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Abstract: Stereo matching is an open problem in Computer Vision, facklocal features
are extracted to identify corresponding points in pairsméges. The results are heavily
dependent on the initial steps. We apply image decompasitianultiresolution levels,
for reducing the search space, computational time, andserrd/e propose a solution to
the problem of how deep (coarse) should the stereo meadantstsading between error
minimization and time consumption, by starting stereouwlakion at varying resolution levels,
for each pixel, according to fuzzy decisions. Our heuristihances the overall execution
time since it only employs deeper resolution levels wheltstrnecessary. It also reduces
errors because it measures similarity between windowsemittugh details. We also compare
our algorithm with a very fast multi-resolution approacmdeone based on fuzzy logic.
Our algorithm performs faster and/or better than all thgser@aches, becoming, thus, a
good candidate for robotic vision applications. We als@uss the system architecture that
efficiently implements our solution.

Keywords: image analysis; fuzzy rules; multiresolution; sensor gpmfition; stereo
matching; vision
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1. Introduction

The goal of stereo vision is to recover 3D information givertamplete and possibly noisy
information of the scendl| 2]. Depth (or shape) is useful for terrain mappiB}y fobot controlling 7]
and several other applications. Shape from shading, stegttight and stereoscopy are among the many
possible sources of information. In this work we proposeagickements to the determination of matching
points in pairs of images, which stems as the bottleneckeo$téreo vision process.

Our approach consists of performing an initial coarse magchetween low resolution versions of the
original images. The resultis refined on small areas of asirgyly higher resolution, until the matching
is done between pixels in the original images resolutioelleVhis is usually termed “coarse to fine” or
“cascade correlation”.

Multiresolution procedures can, in principle, be perfodne any order, even in a backwards and
forwards scheme, but our choice is based upon computatcmmeiderations aiming at reducing the
required processing time. Multiresolution matching, imtjgallar, is known to reduce the complexity
of several classes of image processing applications, dimjuthe matching problem, leading to fast
implementations. The general problem with multiresolutgorithms is that, more often than not, they
start with the coarsest resolution for all pixels and thuenspa long time. Our approach improves the
search for an optimal resolution where to find corresponel@amts.

The main contribution of this work is proposing, implemegtiand assessing a multiresolution
matching algorithm with starting points whose levels depen local information. Such levels are
computed using a new heuristic based on fuzzy decisionsliygegood quality and fast processing.

The paper unfolds as follows. Section 2 presents a reviewnafje matching, focused on the use
of multilevel and fuzzy techniques. Section 3 formulates fpinoblem. Section 4 presents the main
algorithms, and Section 5 discusses relevant implementaketails. Section 6 presents results, and
Section 7 closes with the main contributions, drawbackspmssible extensions of this work.

2. State of the Art

Vision is so far the most powerful biological sensory systeSince computers appeared, several
artificial vision systems have been proposed, inspired by thological versions, aiming at providing
vision to machines. However, the heterogeneity of teclesquecessary for modeling complete vision
algorithms makes the implementation of a real-time visistem a hard and complex task.

Stereo vision is used to recover the depth of scene objeistsn gwo different images of them.
This is a well-defined problem, with several text books antitlas in the literature 3, 2, 8-11].
Disparity calculation is the main issue, making it a compbeablem. Several algorithms have been
proposed in order to enhance precision or to reduce the exibpbf the problem 12-16]. Features
as depth (or a disparity map) are useful for terrain mapphgdbot controlling B, 7, 17] and several
other applications.

Stereo matching is generally defined as the problem of desauy points or regions of one image
that match points or regions of the other image on a steregenpair. That is, the goal is finding
pairs of points or regions in two images that have local imelgaracteristics most similar to each
other [1, 2, 8-10, 18-20]. The result of the matching process is the displacementd®t the points
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in the images, or disparity, also called the 2.5D informatiddepth reconstruction can be directly
calculated from this information, generating a 3D modelld tletected objects using triangulation
or other mesh representation. Disparity can also be dyrestéd for other purposes as, for instance,
real-time navigationZ1].

There are several stereo matching algorithms, generalbsified into two categories: area matching
and/or feature (element) matching).] Area matching algorithms are characterized by comparing
features distributed over regions. Feature matching usxed features, edges and borders for instance,
with which it is possible to perform the matching.

Area based algorithms are usually slower than feature bases, but they generate full disparity
maps and error estimates. Area based algorithms usualliogroprrelation estimates between image
pairs for generating the match. Such estimates are obtaismd) discrete convolution operations
between images templates. The algorithm performancedus, trery dependent on the correlation and
on the search window sizes. Small correlation windows Usggeherate maps that are more sensitive to
noise, but less sensitive to occlusions, better definingltjects P2).

In order to exploit the advantages of both small and big wivelocalgorithms based on variable
window size were propose®,[22, 23]. These algorithms trade better quality of matching forritro
execution time. In fact, the use of full resolution imagadyacomplicates the stereo matching process,
mainly if real time is a requirement.

