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Abstract: This article concerns the problem of the estimation bound for tracking an 

extended target observed by a high resolution sensor. Two types of commonly used models 

for extended targets and the corresponding posterior Cramer-Rao lower bound (PCRLB) 

are discussed. The first type is the equation-extension model which extends the state space 

to include parameters such as target size and shape. Thus, the extended state vector can be 

estimated through the measurements obtained by a high resolution sensor. The 

measurement vector is also an expansion of the conventional one, and the additional 

measurements such as target extent can provide extra information for the estimation. The 

second model is based on multiple target measurements, each of which is an independent 

random draw from a spatial probability distribution. As the number of measurements per 

frame is unknown and random, the general form of the measurement contribution to the 

Fisher information matrix (FIM) conditional on the number of measurements is presented, 

and an extended information reduction factor (EIRF) approach is proposed to calculate the 

overall FIM and, therefore, the PCRLB. The bound of the second extended target model is 

also less than that of the point model, on condition that the average number of 

measurements is greater than one. Illustrative simulation examples of the two models are 

discussed and demonstrated. 

Keywords: posterior Cramer-Rao lower bound (PCRLB); Fisher information matrix 

(FIM); extended information reduction factor (EIRF); extended target tracking 
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1. Introduction 

In a conventional target tracking framework, it is usually assumed that the sensor obtains one 

measurement of a single target (if detected) at each time step, which is referred to as the point target 

model. However, high resolution sensors have recently become more widely used and are able to 

resolve multiple point features on a single extended target. The potential to make use of the multiple 

sensor measurements is referred to as extended target tracking. An extended target is usually seen as a 

rigid or semi-rigid body. In contrast to the conventional point target model, the measurements provided 

by high-resolution sensors can provide extra information to improve target identification and data 

association [1,2]. Due to the complexity and nonlinearity of the extended target models, many kinds of 

nonlinear filtering algorithms using various assumptions have been developed [1-5]. However, the 

optimal solution of the filtering problem in extended target tracking is often unachievable. The 

posterior Cramer-Rao lower bound (PCRLB) [6] provides a mean square error bound on the 

performance of any unbiased estimator of an unknown stochastic parameter vector. In the context of 

target tracking, the PCRLB enables one to determine a bound on the optimal achievable accuracy of 

target state estimation. 

The calculation of the PCRLB for two different types of extended target tracking models is 

considered in this paper. The first type of extended target tracking model extends the state and 

measurement equations [1,4,5,7]. Some features of the extended target, such as the target extent in one 

or more dimensions, are obtained from the multiple point features by the high resolution sensor. 

Parameters that may indicate the target size and shape can be added into the state vector and estimated 

through the extended dynamic and measurement equations [1,5,7]. In [7], the PCRLB of the target 

centroid dynamics of the extended target model was proven to be always smaller than that of the point 

target model under certain sufficient conditions. This conclusion suggests the use of the extended 

target model to potentially achieve better performance in tracking applications, and is generalized to 

the cluttered environments in [8]. 

In the second type of extended target tracking approaches, the state space is the same as that of the 

point target model, and the measurement of the target is represented by a spatial probability 

distribution. The target states are estimated based on the multiple measurements, which come from a 

region of high spatial density [3]. The measurements are usually independent and identically 

distributed variables, and the total number per frame is unknown and random. The recursive 

computation of the PCRLB adopted from [9] is then adjusted as a result of the uncertainty of the 

measurement origin. Referencing the ideas of calculating the PCRLB in cluttered environments (at 

most one measurement originated from the target per frame but with missed detections and false 

alarms) [10-14], the general form of the measurement contribution to the Fisher information matrix 

(FIM) is given, and the extended information reduction factor (EIRF) approach is introduced. The 

EIRF method averages the measurement contribution conditional on the number of sensor 

measurements to obtain an unconditional measurement contribution, and then the recursion of the 

PCRLB proceeds. 

The paper is organized as follows. Section 2 introduces the definition and recursive formulation of 

the PCRLB for the general nonlinear filtering problem. Section 3 introduces the calculation and 

theoretical development of the PCRLB for two types of extended target tracking models. In Section 4, 
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illustrative simulation examples corresponding to the two types of models are presented and discussed. 

Conclusions are given in Section 6. 

