterogeneity and the limitation in 

spatial resolution of remotely sensed data, especially in medium and coarse spatial resolution  

imagery [70]. And the presence of mixed pixels could not be removed totally no matter how accurately 

map classes are defined [71]. Therefore, fuzzy classification, also called subpixel classification, arose 

in the context of the uncertainty associated to class mixtures. In fuzzy systems, every pixel is supposed 

to consist of multiple and partial memberships of all candidate classes [70]. Spectral mixture analysis 

(SMA) is one of the most popular and most effective approaches for dealing with mixed pixel  

problem [60,70]. For example, Lu and Weng used linear SMA to explore the relationship between 

urban thermal features and biophysical descriptors based on ASTER images [72]. Plourde et al. 

estimated species abundance in a northern temperate forest using SMA for better understanding 

changes in biodiversity, habitat quality, climate, and nutrient cycling [73].  

 

3.2. Vegetation Index  

 

Vegetation indices (VIs) are ‘dimensionless, radiometric relative abundance and activity of green 

vegetation, including LAI, percentage green cover, chlorophyll content, green biomass, and absorbed 

photosynthetically active radiation (APAR)’ [1]. Jensen summarized VIs benefit in maximizing 

sensitivity to biophysical parameters, normalizing or modeling external effects, normalizing internal 

effects, and assisting validation effort and quality control [1]. Additionally, VIs are simple to 

understand and implement, easy to quickly calculate, and useful to track temporal characteristics. To 

date, hundreds of VIs have been used in all kinds of applications of remote sensing. VIs can be roughly 

categorized into two groups, i.e., biophysical indices and biochemical indices [74]. Biophysical indices 

represent those designed to link with vegetation biophysical characteristics including structure and 

condition. They can be grouped into simple ratio-based indices (e.g., Simple Ratio [SR]; [75]),  

soil-line-related indices (e.g., Soil Adjusted Vegetation Index [SAVI]; [76]), and chlorophyll-corrected 

indices (Ratio TCARI/OSAVI [Transformed Absorption in Reflectance Index/Optimized Soil 

Adjusted Vegetation Index]; [77]). Biochemical indices are those mainly employed to estimate 

vegetation biochemical properties such as Cellulose Absorption Index (CAI) and Lignin-Cellulose 

Absorption Index (LCAI) [78]. 

No doubt that NDVI is the most well-known vegetation index. Its use in EBC has been considerably 

reviewed by [2,13,14], etc. Nonetheless, other indices that are commonly used in the relevant 

applications are not taken seriously enough in the aforementioned review papers. For example, SR was 
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validated to perform best in early and intermediate forest stages for the assessment of LAI based on 

ASTER data in East African rainforest ecosystems [79]. The modified soil adjusted vegetation index 

(MSAVI) was selected as the optimal vegetation index in a linear mixture model to map canopy 

fractional cover in tropical forests in the Amazonian state of Mato Grosso (Brazil) [80]. Haboudane et al. 

demonstrated that the existing VIs (e.g., NDVI, SAVI, Triangular Vegetation Index [TVI], and 

Modified Chlorophyll Absorption Ratio Index [MCARI], etc.) were either sensitive to chlorophyll 

concentration changes or affected by saturation at high LAI levels, whereas a modified triangular 

vegetation index (MTVI2) and a modified chlorophyll absorption ratio index (MCARI2) are proved to 

be the best predictors of green LAI [77]. Additionally, other recently proposed VIs such as WDRVI 

(Wide Dynamic Range Vegetation Index; [81]), L-ATSAVI (Litter-corrected Adjusted Transformed 

Soil Adjusted Vegetation Index; [74]), and VIUPD (Vegetation Index based on a Universal Pattern 

Decomposition; [82]). However, traditional measures such as the coefficient of determination and root 

mean square based on regression statistics, are not capable of evaluating the performance of VIs on the 

estimation of biophysical parameters because the sensitivity of a VI may change substantially with 

vegetation density [83]. Therefore, a statistical sensitivity function was developed to summarize the 

overall relationship between VIs and biophysical parameters instead of a constant [83]. 

 

3.3. Inversion Algorithms 

 

Various process-oriented models are developed to characterize Earth environments because 

traditional methods based on simple statistical relationships are often sensor-dependent, and  

site-specific [84,85]. These models represent the in-depth understanding of physical processes deriving 

the Earth system, and are unquestionably useful in Earth observations in support of EBC [85]. 