Several models have been proposed in the literature forendatg reduction. Most of them treat
visual data as a classical pyramidal structure. The scaleestineory is formalized by Witkir2@] and
by Lindeberg £5]. The Laplacian pyramid is formally introduced by Burt andeAson p6], but its first
use in visual search tasks is by UB7[. Several works use it as input, mainly for techniques thagtley
visual attention28, 29].

Wavelets BQ] are also used for building multiresolution imagexl][ with applications in stereo
matching B2-34]. Other multiresolution algorithms have also been usedtle development of
real-time stereo vision systems, using small (reducediaes of the images3p, 36)].

Multiresolution algorithms mix both area and feature matgHor achieving fast executior3f, 37].
Multiresolution matching can even reduce the asymptotromexity of the matching problem, but at
the expense of worse results.

Besides the existence of thadieect algorithms, Udupa38] suggests that approaches based on fuzzy
sets should be taken into consideration, considering ttietlfat images are inherently fuzzy. Such
approach should be able to handle realistically uncerés@ind heterogeneity of object properties.

Several works use logic fuzzy clustering algorithms in edematching in order to accelerate the
correspondence proces3Of46]; some of these technique achieve real time processing.iddzeis to
pre-process images, group features by some fuzzy critegaide the search so the best match between
features can be determined, or at least guided, using a setalf candidate features. Fuzzy logic for
object identification and feature recovering on stereo esand video is also used#50].

Fuzzy theory is also applied to determine the best windoe wiith which to process correlation
measures in image$]]. This is in certain degree related to our work, since we meitge the
best resolution level to start stereo matching, which meatesrmining window size if only one level of
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resolution would be used. Fuzzy techniques have also beshmgacking and robot control with stereo
images 52-54].

Our proposed approach is rather different from the abatediworks and integrates multiresolution
procedures with fuzzy techniques. As stated above, the pralsiem with the multiresolution approach
is how to determine the level with which to start correlatropasures. A second problem is that, even
if a good level is determined for a given pixel, this will na¢ the best for all the other image pixels,
because this issue is heavily dependent on local imageatkastics. So, we propose the use of fuzzy
rules in order to determine the optimal level for each regiothe image. This proposal leads to the
precise determination of matching points in real time, simost of the image area is not considered in
full resolution.

Our algorithm performs faster and better than plain coti@taand it presents improved results with
respect to a very fast multi-resolution approatt] and one based on fuzzy logi¢]].

This paper extends results by Medeiros and Goncab& b presenting an updated literature review,
by a more detailed discussion and explanation about theopeaptechnique and by the presentation and
discussion of further results.

3. Stereo Matching Problem

In the stereo matching problem, we have a pair of pictureh@fsame scene taken from different
positions, and possibly orientations, and the goal is tea¥isr corresponding points, that is, pixels
in both images that are projections of the same scene poim. nfost intuitive way of doing that is
by comparing groups of pixels of the two images to obtain ailanty value. After similarities are
computed, one may or may not include restrictions and catletwhe matching that maximizes the global
similarity. Our proposal assumes (i) continuity of dispgrand (ii) uniqueness of the correct matching.

In general, given a point in one image, the comparison is raatewith all points of the other image.
Using the epipolar restrictior2[ 16], only pixels on a certain line in one image are the corredpan
candidates of a pixel in the other one. The orientation aflihe depends only of the relative orientation
of the two cameras. The test images used in the current weskdhorizontal epipolar line, thus pixels
are searched only in such direction.

We measure similarity with the normalized sample cross etation between images
x = (2(1,7))1<i<cmi<j<n @aNdy = (y(i,7))1<i<m,1<j<n, €Stimated by the linear Pearson correlation

SO IS > SO IS >

coefficient as
S nzw[x(w)y(w)] - [Z” ‘T(ZJ)HZ” y(i, 7)) '
Ul D = (S w002 o Sl D = (S w6 )P

If the objects are known to lie within a distance range, trdefor the best match can be restricted
to a subset of the epipolar line. We will refer to this subsethee “search interval”, to avoid confusion
with the refining interval that will be defined latter.

Small search intervals, if can be defined, improve the qualitthe resulting matching and avoid
false positives that are far from the desired match on theodgi line. While for many problems this is
convenient, for some, remarkably in robotic vision, negeots are the most important ones, requiring
thus a full matching between the images.

(1)
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3.1. Plain correlation algorithm

We compare here the plain correlation and multiresoluti@tcmng approaches. Both algorithms
have as common attribute the window size. Although someocasittecommend the use of7ax 7
window for plain correlation (see, for instance, the workHifshmuller R2]), we opted for testing
several window sizes in order to compare the relative pevémces of both approaches.

Traditional plain correlation calculates the normalizikar cross correlation between all possible
windows of both images. For each point in one image, the nraggboint is chosen in the other image
such as to maximize the correlation coefficient.

