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Abstract: In this paper, we present the development of a data glove system based on 

fingertip tracking techniques. To track the fingertip position and orientation, a sensor 

module and two generator coils are attached on the fingertip and metacarpal of the 

corresponding finger. By tracking the fingertip, object manipulation tasks in a virtual 

environment or teleoperation system can be carried out more precisely, because fingertips 

are the foremost areas that reach the surface of an object in most of grasping processes. To 

calculate the bending angles of a finger, we also propose a method of constructing the 

shape of the finger. Since the coils are installed on the fingertips and metacarpals, there is 

no contact point between the sensors and finger joints. Hence, the shape of the sensors does 

not change as the fingers are bending, and both the quality of measurement and the lifetime 

of the sensors will not decrease in time. For the convenience of using this glove, a simple 

and efficient calibration process consisting of only one calibration gesture is also provided, 

so that all required parameters can be determined automatically. So far, the experimental 

results of the sensors performing linear movement and bending angle measurements are 

very satisfactory. It reveals that our data glove is available for a man-machine interface. 

Keywords: data glove; fingertip tracking; magnetic induction; sensor module; motion 

constraint; data glove calibration; man-machine interface 

 

OPEN ACCESS



Sensors 2010, 10                

 

 

1120

1. Introduction 

Interest in studying man-machine interfaces has continued to grow, especially for immersive virtual 

environment applications and for input devices for portable machines. To achieve more realistic object 

manipulation, glove-based input devices are commonly chosen as the human-machine interfaces of 

virtual reality (VR) applications. The data glove is a multi-sensory device that generates a large 

amount of data and is more complex than other input devices. Nonetheless, most researchers still adopt 

this device because the natural interfacing characteristic of the data glove with human being is the way 

to improve system manipulations that are applicable in many specific fields. At present, the data glove 

has been increasingly employed in the areas of teleoperations and robotic control [1-3], surgery training 

of medical applications [4,5], entertainment sports (VR systems) [6,7], industrial manufacturing of 

CAD/CAM applications [8,9], text input devices [10-12], and so on. 

The hand-tracking gloves currently marketed include: Sayre Glove, MIT LED Glove, Digital  

Data-Entry Glove, DataGlove, Dexterous HandMaster, Power Glove, CyberGlove, VPL Glove, and 

Space Glove [13]. Nowadays, several kinds of sensing technologies have been realized and applied to 

the development of data gloves. Most of these data gloves provide high accuracy, high reliability, and 

high capability in measuring the degree of freedom (DOF) of human hands [14-17]. Most of them are 

constructed using sensors that measure the bending angles of fingers. Although the glove sensors can 

measure all of the bending angles precisely, the precision of object grasping in the virtual environment 

is not guaranteed due to the variation in size of a user’s hand wearing the data glove. 

The gloves are also mostly built with flex sensors attached on the finger joint positions of the hand. 

When the fingers are bent, the sensors are also bent and the generated outputs are measured. Based on 

these outputs, the bending angles of the fingers are calculated. When users wear the data gloves, the 

stretching and bending of the finger joints occur very frequently. This reduces the lifetime of the 

sensors and the accuracy of measurements. According to the sensor outputs, the data gloves can be 

grouped into two classes: one type produces linear outputs, and another produces nonlinear outputs. 

Either linear or nonlinear data gloves should be calibrated before they are activated in the particular 

applications. Compared to linear data gloves, the calibration process of nonlinear data gloves is not so 

easy, owing to the lack of output references of nonlinear sensors [18]. The following depicts the most 

commonly used sensors for hand tracking applied to the development of glove-based input devices: 

(i) Acoustic tracking sensor 

This kind of sensor uses high frequency audio signals to track the movements of fingers. Such 

sensors may suffer from acoustic reflections if they are surrounded with hard walls or other 

acoustically reflective surfaces. 

(ii) Optical tracking sensor 

This sensor generally uses an LED or infra-red signal as the source which is conducted toward a 

transmission media like flexible tubes or fiber optics. Then a photocell sensor is placed at the other end 

of the media to measure the intensity of the signal. 

(iii) Magnetic tracking sensor 

It uses a source element radiating a magnetic field and a small sensor that reports its position and 

orientation with respect to the source. The magnetic field may be interfered by metallic objects in the 

environment, which decrease the accuracy of measurement. 
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(iv) Resistance tracking sensor 

This sensor uses a variable resistance material whose resistivity is varied according to the bending 

degree of the sensor. 

In order to achieve high capability in measuring the DOF of a hand, a lot of sensors should be 

attached to the data glove, each of which is usually installed on the finger joint position. Low cost data 

gloves that contain few sensors are available today on the market. However, this kind of data gloves 

can only measure a few DOF of the hand, so it does not appropriately act as an input device for most 

of the VR systems that require a high DOF of the hand. 

In this paper, we present the development of a sensory data glove that contains only five sensor 

modules and one sensor coil, but still possesses the ability to measure high numbers of DOF of the 

hand. Instead of measuring the bending angles of finger joints directly, we track the positions and 

orientations of fingertips with respect to the metacarpals, so that there is no direct contact point 

between sensors and finger joints, and thus, the quality of measurement and the lifetime of the sensors 

will not decrease in time. We also propose a method for constructing the shape of the finger, and based 

on this shape, the bending angle of the finger joints can be calculated. By measuring the positions of 

the fingertips, the object grasping process in a virtual environment can be performed more precisely, 

because in most of such processes, the fingertips are the foremost areas that reach the surface of an 

object. Using magnetic induction technology, we constructed the data glove sensors, which provide 

high accuracy of measurement. To avoid the interference of metallic objects in the environment, the 

sensors and the electromagnetic sources on the glove are arranged in such a way to ensure that the 

distances between them are near enough, so that the measurement error caused by metallic objects can 

be ignored. 