Generally speaking, models can be run under two modes, namely inverse mode and forward mode. An 

inverse mode applies outputs to retrieve inputs that cause them, while a forward mode applies inputs to 

obtain resulting outputs. For example, Boyd and Danson suggested that a remote sensing model can be 

used to simulate the reflectance of forest canopies [84]. The forward mode treats data on the forest 

canopy variables as the inputs and the spectral signature as the output but the inverse mode is converse 

process, i.e., the spectral signature is the input and estimates of the forest biophysical variables are the 

outputs. Obviously, the inverse model is more frequently used in remote sensing. The core of inverse 

model is inversion algorithms, which mostly follow the physical laws and establish cause-and-effect 

relationships [85]. In order to understand remote sensing signals and develop practical inversion 

algorithms to estimate land surface variables, physically-based models are advised to discuss the 

following three areas [86]: atmosphere (atmospheric radiative transfer modeling), land surface (surface 

radiation modeling), and sensor (sensor modeling). Liang grouped inversion algorithms into four 

categories: model simulation and statistical analysis, optimization algorithms, look-up table algorithms, 

and data assimilation [86]. Several recent examples are provided below to display the applications of 

inversion algorithms in EBC.  

In order to monitor and model storm-water pollution, Park and Stenstrom proposed a Bayesian 

network approach, which falls into the category of model simulation and statistical analysis [87]. A 

leaf radiative transfer model called the LIBERTY (Leaf Incorporating Biochemistry Exhibiting 

Reflectance and Transmittance Yields) was selected and incorporated with three pigments to better 
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understand relationships between leaf biochemical, biophysical, and spectral properties [88]. A  

look-up table approach was developed to estimate LAI [89]. Migliavacca et al. assimilated remotely 

sensed vegetation index time series, such as MODIS NDVI, into a process-based model BIOME-BGC 

(Biome-BioGeochemical Cycles) to estimate the gross primary production (GPP) of agro-forestry 

ecosystems [90]. However, an intrinsic problem in inverse models is the process from inputs to outputs 

is often non-invertible, i.e., more than one combination of inputs results in the same output of spectral 

signature. Liang stated that, because it is still a nonlinear, ill-posed problem to inverse land surface 

parameters, further research is required to focus on use of regularization [86].  

 

3.4. Data Fusion 

 

Each kind of imagery has its own benefits and drawbacks, which provide great potential to fully 

exploit increasingly sophisticated multisource data through data fusion. For example, MODIS imagery 

has significant advantage in temporal resolution (one day) but is very poor in spatial resolution  

(250, 500 or 1,000 m) for certain applications, whereas Landsat TM imagery performed very well in 

spatial resolution (30 m) but with 16-day revisit. Therefore, Hilker et al. developed Spatial Temporal 

Adaptive Algorithm for Mapping Reflectance Change (STAARCH) model to fuse high  

spatial- (Landsat) and temporal-resolution (MODIS) for mapping of forest disturbance [91]. A general 

definition of remotely sensed data (image) fusion is given as ‘the combination of two or more different 

images to form a new image by using a certain algorithm’ [92]. Since the late 1980s when data fusion 

emerged as a new topic [93], several comprehensive review papers have been published to review the 

data fusion techniques, such as [92-95]. In general, the fusion techniques can be categorized into two 

classes [92]: (1) colour-related techniques, such as colour composites (RGB), intensity-hue-saturation 

(IHS); (2) Statistical or numerical methods, such as principal component analysis (PCA), band 

combinations using arithmetic operators and others. Besides typical techniques, wavelet transform, 

SVM (support vector machine) and ANN (artificial neural network) represent the heart of new data 

fusion methods (e.g., [96-98]).  

Data fusion has matured into a widely used application of EBC. Pan-sharpening technique, which is 

to integrate a panchromatic (Pan) image with high spatial resolution and a multispectral (MS) image 

with high spectral resolution [94] to produce a high spatial resolution MS image, is likely to be the first 

data fusion method to make installing to the commercial remote sensing software such as PANSHARP 

module in PCI Geomatica software. For example, Wunderle et al. pan-sharpened SPOT-5 imagery to 

classify stand age of western red cedar in British Columbia (Canada) [99]. Due to the complementary 

nature of optical and radar imagery, their both fusion is always at the leading edge of remotely sensed 

data fusion [44]. Huang et al. estimated the quantity and quality of coarse woody debris in 

Yellowstone post-fire forest ecosystem from fusion of SAR and optical data [100]. Optical (Landsat-5 