When matching square images of sidgethis algorithm calculates? correlations, but when a search
intervalw, < w is available, the number of correlations drops dowmia?. Of course, in the worst
case, we should assume that the plain correlation approacti\waveO (w?*) complexity.

3.2. Multiresolution matching with fixed depth

Multi-resolution stereo matching uses several pairs ofgesaof the same scene, sampled with
different levels of detail, as a double pyramidal represton of the scenel[/]. As in any scale space,
images at the base of the pyramid have higher resolutionthatkefore, more detail of the scene than
those at the top. The credit for using this idea in visual $asikn be given to Uhr2[7/]. The scale
space theory is formalized by Witkir24], and further by Lindeberg2b]. A variation, the Laplacian
pyramid, was introduced by Burt and Adelsd@®6]. Tsotsos $6, 57] integrated multi-resolution into
visual attention, implemented as such by B&&][ and used in several visual modefs8[ 29, 59, 60].
Based on multi-resolution, Lindebergl] detected features using an automatic scale selectionilgn
while Lowe [62] dealt with detection of scale-invariant features.

Multiresolution algorithms in stereo matching calculabe disparity of all pixels (or blocks of
pixels) of a coarse level image and refine them, matching itkedspof finer level images with a small
number of pixels around the coarser match. We refer to tleval that contains those pixels as the
“refining interval”.

For example, a multiresolution algorithm with fixed depthttmatches the points of twah6 x 256
pixels images, say, andy,, may use three pairs of images having, thus, l8vef sizes128 x 128,

64 x 64 and32 x 32; we denote these pairs of images,y,), 1 < ¢ < 3 respectively. Note that
usuallyz,(i, j) = (2-1(24,25) + 2o-1(20 + 1,25) + x0-1(24,25 + 1) + zo-1(2i + 1,25 + 1)) /4, for
everyl < ¢ < 3, but other operators are also possible as will be seen inoBett In this case the
window size isw = 2. The same transformation is recursively appliegqdo order to obtainy, 3, and
y3. We omit the dependence of the coordindteg) on the level for the sake of simplicity.

The classical approach would attempt to match all3he< 32 pixels of the pair(xs, y3) to, then,
proceed to their refinement. The refinement of pixgl, j) consists of correlating the valueg(2i, 25),
x9(2i + 1,27), 22(24,25 + 1) andzy(2i + 1,25 + 1) with the pixels within the refining interval around
the matching point of;,. This is repeated until the matching is done on (thg y,) pair, obtaining the
final result.

This approach is known to be faster than the brute force Bear¢ry, yo) (plain correlation). In fact,
on the extreme case, where the images are squares and thessmiaés are single pixels, it requires
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w?log(w) correlations, werev is the window size, thus its complexity(w? log(w)). Of course, there
is the time used for building the pyramid. So, to determinalfaigorithm complexity, one must add the
complexity for building the pyramid, which 8(w?) + O(w?/4) + - - -+ O(w?/w?), with the complexity
of the matching, given above, which results anywaginw? log(w)).

Reducing the search interval is not very efficient at impngvthis algorithm, since the gain in
operations comes at the expense of more errors. Often, tengaharacteristics are lost in the smaller
images, reducing correlation precision. Those errors cametimes be alleviated by a larger refining
interval, which increases the execution time.

In practice, some implementations relate that the proogssne used for building the multiresolution
pyramid often compensates for the time gained on optimizhmey correlations 42]. This basic
multiresolution matching is seldom used in current appilce [21].

4. Proposal: Multiresolution Matching with Variable Depth

As previously seen, plain correlation matching is very egdee and prone to generating errors such
as ambiguity or lack of correspondence when there is notgmnoexture detail. On the other hand,
multiresolution matching with fixed depth also tends to gateserrors, but most of the pixels are still
near correctly assigned. Also, the number of errors ineeasth the depth of the algorithm, since they
are due to loss of information on the coarser images.

To get the best of both algorithms, one could assign for eaah a different level: hard-to-compute
positions should be treated at the highest resolution, ewttie others could be treated at an
optimum, coarser level with just enough information. Thiative approach, which is the proposed
multiresolution matching with variable depth, will be showo be able to reduce errors while still
requiring less computational effort. The optimal level amputed on one of the images, and then
each displacement is calculated in the same way as is doredixéd depth algorithm.

An heuristic is, then, needed to calculate the desired deptko, we need to generate the small
resolution images.

The proposed algorithm uses, for each image, a scale pymaithiceveral resolution versions of the
original image, and one or more detail images. Scale imagesl#ained by a sub-band filter applied
to the original images, while detail images are obtainedIsriing the contents of the same level, scale
image. We assessed two distinct approaches for the pyrameadi@n that differentiate mainly in the
manner that the detail images are calculated: waveletshw&hussian and Laplacian operators. They
are described in the following sections.