2. Posterior Cramer-Rao Lower Bound 

2.1. Definition 

Let ˆ
kX  denote any unbiased estimator of the vector 

kX  (unknown and random); the covariance of 

ˆ
kX  has a lower bound that is expressed as follows [6]: 

   1ˆ ˆ
T

k k k k k kC E X X X X J     
  

     (1) 

where Jk is referred to as the Fisher information matrix (FIM). The inverse of the FIM Jk
−1

 is the 

PCRLB. The inequality in (1) means that the difference Ck−Jk
−1

 is a positive semi-definite matrix. 

2.2. Recursive Form of the PCRLB 

Tichavsky et al. [9] provided a Riccati-like recursion to calculate the FIM Jk for the general 

nonlinear filtering problem. The parameters to be estimated are contained in the state vector Xk, where 

k denotes the time step. At each time step, the sensor obtains one measurement vector Zk. The general 

form of the dynamic and measurement model is: 

 1 ,k k k kX f X q        (2) 

 ,k k k kz h X r        (3) 

where fk( ) and hk( ) are (in general) nonlinear functions, and qk and rk are the dynamic and 

measurement noise, respectively, which are assumed to be independent and white processes  

(i.e., sequences of mutually independent random variables or vectors). The FIM is then computed 

recursively as: 

   
1

33 21 11 12

1 1k k k k k k ZJ D D J D D J k


          (4) 

where: 

  11

1ln |k

k

x

k x k kD E p X X       (5) 

  112

1ln |k
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k x k kD E p X X

       (6) 

  1

1

33

1ln |k

k

x

k x k kD E p X X

        (7) 

    1

1 1 11 ln |k

k

x

Z x k kJ k E p z X

         (8) 

and 

  is a second-order partial derivative operator defined as: 

T

            (9) 

where: 
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1

,...,

T

n


 

  
   

 
      (10) 

is a first-order partial derivative operator with respect to the parameter vector  .Throughout this 

article E  will denote mathematical expectation with respect to  . In Equation (4),  1ZJ k   denotes 

the measurement contribution to the FIM. The PCRLB is then the inverse of the FIM calculated 

recursively through Equation (4) and the initial target distribution covariance 
0C  (the initial FIM is the 

inverse of the initial target distribution covariance, i.e., 1

0 0J C  ). 

If the dynamic and measurement noise are additive Gaussian, i.e.:  

   1 , ~ 0,k k k k k kX f X q q N Q        (11) 

   , ~ 0,k k k k k kz h X r r N R        (12) 

where N (μ,Σ) denotes the Gaussian distribution with mean μ and covariance Σ, the recursive formula 

is simplified to: 

    
1

1 1 1 1

1 1 T T

k Z k k k k k k k k kJ J k Q Q E F J E F Q F E F Q


   


               (13) 

and: 

 
1

1

1 1 11
k

T

Z X k k kJ k E H R H




  
           (14) 

where kF  and kH  are the Jacobians of the nonlinear functions  k kf x  and  k kh x , i.e.:  

 
k

T
T

k x k kF f x          (15) 

 
k

T
T

k x k kH h x          (16) 

Furthermore, if the target dynamics are linear (i.e.,  k k k kf x A X ), then it is straightforward to show 

that: 

   
1

1

1 1T

k k k k k ZJ Q A J A J k




         (17) 

where  1ZJ k   is given in (14). Equation (17) also holds if the target dynamics are non-random  

(i.e., 0kQ  ). 

3. PCRLBs for Extended Target Tracking 

3.1. The Equation Extension Model 

For the first type of extended target tracking models, the dynamic and measurement vectors are both 

extensions of the ones in the point model with additional states and measurements. The equations are 

thus also extensions of the point model and are still in the general form. The superscripts “p” and “e” 

are used in the paper to indicate the “point” and “extended” target tracking models, respectively. Thus, 

the extended model is expressed as: 

 1 ,e e e e

k k k kX f X q        (18) 

 ,e e e e

k k k kz h X r        (19) 



Sensors 2010, 10  

 

 

11622 

where 
p

e

n

X
X

X

 
  
 

 and the parameters of the extended target, such as target size and shape, are 

expressed by the additional state vector X
n
. The PCRLB can then be calculated through the general 

recursive equation in (4). As proven in [7], under certain sufficient conditions, which are satisfied in 

most extended target tracking applications, the bound of the target centroid dynamics is always smaller 

than that of the point model: 

   
1 1

e p

k kJ J
   

  
      (20) 

where     is a function to obtain the p p

S SN N  left-upper sub-matrix and p

SN  is the dimensionality of the state 

vector pX . Furthermore, the conclusion still holds in cluttered environments [8].  