TM) and SAR (RADARSAT-1 Wide 1) images were fused through the combination of PCA and IHS 

transforms to map geomorphological and environmental sensitivity index in the Amazonian Mangrove 

Coast (Brazil) [101]. 
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3.5. Integration of RS and GIS 

 

RS and GIS have a complementary nature and should develop interdependently. RS routinely 

provides extracted information from remotely sensed data at scales ranging from local to global and 

the purpose of GIS is to store, analyze and visualize spatial data [102]. Although Hinton has reviewed 

well the combined use of remotely-sensed data and vector GIS data [103], Merchant and Narumalani 

claimed the integration of RS and GIS has actually become increasingly apparent since  

Aronoff [104,105]. Merchant and Narumalani listed key factors to benefit the integration, including 

development of theory and analytical methods, advances in computing (hardware and software) and 

global positioning system (GPS) technology [104]. A state-of-the-art definition of the integration is 

given as ‘the use of each technology to benefit the other, as well as the application of both 

technologies for modeling and decision support’ [104]. Ehlers et al. proposed a three-level taxonomy 

of the integration [106]. First-level integration happens in the level of separate but equal data exchange 

between GIS and image analysis systems, e.g., displaying GIS (usually vector) data and remotely 

sensed (raster) data simultaneously. Second-level integration permits seamless tandem or combined 

raster-vector processing based on a common use interface. Certain RS or GIS software has capability 

of performing the second-level integration. For example, the aforementioned Definiens’ Developer is 

capable of incorporating GIS data directly into image processing – image segmentation [69].  

Third-level integration operates RS and GIS as a unified system, and finally generates an integrated 

model of the real world, e.g., accommodating raster and vector data in a hierarchical structure. 

Moreover, Gao pointed out GPS must be involved with the integration to build up seamless  

RS-GIS-GPS integration for geospatial information analysis [107]. Campbell, and Merchant and 

Narumalani summarized the contribution of RS to GIS, and GIS to RS [25,104]. The contribution of 

RS to GIS includes: (1) RS develops thematic layers for GIS, such as surface elevation (Digital 

Elevation Model [DEM]), land use and land cover mapping, biophysical parameters, feature extraction 

and landscape change; and (2) RS provides orthoimagery as base data, which plays key role in 

positioning, registration and geo-referencing. The contribution of GIS to RS consists of (1) mission 

planning; (2) ancillary data for geometric and radiometric correction, and image classification; and (3) 

collection, organization and visualization of reference data. 

Foody demonstrated many commonly used examples of RS and GIS for biodiversity applications. 

The following review focuses on the promising applications of the integration in EBC in 2009 [102]. 

For example, an adaptable method integrating low-cost remote sensing imagery and GIS was 

developed to assess forest cover change and conversion in support of decision-makers in assessing 

regional and local land use and planning forest conservation measures [108]. Giriraj et al. applied data 

generated from RS and GIS to categorize habitats, and then determined the relationship between the 

habitat categorizations and species-distribution patterns in tropical rain forests of Southern Western 

Ghats (India) [109]. Dong et al. pointed out that the integration of high-resolution RS images and GIS 

technique is an effective way to analyze the landscape changes at river basin scale [110]. In the 

management of water resources, RS and GIS integration techniques were used to design sustainable 

development plan of area and locale watershed [111], river inundation impact reduction [112], 

rainwater harvesting for drinking [113]. 
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4. Conclusions 

 

Remote sensing plays an increasing role in EBC research, especially regarding large spatial and/or 

long-term temporal scales. Moreover, the use of remote sensing deepens with the support of  

state-of-the-art remote sensing products and technology. Certainly, it is impossible to make progress 

without the assistance of GIS and GPS. It is believed that remote sensing will develop in a path similar 

to that of computer science, which has penetrated all aspects of human life. EBC performs as a 

propeller to push up the naissance of advanced remote sensing instruments and techniques. For 

example, the object-based image analysis (OBIA) is maturing in hopes to answer the question “why 

are remote sensing and digital image processing still so focused on the statistical analysis of single 

pixels rather than on the spatial patterns they build up” raised by [114]. Blaschke summarized the 

status of OBIA for remote sensing through a comprehensive review several thousand abstracts [115]. 

However, with the popularity of remotely sensed data and commercial remote sensing packages, it is 

easy to obtain processed remote sensing products based on certain algorithms or modules. These 

products can be applied to answer questions in the field of EBC. But, it is noteworthy that these 

products may not be suitable or accurate enough to use. Therefore, it is still urgent to make EBC 

practitioners and remote sensing specialists communicate efficiently.  
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