4.1. Building the pyramids with wavelets

We used a discrete wavelet transform to build the pyramidth ihs approach, in a given levélthe
scale image of the pyramid,] is obtained by applying a low pass filtet)(to the scale image of level
i — 1 followed by a decimation](). Detail imagesD; (with vertical, horizontal and diagonal details)
are calculated using high-pass filters applied to the sozge of level — 1 followed by a decimation.
Figure 1 shows the schema for calculating a wavelet pyramid of levalV2 used the Daubechies and
Haar bases33].
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Figure 1. Creation of a pyramid with wavelet transform.
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4.2. Building the pyramids with Gaussian and Laplacian epers

We build two multiresolution pyramids by successively adming the previous images with
the low-pass Gaussiari('{) and high-pass Laplacian mask¥ ;) defined in Equations2j, and
then decimating:

2 11 -1
To=gs|2 42|, Tu=] 14 1]. )
121 11 -1

With this, we generate a pyramid of images and another ofldetagure? illustrates this filtering
process used for the creation of a pyramid with three leBalonvolving the original imag#, with the
high-pass filter f mask), image), is generated/, is then convolved with the low-pass filter defined
by the maskl,, and decimated by a factor 2, which generdies his last image is then convolved again
with the high-pass filter defined by the maBk generatingD,. A second low-pass filterl() followed
by a decimation, applied th, generates imaggk, which is finally filtered byH generatingDs.

Figure 2. lllustration of the creation of a pyramid with three levels.
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These two pyramids are able to retain enough informatiorrderoto allow an efficient search for
matching points.

The use of a sub-band filtering makes this algorithm muclefdaktn the one proposed by Hoff and
Ahuja [37], by removing the bottle-neck which is filtering. This faptus a lower error rate, allows to
use a smaller refinement interval, which makes the multistéi®m matching with variable depth much
faster than the one with fixed depth and than the simple @iioel approach in the original images.

Due to decimation, the construction of the scale imagesegpyinamid cannot be made shift-invariant.
However, the detail images can be shift-invariant and thaskey difference between the two techniques.
In the case of wavelets, the detail images are sensitivafts,dbut with 2D filtering they are invariant.
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The wavelet transform is invertible. 2D filtering based sfanm is invertible only if both the
high-pass and low-pass filters are ideal filted4]] which amounts to using convolution masks of the
size of the original image. In order to be economic, smallkeame employed and, therefore, this
transformation is not invertible.

4.3. Desired level calculation

We use a propositional logic based on fuzzy evidence to éeriveuristic for calculating the desired
level from which the matching will be performed. Such lewethe coarsest one that can be labeled as
“reliable”, in the sense that it provides enough informatior the matching.

Fuzzy logic is composed of proposition8 with continuous rather than binary truth values
wu(P) € [0,1]. We used the following operators on those propositions; Where u(—=P) = 1 — u(P),

“N”, where (A A B) = min(u(A), u(B)), “V”, where u(A VvV B) = max(u(A), u(B)), “=", where
(A= B) < (u(B) > p(A)) and 4", where(A % B) <= (u(A) > u(B)).

We define a predicate (i, j) meaning “the classification of the block at positian;) and levell is

not reliable”. This predicate must satisfy the followinghdations:

e If the detail at(, j) is zero, the classification is reliabl& (i, j) # 0 = o,(i, j), whereD is the
amount of detail available.

e The deeper the classification the less reliable it ig¥jf (¢, j) is the set of pixels at level + 1
that collapse into pixefi, j) at level/, we have thal/ ., . ;) 0¢(v) = 0011 (3, ).

Lack of texture details may cause accumulation of smallrerriout this conflicts with getting always
some minimum texture at the coarsest level, so we opted ramiciomulate errors.

Because short execution time is our main objective, thei$tgtihas to be easy to compute by general
purpose computers, leading to Equati@j (

ou(i, J) = < \/ Uzﬂ@i)) V D(i, j) # 0. 3)
(i,j)eK

We define, for anys € [—1,1], u(a # 0) = |a|, completely specifying the heuristic. Defining a
dependability threshold € [0, 1], our desired level for each pixel is the maximum le¢dbr which
0 = oy.

The ideal values of depend on the amount of detail in the image and, in princigiféerent values
of § should be associated to each pixel. For example, an imagesulitstantial detail (texture) would be
better treated at highest resolution, i.e., it should halaes ofé very close to zero. Flat images with
little detail could be dealt with at very coarse resolutioithaut loosing informationi.e., with § close
to 1. Figure3illustrates this with & x 5 image, where each pixel has a differérssociated to it; notice
that the smallest values are associated to the border, weneeis detail that would be lost if treated at
a coarse resolution.