3.2. The Spatial Probability Distribution Model—The Extended Information Reduction Factor  

(EIRF) Approach 

In the second type of extended target tracking framework, the state space and the dynamic equation 

of the extended target model are in the general form described by (2). However, a high resolution 

sensor can obtain multiple measurements at each time step. It is assumed that 
km  independent 

measurements generated from the target, denoted as Zk ≜ {Zk (i):i = 1,2,…,mk}, are observed by the 

sensor. Each of the measurements is distributed according to the known spatial extent model 

  |z k kp Z i X , also in the measurement equation form: 

    , , 1,...,k k k k kZ i h X r i i m       (21) 

where  kr i  are i.i.d. stochastic vectors and the total number of measurements km  is unknown and 

random. The overall probability density is then: 

  
1

( | , ) |
km

k k k z k k

i

p Z X m p Z i X


     (22) 

For the spatial distribution model of the extended target, the number of sensor measurements per 

frame is unknown and random. Thus, the recursive calculation of the PCRLB cannot be applied 

directly. Referencing the ideas for calculating the PCRLB in the case of a single point target in a 

cluttered environment [10,12,13], the general form of the measurement contribution is given, and an 

extended information reduction factor (EIRF) approach is proposed to calculate the PCRLB. The 

measurement contribution at time k given that there are km  measurements at that time is thus: 
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    (23) 

It is noticed that for each i (1 ki m  ),  kZ i  is i.i.d. to  |z k kp z X , then: 

      ln | ln |k k

k k

X X

X z k k X z k kE p Z i X E p z X      (24) 

for all i (1 ki m  ). It then follows from (23) and (24) that: 
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    : ln | .k

k

X

Z k k X z k kJ k m m E p z X       (25) 

The following expression is defined as the measurement contribution in the conventional case 

(where just one measurement originates from  |z k kp z X  at time k): 

    1 ln |k

k

X

Z X z k kJ k E p z X        (26) 

Thus:  

   1:Z k k ZJ k m m J k        (27) 

The conclusion above obeys the usual intuition that the measurement uncertainty is reduced by 

multiple i.i.d. measurements (for the case that 1km  ). 

If the dynamic and measurement noise are additive Gaussian (described by (11) and (12)), the 

measurement contribution is then written as follows [using (14) and (27)]: 

  1:
k

T

Z k k X k k kJ k m m E H R H          (28) 

Equation (25) indicates that the measurement uncertainty brought by multiple target generated 

measurements is generalized to a single multiplier that equals to the number of measurements at the 

corresponding time. The overall measurement contribution can then be calculated as a weighted sum of 

the conditional ones, which is referred to as the extended information reduction factor (EIRF) approach. 

The overall measurement contribution is formulated as: 
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      (29) 

where  kp m  is the probability that km  measurements are obtained by the sensor and  kE m  is the 

mathematical expectation of the number of measurements at time step k. Note that the EIRF (which is 

equal to  kE m ) can be either greater or less than one. Hence, the information might be either reduced 

or enlarged. For a common extended target tracking scenario, the mean number of measurements is 

usually much greater than one, so that the information is enlarged and therefore the PCRLB is 

decreased. Hence the estimation performance might be improved through the multiple sensor 

measurements. 

Because the probability distribution of km  is usually prior information in a specific sensor and target 

scenario, the value of the measurement contribution can easily be calculated using (29). Then, the FIM 

kJ  can be calculated through the recursion in (4) together with the initial FIM 1

0 0J C  . The 

corresponding EIRF bound is denoted as: 

1( ; ) kPCRLB EIRF k J        (30) 

If the dynamic and measurement noise are additive Gaussian (described by (11) and (12)), the 

overall measurement contribution is then: 
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    1

k

T

Z k X k k kJ k E m E H R H         (31) 

Furthermore, if the target dynamics are linear (i.e.,  k k k kf x A X ), the recursion of 
kJ  is then 

simplified to (17), with  ZJ k  calculated by (31). 