However, the amount of texture is not known a priori. So, iis tvork, an empirically value is
assigned fo and kept constant for the whole image. In practice, we fohatitalues greater than2,
cause the algorithm not to perform well, as it will be seerhméxperiments.
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Figure 3. Cartoon image and map.
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4.4. Execution time considerations

The fuzzy heuristic presented above is able to assign a ptepel to every pixel of an image,
identifying detailed and flat areas. A successful technigueour purposes should be able to detect
the level of detail of each image region based on texture. rEgaons should be treated at coarser,
higher levels of the pyramid (at the pyramid top) since thay\cless information than detailed regions,
which should be treated at lower levels (at the pyramid basis

As it will be shown, at the coarsest level, the variable deptiitiresolution matching also makes less
mistakes than the fixed depth approaches. Because of thatereeable to obtain good results even with
a refining interval as small as four pixels wide, leading to/\fast execution.

The implementation of our proposal requires complex memuamagement that allocates and frees
amounts of memory equivalent of several pages of the mostmmmprocessors. Most operating
systems lose performance on such conditions. So, also agr@adion of this work, we implemented
a secondary memory management strategy that uses a budfeatatl only once at the beginning of
execution. This pre-allocated memory is then managed bymgedure avoiding several calls to the
operating system to perform this task. This approach altesithe execution time, rendering a still
faster procedure.

5. System Architecture

The proposed technique was implemented aS+a library and a collection of test programs.
This library generates disparity maps using the defaultetation method and our approach, using
multi-resolution with variable depth, considering or nosearch interval. Due to the complexity of
this library, its implementation was divided in several nalas$ as shown in Figuré

The Basicsmodule contains common classes used by other mod8lgsalis composed by classes
that store and operate on imag®ééemorycomprises the classes responsible for memory management
and for the implementation of the data structures usedzyLogidmplements the fuzzy decision given
in Equation B), and disparity calculatiorVisionis composed by classes that implement the stereo vision
algorithms and related functiongtils packs auxiliary code used for the manipulation of the tesiges
and extraction of results from data.

Each module is detailed in the following.
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Figure 4. Scheme of the software architecture.
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5.1. Module Basics

This module contains the librayps. h, that implements operations which are required in almost
every stage. It also has the clasBesi t i on, that stores a position of type “(row, columny¥ ndow,
that defines a rectangular area of interest, ntler val , that defines a connected subset of integer
values. Classe# ndowandl nt er val also store some pre-calculated values used to accelerte th
matching.

5.2. Module Signal

This module contains the templatemage, and classes that specialige xel : Col or Pi xel ,
BWPi xel , Posi ti onPi xel , BW.abel andCol or Label . | mage<Pi xType> has an array of
elements of typdi xType that represents the pixels. This template implements tpasfor image
reading and writing images in PGM and PPM formats, and alsoaguees access to operations in pixels
and the wavelet transform.

Pi xel provides arithmetic operators used in transformationscamgtolutions, besides methods for
extracting data. Type€ol or Pi xel andBWPi xel implement pixels for color and monochromatic
images. Type€ol or Label andBW.abel implement color and monochromatic pixels also, but with
an integer identification code (idPosi t i onPi xel implements a gray level pixel with integer value;
it stores the final disparity map values and an integer id.

The data structures that store pyramids of images, regarthe technique (wavelets or 2D filtering),
are created by the classesgPai r andLowHi gh. The former returns the first pair of images in the
pyramid, while the latter builds the remaining pairs. CésdsrgSet andl ngLi st Set implement the
data structure that contains the four images generated bgl@ta transform and the lists of the images
generated in a sequence of transformations, respectively.

ClassDWI' has values and methods used by the Daubechies waveletommansAn object of class
DW has filters of a transformation implemented in another c¢léss strategy is adopted to avoid the
use of a virtual class. ClassEaar andDaub4 implement the two types of wavelets used in this work,
namely Daubechies and Haar.
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5.3. Memory Module

The result of the heuristic that calculates the desiredrdégpteach pixel requires a complex data
structure. We implemented linked lists that contain olgjeut classPosi ti on. These lists have
different formats in each execution of the matching reaqgirithus, dynamical allocation of memory.
A problem is that a list may use a large region of memory thag,reametimes, grow up to several
megabytes. This is beyond the size of the memory page of madé&m computer architectures, which
is usually 16 Kb. As current operational systems usuallg lpsrformance as they allocate and free,
repeatedly, such amounts of memory, we developed a memarggimay system for our library. To do
that, we created the clad&nor yBuf f er containing a buffer, which is allocated at the initializatj
and resources for managing it.

By using the classvenor yBuf f er, tailored to the needs of our library, program execution is
much faster than by using the memory management providetidpperating system. The directive
FAST_MEMORY, available at compiling time, makes memory managementasier by disabling the
checking of buffer limit. When used through this library, @hta stored in these buffers are calculated
locally and not brought from other programs. We remark thet strategy presents low risk for the
system security.

The clasd.i st implements a low-level list that can deal with allocated memwith or without the
aid of an object of the typdenor yBuf f er . The other classes of this module &ienkedLi st and
St ack, that implement high-level data structures (linked listl @tack, respectively), useful for other
modules of the library.