4. Illustrative Simulation Examples 

The following simulation examples are presented to illustrate the numerical results of PCRLBs for 

the two types of extended target tracking models. 

4.1. Example 1: Stick Shaped Extended Target Tracking 

The first example is tracking an extended target whose shape is modeled as a stick using an 

equation-extension model for extended target tracking, which is described in Section 3.1. As shown in 

Figure 1, the sensor is located at  0 0,x y  on a 2-D plane, and the state vector of the target is 

 , , , ,eX x x y y l   , where l is the target length and the superscript “e” denotes the extended model. The 

target is moving with nearly constant velocity (NCV), and the direction of the velocity is assumed to 

be along the stick. The dynamic model is:  

1

1 0 0 0

0 1 0 0 0

0 0 1 0

0 0 0 1 0

0 0 0 0 1

e e e e e e

k k k k k k

T

X F X q X qT

 
 
 
    
 
 
  

     (32) 

where T is the time interval between sensor measurements and e

kq  is the Gaussian dynamic noise with 

zero mean and covariance e

kQ . 

Figure 1. The stick shaped extended target model. 
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The sensor obtains not only the conventional target position measurements, such as the distance and 

azimuth angle of the target centroid, but also the extended measurements that describe the target extent. 

The measurement model is:  
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      (33) 

where 
 

 

   
2 2

0 0

0

0

arctan

e

e

x x y yX

y y
X

x x





      
           

 is the conventional part of the measurement vector, denoting the 

distance and azimuth angle of the target centroid, and 
 

 

cos

sin

e

e

L X l

lW X





   
    
    

 is the extended part of the 

measurement vector, denoting the down-range and cross-range extent of the target. The parameter   is 

the angle between the line of sight (LOS) and the target velocity vector, denoted as the VLOS angle: 

   

   
0 0

0 0

arctan .
x y y y x x

x x x y y y


   
  

    

 

 
     (34) 

The recursive computation of the FIM (13) can be applied here directly with the calculation of the 

measurement contribution in (14). The Jacobian e

kH  in (14) is a 4 × 6 matrix. The non-zero elements of 

the first two rows are: 

 
 

   
 

 

   
2 2 2 2

1 3
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  (35) 

 
 

   
 

 

   
2 2 2 2

3 1
2,1 , 2,3

1 3 1 3

e e

k ke e

k k
e e e e

k k k k

X X
H H

X X X X


 
               

   (36) 

The first four elements of the third and fourth row of the Jacobian e

kH  are calculated by: 
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    (37) 

and 
 
k

e

kX j




 can be calculated through (34): 
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     (38) 

The last elements of the third and fourth row of the Jacobian e

kH  are: 
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     (39) 

In this simulation example, the sensor is static and located at the origin of the coordinate system,  

i.e.,    0 0, 0,0x y  . The target moves with initial velocity 
0 10v   in the direction with the initial VLOS 

angle Ø0 = 20°. The initial position of the target is (15,000, 10,000), and the initial length is 
0 50l  . 

The initial FIM is   
1

2

0 20,3,20,3,1J diag


    , and the covariance of the state noise is 

 3,0.1,3,0.1,1kQ diag . The time interval between sensor measurements is 1T  , and the measurement 

noise is zero-mean white Gaussian noise with standard deviations: 5  , 0.1   , 3L  , and 3W  . 

All the parameter units are in the metric system. 

Because the target dynamics are random (with non-zero dynamic noise) in the simulation scenario, 

the calculation of the measurement contribution using (14) requires the evaluation of the mathematical 

expectation of 1

1 1 1

T

k k kH R H

    with respect to 
1kX 
. A sampling scheme is used here. From the initial target 

state and the dynamic model, multiple target state sequences are generated, and the corresponding 

measurement contribution is computed. The overall measurement contribution is then computed as an 

average of the measurement contributions conditional on each state sequence. In this simulation, 