5.4. FuzzyLogic Module

ClassFuzzy represents thiuzzyhypotheses, with the following operators{(! ), & (+), . (*), V(| ),
A (&), = (<), and# (>).

ClassFuzzyl max also composes this module. It is responsible for calcudéatie desired depth for
each pixel. The return value of this method is of typenkedLi st <Li nkedLi st <Posi ti on>>,
wherePosi t i on stores a position in image. The output is a list of depth EvEbr each depth, there
is a list of pixels where disparity calculations start frdmattdepth.

Note that each image pixel can be represented in more thapth.da such case, matching must be
performed at the least resolution depth in which the pix&uisd. For example, if the sixth element of
the returned list has positidn, 1), this means that for all pixels in the original image thaiti@ositions
(z,y),z,y < 25 the greater level that can be used igstarting from zero). It is possible for a pixel
to appear twice in the list, for instance if positi¢2 3) appears at the fourth list, for all pixels of the
interval (x,y),2 x 2* <z <3 x2%, 3 x 21 < y <4 x21, thatis, in the intervalz, y), x, y < 25, the depth
must be up t®, and nots anymore.

The easiest way of obtaining depth for each level is, thustréweling this list starting from the
less coarse level and marking positions already visited.tlad, pixels of the typ€ol or Label and
BWLabel are used.
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5.5. Using the library

The main classes for our application &ref t | max andPl ai nCor r, both derived fronVi si on.
These classes implement the multiresolution with variagpth matching and the simple correlation
methods. Objects of both classes are created using as gararttee left and right images, and the
resulting image were disparity will be stored. Images carmrgated through allocation of a memory
area or using an already allocated area. Image data ard stee@ise as one-dimensional arrays.

Objects of classedeftl max and Pl ai nCorr can then be initialized withset W ndow.
For simple correlation, arguments aset W ndow( W ndow C, Interval B), where C is
the comparison window and@ is the search interval. In this implementation, arguments a
set Wndow( Wndow C, Interval B, Interval R),whereCandB are the same andis
the refining interval.

ClassesW ndow and| nt er val define windows and intervals, respectively, as integer rermb
Windows can be created at any position, usiNighdow(int rmn, int rmax, int cmn,

I nt crmax), wherer m n andr max are the extreme lines that the window contains, antn and
crmax the extreme columns. Intervals can be created in arbitrasytipns;| nt erval (i nt mn,
i nt max) creates the intervainin; max].

After windows are initialized, the matching is performedings mat ch of Leftl nmax or
Pl ai nCorr. For plain correlation, this method does not receive argusjeand in multiresolution
matching with variable depth it receivesat ch( Fuzzy ¢§) as argument, wheré is as defined in
Equation 8). After matching is performed, disparities can be read atrdsulting image.

Memory allocation is always done in a transparent way to tloggammer. All necessary memory
is allocated at the creation of the objects of cladseist | max andPl ai nCor r . Garbage collection,
however, is not supported. This is not a problem in most appbns, but might be an issue when dealing
with images from several pairs of different cameras. Thestrootor of clas$ruzzy receives only an
argument of type double that represents, in this caSge,

6. Experimental Results

An example of pyramids is shown in Figuse The image to the left is the well known Lena data set,
used as a benchmark in many applications because it présgthtfiat and detailed areas. Middle and
right of Figure5 show the levels computed by the Daubechies wavelet decotigpoff size4) and
by our approach (computed usipgd) = 0.2), respectively; darker pixels are coarser and, thus, requi
more time to process.

We performed stereo measures using both approaches, lmgdle wavelets (both Daubechies and
Haar) for computing the pyramid turns out not being as efiiicte subsequent phases as our proposal.
Differently from other works 31, 65|, our approach employs the detail coefficients being, thuse
vulnerable to problems due to the transformation not beimfg svariant. So we adopt the approach
that uses the high and low pass filtered pyramid due to itebp#rformance.
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Figure 5. Computed pyramids. Left to right: original image, Daubeshwavelet levels, and
levels computed by our proposal.

We contrasted plain correlation and multiresolution wisniable depth matching using them on two
well known pair of images, namely the Tsukuba and Corridda dats, and comparing the results
with the available ground truth. Figurésand7 show the pairs, along with the desired disparity maps
(ground truths).

Figure 6. Tsukuba data set. From left to right: left image, right imagesired
disparity map.

Figure 7. Tsukuba data set. From left to right: left image, right imagesired
disparity map.
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The matching results are compared with the desired onesanmays, by visual analysis and by
using an error metric. We use the mean error (Equaddrand its standard deviation (Equatids))(as
measures of precision:

d = = , (4)

s = /3 (06.5) - D). ©)

whereO and D denote, respectively, the observed and desired dispaapsm

These error measurements are insensitive to the shapealjgwts but are not so good for describing
the quality of results on regions close to borders and edgethis case, we use visual inspection that
is, on the other hand, good in these tasks at the expensengf dgbjective. We therefore use these two
complementary methods.