10,000 state sequences were sampled to approximate the measurement contribution. The comparison 

of the bounds of target centroid dynamics (position and velocity) using both the extended and point 

target models is shown in Figure 2. The numerical result also confirms the theoretical development  

in [7] that the bound of the extended model is always smaller than that of the point model because the 

three sufficient conditions proposed in [7] are satisfied in the tracking models discussed here. The 

improvement in the bound of the extended target tracking model is a result of the fact that the 

measurements of the target extent are directly dependent on the target centroid dynamics (position and 

velocity). Figure 2(a) shows that the new measurements of the target extent are of relatively small 

importance for the estimation of target position, especially in the early stage of tracking. However, the 

PCRLBs of the velocities [as shown in Figure 2(b)] of the extended target model in both the x and y 

directions decrease sharply upon the arrival of the measurements (the initial values of the FIM of the 

extended and point models are equivalent). In the conventional point target tracking framework, the 

velocity is estimated only through the target centroid positions, and the uncertainty of the velocity is 

not reduced until the second frame of measurements (so the bound of the velocity in the first scan is no 

less than the initial covariance). However, the information on the target velocity is carried with the 

target extent measurements in the extended target model. Thus, the uncertainty of the velocity is 

significantly reduced with the arrival of the first scan of sensor measurements. This advantage could 

greatly benefit the tracking systems for defense, especially for velocity-sensitive ones, such as  

anti-missile systems. The early and precise sensing of the target velocity will substantially improve the 

power of defense surveillance systems. 
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Figure 2. The comparison of the PCRLB  curves of the extended and point target models 

for (a) the target position in the directions of the x and y axes and (b) the target velocity in 

the directions of the x and y axes. 

 

Figure 3. The comparison of the PCRLB  curves for different values of 
L  for (a) the 

target velocity in the direction of the x axis and (b) the target length. 

 

 

Figure 3 illustrates the PCRLBs of the target velocity (in the direction of the x axis) and target 

length for different values of L  (the effect of L  on the PCRLB  curves for the target position is 

negligible and therefore not shown here). In Figure 3, the parameters except L  are set to the same 

values as before, and the curves of PCRLB  corresponding to 0.1L  , 3L  , and 100L   are 

presented. The numerical result unsurprisingly coincides with the intuition that the performance bound 

is improved by the accurate measurement of the target extent. Furthermore, Figure 3(b) shows that the 

estimation bound of the target length benefits from the accuracy of the target extent measurement more 

evidently than that of the target velocity [which is shown in Figure 3(a)] because the relationship 

between the target length and extent is more direct in this sensor-target geometry (Ø0 = 20°). The 

influence of the sensor-target geometry on the estimation bound is reported below. 
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Next, the impact of the VLOS angle on the PCRLB is analyzed. The effect of   on the estimation 

bounds of the position and velocity are negligible and not shown, but the impact of   on the PCRLB  

curves for the target length also depends on the accuracy of the target extent measurements. Figure 4 

shows the PCRLB  curves for the initial VLOS angles Ø0 = 0°, 45°, and 90° for four combinations of 

the values of 
L  and 

W  (corresponding to the case of good and poor accuracy in the measurement of 

the down-range/cross-range extent).  

In Figure 4(a) (down-range/cross-range extent are both accurate) and Figure 4(d) (down-

range/cross-range extent are both inaccurate), the bounds corresponding to all initial VLOS angles are 

equivalent because the information provided by the down-range/cross-range extent is symmetric. In 

Figure 4(b), the bound for Ø0 = 0° (180°), is dramatically smaller than that for Ø0 = 90°. The superior 

performance bound is a result of the target orientation being along the direction with the best 

measurement accuracy.  

A similar interpretation can be proposed for Figure 4(c). From this result, it follows that, for a 

moving sensor platform, it is possible to design an optimal movement trajectory that minimizes the 

PCRLB for the target length. When the down-range extent is more accurate than the cross-range extent, 

the optimal trajectory should make the VLOS angle approach 0°/180°; when the down-range extent is 

less accurate than the cross-range extent, it should approach 90°. 

Figure 4. The impact of 0  on the PCRLB  curves for different values of L  and W :  

(a) 0.1L  , 0.1W  . (b) 0.1L  , 3W  . (c) 3L  , 0.1W  . (d) 3L  , 3W  . 
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Section 5.1. The observer is located at  0 0,x y  on a 2-D plane. The target is moving with nearly 

constant velocity (NCV), and the dynamic model is of the conventional form: 

 1 , ~ 0,k k k k k kX A X q q N Q        (40) 

where ( , , , )TX x x y y   , 
1 1

,
0 1 0 1

k

T T
A diag

    
     

    
 and T  is the time interval between measurements. The 

measurement model is:  

         , ~ 0, , 1,...,k k k k k k kZ i h X r i r i N R i m      (41) 

where 
km  is the number of measurements, and: 

 
 

 

   
2 2

0 0

0

0

arctan

k k
k

k k
k

k

k

x x y y
X

h X y yX
x x





   
  

     
   

  

    (42) 

includes the distance and azimuth angle of the target. As described in Section 2.2,  kr i  are i.i.d. 

stochastic vectors. The number of target measurements per frame 
km  is Poisson distributed, and the 

mean number is T . Thus, the probability that km  measurements originating from the target are 

observed is: 

 Pr
!

k

T

m

T

k

k

m e
m

 
       (43) 

and the PCRLB can be calculated recursively by the EIRF method described in Section 4.2. The 

overall measurement contribution (given in (29)) is then:  

       1 1Z k Z T ZJ k E m J k J k       (44) 

where: 

  1

1 k

T

Z X k k kJ k E H R H         (45) 

and the expression for kH  is a 2*4 sub-matrix of e

kH  given in Section 4.1: 

 

   

 

   

 

   

 

   

2 2 2 2

2 2 2 2

1 3
0 0

1 3 1 3

3 1
0 0

1 3 1 3

k k
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H

X X
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   (46) 

The method of calculating the mathematical expectation with respect to the state vector in (45) is 

the same as that described in Example 1. 

In the simulation, the sensor is also static and at the origin of the coordinate system, while the 

target moves with initial velocity    0 0, 10,15x yv v   starting from the initial position  15000,10000 . The 

initial FIM is   
1

2

0 20,3,20,3J diag


    . The covariance of the state noise is  3,0.1,3,0.1kQ diag , and 

the measurement noise is zero-mean white Gaussian noise with standard deviations of 5   and 

0.1   . The mean number of measurements per frame is 2.5T  , and the time interval is 1T  . All 

the parameter units are in the metric system. The estimation bounds calculated by the EIRF approach 
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for the position and velocity along both the x and y axes are shown in Figure 5. Equation (28) indicates 

that the estimation performance bound is affected by the number of measurements originating from the 

target. In the EIRF methodology, the overall impact is manifested as a constant scalar, the mean 

number of measurements per frame. The PCRLB  curves (calculated by the EIRF approach) for the 

target position and velocity in the direction of the x axis for various values of the Poisson intensity (the 

mean number of measurements per frame) 
T  is shown in Figure 6(a) and (b), respectively. The curve 

corresponding to 1T   is equivalent to the point target tracking bound, and, therefore, the simulation 

results indicate that the large quantity of measurements decreases the estimation bound, therefore 

possibly improving the estimation accuracy. 

Figure 5. The PCRLB  curves of the multi-measurement extended target tracking for  

(a) the target position in the directions of the x and y axes and (b) the target velocity in the 

directions of the x and y axes. 

 

Figure 6. The PCRLB of the multi-measurement extended target tracking for different 

mean numbers of measurements for (a) the target position in the direction of the x axis. (b) 

and the target velocity in the direction of the x axis. 
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5. Conclusions 

In this article, the calculation of the PCRLB for two types of extended target tracking models is 

reported. For the equation extension (first type) extended target model, the dynamic and measurement 

equations are extensions of those of the point target models and are still in the general nonlinear 

filtering form. The PCRLB is then calculated through the recursive formulation, and the bound of the 

target centroid dynamics estimation of the extended model is always smaller than that of the point 

model. For the spatial distribution (second type) extended target model, the general form of the 

measurement contribution for a specific number of measurements with no clutter is presented in the 

paper, and the EIRF approach is introduced to calculate the overall measurement contribution and 

therefore the PCRLB. Illustrative simulation examples for the two types of extended target tracking 

models are also presented to verify the theoretical development and demonstrate the influence of 

parameters on the PCRLB. The theoretical and numerical results suggest the superior performance 

bound for both the two types of extended target models. 
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