We used square correlation windows of sklé, 7,9, and11 pixels, in order to test our approach with
more than one window size. This means that, for a certaidugso level, given a pixel in one image
(say the left) to be matched to a pixel in the other image (gff); a template window of a specified size
will be taken around the pixel in the left image. Correlatmnaasures will be calculated for this window
with several windows of the same size taken around pixelsarepipolar line in the right image, within
a certain search interval. When using the plain correlaigorithm, if a search interval is defined, it is
always 70 pixels wide (not the whole epipolar line). We rekthat, even with this optimization, plain
correlation is still a time consuming algorithm. On the nrekolution matching, the refining interval is
always 4 pixels wide.

6.1. Comparing Multiresolution Algorithms

We performed tests with two versions of our multiresolutmoatching. The first uses only scale
images in all levels based on correlation measures. Thendaces the detail images in each level and
the scale images at the coarsest level, since at this |lex th less detail.

Disparity maps generated by both versions of our multirggm algorithm are shown in Figui@
These results are obtained with a correlation window of 8iznd a threshold = 0.3. Note that
borders and edges obtained by the algorithm that uses detdficients are sharper and better defined
than the ones produced by the other technique, which only srssde images. Besides that, the overall
aspect of the former disparity map is better than the latteégure 9 shows average measures of the
errors obtained with several thresholds for both versikesping the correlation window at size 3. The
minimum in both lines near the origin indicates that theshmddé = 0.3 produced less errors. The use
of scale images at all levels produces results with lesssmehat is represented by the bottom lines in
both graphs.

With the new fuzzy heuristic, multi-resolution matchingdjkely to start at the lowest level where there
is a border adjacent to the pixel under assessment. Thdat@nreof the images at the coarsest depth is,
thus, highly prone to errors due to occlusions. Matchingdéails, instead of the raw images, should,
in principle, lead to higher resistance to occlusions. Tediavior was confirmed in our experiments,
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as the results obtained matching the scale images at easlhnlexe consistently better than those that
employed detail information.

Figure 8. Disparity maps generated by multiresolution matching gisine detail images at
the coarsest level (level), and using always the scale im@gght).

Figure 9. Errors measured with both algorithms: mean distaigéeft) and standard
deviations (ri~~*
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6.2. Comparing Multiresolution and Plain Correlation

Here we contrast plain correlation with multiresolutiog@ithm. Disparity maps obtained by both
algorithms are shown in Figude.

Figure 10. Disparities obtained by plain correlation (right) and nrekolution (left) with
correlation windows of size 3 (top) and 5 (bottom) pixelsngs = 0.3.

We made experiments with both approaches for window siz8s%f7, 9 and 11. Standard deviation
and mean distance of the measured errors for multiresalagproach with variable depth are shown
in Figurell. The same error measures produced by the technique witbardtsinterval are shown in
Figurel2 for the same window sizes.

Figure 11. Measured errors for multiresolution with variable deptsuKuba pair.
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Figure 12. Measured errors for plain correlation with no search irderVsukuba pair.
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We observe that larger windows generate smaller errorstimdggproaches. Multiresolution incurred
in smaller errors than plain correlation in most cases, andade mistakes as often as the plain
correlation. Plain correlation produces errors disteloubn bigger areas than our algorithm, which
is hard to visualize in the disparity figures. By the reswudtsthe overall, our approach performed better
than plain correlation.

Figure13 shows a comparison between the matching using the two #igwsi(plain correlation and
ours, with threshold = 0.1, 0.2) for the Tsukuba images, while Figutd shows the same comparison
applied to the Corridor images.

Figure 13. Visual comparison between disparity maps generated byeledion (right
column) and multiresolution matching with € {0.1,0.2} (middle and left columns,
respectively), Tsukuba data set, using windows of 8iZe9 (top, middle and bottom rows,

resp.),4 pixels search interval.
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Figure 14. Visual comparison for the Corridor images between dispanéps generated by
correlation (right column) and multiresolution matchingiws € {0.1,0.2} (middle and left
columns, respectively), using windows of sizé, 13 (top, middle and bottom rows, resp.),
10 pixels search interval

Figure15shows results of varying, with a search interval af pixels wide.

Figure 15. Disparity maps generated by multiresolution matching with{0,0.2,0.3,0.4}
(columns from left to right) and windows of size5, 7 (rows from top to bottom); pixels
search interval.
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We tested both algorithms also in the Corridor image, andehbelts are shown in Figuds. In this
case, a search interval of 10 pixels was imposed, a refinemtental of 4 and 6 pixels and square search
window sizes of 5, 7, and 11 pixels. We tried with severaltimi). Figurel7 shows the time necessary
for running this experiment. The best result of the matchsrachieved fov = 0.05 and the best times
start até = 0.1. So, one has to weight between precision and time. The rekthe matching is still
better than plain correlation far= 0.05, whose error and standard deviation are shown in Fig8re

Figure 16. Disparity maps generated, Corridor, by generated by atrosl (right column)
and multiresolution matching multiresolution matchingtw € {0, 0.1, 0.2} (columns from
left to right), windows of sizé, 7, 11 (from top to bottom), refinement windows éfpixels.

Figure 17. Time needed for computing the disparity by our approachenGbrridor pair.
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Figure 18. Error and standard variation for the Corridor images.
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The time needed for the matching processes is shown in Fias a function of the threshold)(
Multiresolution matching was consistently faster tharirptaorrelation. It should be remarked that the
execution time of our algorithm is much shorter than themtarrelation, on all thresholds, and it is
even faster at small thresholds. Note that smaller coroelatindows need less time. One has to weight
between precision and available time when deciding thetsibe used. Plain correlation errors usually
increase a little fromd = 0, but they fall at near the same or smaller values near0.3, which seems to
be an optimum threshold.

Figure 19. Required time.
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7. Discussion and Conclusions

We have proposed a new approach to stereo matching usingesalttion in which the level with
which to start is variable as a function of the images cont&htt is, in a given region, for example a
smooth one without edges, our algorithm starts in coarssser) levels in order to improve precision;
in regions with edges or well textured, it starts in finer (@vlevels reaching, thus, better execution
time. Our approach is based on fuzzy logic, in order to defieddvel with which to start the matching,
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for each image region. By the results, this fuzzy logic deaiprocess has proven to be excellent for
this calculation.

The ideal value forh depends on the image content and on lighting conditionsh Saltie should, in
principle, be tuned automatically or dynamically, as a fiorcof the amount of texture, both locally and
globally. Such measure can be performed by means of usingptiiators described 6§, 67], or by
calculating the image focu$8, 69]. Our best results were obtained in the vicinityjof 0.1, and they
are robust in the intervad.05, 0.3).

The ideal window size is also dependent on the amount of iextuthe original image pair. This
parameter and can also be estimated using a similar prazaduhe one proposed ®f70].

Initial experiments using wavelets in order to calculate mhultiresolution pyramid were not good
enough due to the use of the detail coefficients. We then ddd¢mlapply a sub-band filtering based on
a low pass Gaussian and a high pass Laplacian masks to getier&tvo multiresolution pyramids: one
of images and other of details. With this approach, steretaimray performed much better, that is, faster
and with better precision in stereo measurements.

The main contribution of this work is the multiresolutiorpapach, which differs from usual methods,
as seen above, by using a new fuzzy logic heuristic for caling the starting level.

Our algorithm was able to generate disparity maps faster phein correlation, with smaller errors.
We conjecture that the use of Gaussian and Laplacian madisad even further the errors that occur
close to borders. That is, those filters have a smoothingtefiesuch regions, allowing the algorithm to
better treat occlusions.

Recent research on stereo matching based on multi-resolaimd fuzzy techniques has been
conducted, as discussed in SecttbhrHowever, when facing the problem of real-time stereo matghi
as in robotics vision, correlation based algorithms arertnto be the best]l]. Despite that, in order to
validate our approach with respect to techniques otherplan correlation, we tested two procedures,
namely, a very fast multi-resolution approadf7]; and one based on fuzzy logit]].

In the fast multi-resolution approaciiq], we used4 levels with images of size86 x 72 and
64 x 48 pixels. Average errors ¢f0 and35 pixels were observed, with standard deviatiob®and54,
respectively. The time spent for disparity calculation wasd12 milliseconds, making the technique a
very efficient algorithm that runs in real time. Despite itfscgncy, it has poor precision.

The fuzzy approach by Kumar and Chattedi] leads to errors and time execution also bigger than
the ones produced by our approach. We tested with a searsiwahof64 pixels wide, with windows
of sizes3, 5, 7, 9 and11, as reported in Tablé. This method produces a mean errorldfpixels with
standard deviatioh9, and time execution dfl seconds when using window size3ok 3. When using a
window of sizell x 11, the error decreases Tawith standard deviatioh2, however the time execution
increases t@41 seconds. Figur@0 shows the disparity maps obtained with this approach (fraprtd
bottom, window sizes df, 5, 7, 9 and11 are shown).

These two techniques are, therefore, outperformed by oopogsal when both precision and
performance are required.
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Table 1. Performance measures, Kumar and Chatterji's algorithma &sction of the
window size.

Window Mean Standard Execution
Size Error Deviation Time
3 14.12 19.74 21.00
5 10.66 16.04 53.31
7 8.92 13.96 98.48
9 8.09 13.07 161.06
11 7.61 12.56 241.15

Figure 20. Disparity maps, Kumar and Chatterji algorithm, for windofwsaess, 5, 7, 9,
and11 (from top to bottom).
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