In the light of the magnetic induction theory, the position and orientation of a single coil sensor can 

be uniquely described by three position and two orientation parameters. To solve these parameters, a 

minimum of five equations are needed. If more equations are incorporated, more sensors should be 

added such that the complexity of the data glove system will increase. To reduce the number of 

sensors, we design a sensor module that can be used for measuring the fingertip position. The positions 

of the sensors on the data glove are carefully arranged and the motion constraints among the fingers 

and the finger joints of the hand [19] are also investigated. The theoretical formulation of the fingertip 

positions, abduction angles, and the calibration equations are derived directly from the positions and 

orientations of the sensors in which the motion constrains of the hand are applied. 

To make the glove easy to use, a simple and efficient calibration process consisting of only one 

calibration gesture is proposed, too. The parameters required for calculating the fingertip positions are 

immediately determined from the calibration equations that are also derived from the positions and 

orientations of the sensors on the data glove. In the realization of the data glove, ten generator coils 

arranged into five groups are attached on the metacarpals, while five associated sensor modules are 

installed on the fingertips of the hand. Additionally one sensor coil is placed on the metacarpal of the 

middle index for measuring the abduction angles. These ten generator coils tend to interfere with each 

other if they are not appropriately controlled, and all of the sensors will not produce accurate results. 

To overcome this problem, three scanning methods are evaluated and the time division technique is 

eventually adopted in developing the prototype of our data glove. 
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2. The Construction of the Data Glove Sensor 

The sensor of the data glove we have developed is made of small coils (the sensor coils) that are 

installed on the fingertip positions of the hand. The magnetic flux generators are also made of small 

coils (the generator coils) activated by sinusoidal waveform generators. Each generator coil may be 

represented as a magnetic dipole that can be modeled by a single analytical equation. The magnetic 

dipole is a current loop whose dimensions are much smaller than the distance between the loop and an 

observation point. The magnetic field at point P with distance r from a circular dipole as shown in 

Figure 1a is given by: 
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where Bγ, Bθ and Bφ are the magnetic fields in the directions aγ, aθ, and aφ 
of the spherical coordinates 

system, respectively, μ0 = 4π  10–9 H/cm is the magnetic permeability of a free space, N is the number 

of turns, I is the coil current, a is the radius of the coil, and r >> a. 

Figure 1. Illustration of magnetic fields: (a) a point P located at distance r from a magnetic 

dipole; (b) the magnetic flux density linked by the coil at position P (adapted from [20]).  
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When a single coil sensor is placed at point P where the magnetic field intensity is varied in time, 

the electromotive force (Emf) induced in the coil is expressed by the following equation: 

dt

d
NEmf c

Φ
        (2) 

where  is the magnetic flux density linking the coil and Nc is the number of turns of the coil. The 

negative sign indicates the direction of the induced current opposite to that of the change of the 

magnetic flux density. The magnetic flux density linked by the coil depends on the position and 
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orientation of the coil in the magnetic field, as Figure 1(b) shows. Since Bφ = 0, we can assume that the 

position of point P is always in the xz-plane. The orientation of the coil at point P can be represented 

by θc measured from the ZL-axis and c measured from the XL-axis as shown in Figure 2, where XL, YL, 

and ZL represent the local coordinates system of the coil. 

Figure 2. The coil at position P with the orientation pointed by unit vector SN (adapted 

from [20]). 
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The magnetic field intensity in the direction SN can be calculated by projecting SN into the  

xz-plane. The procedure of calculating this magnetic field intensity is stated below: 
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Then the magnetic flux density linked by the coil with radius b yields: 

      cossincossinsincoscos2 BBBBb rccrc     (4) 



Sensors 2010, 10                

 

 

1124

By substituting Bγ and Bθ from (1) into (4), the magnetic flux density becomes: 

  


2sincossin312cos3cos
8 3

22
0

cccr

IbNa
    (5) 

From (2), the induced electromotive force can be written as the function of the position in the  

yz-plane and the orientation of the sensor coil. This equation yields: 

     2sincossin312cos3cos,,,
3 ccccc dt
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where 
8
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k c
 . 

In the development of the data glove, two identical sensor coils are combined to produce a sensor 

module. These two coils are arranged such that they are co-centered and perpendicular, as illustrated in 

Figure 3. 

Figure 3. Illustration of the sensor module. 
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Since the two sensor coils are perpendicular, the orientation of the second sensor coil can be 

expressed as: 

 9012 cc        (7) 

By substituting (7) into (6), the square of the Emf signals produced by the two sensor coils become: 
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where W = 3cos2θ + 1. Consequently, the power Emf signal of the sensor module, which is defined as 

the sum of the square of the Emf signals of the two sensor coils with respect to the generator coil, can 

be derived from (8) and listed in the following: 
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If c = 0, the equation above can be further simplified as: 
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3. The Construction of the Data Glove 

To track the fingertip positions efficiently, the orientations and locations of the sensor modules 

associated with the generator coils should be carefully arranged on a user’s hand. Instead of placing 

them on the finger joint positions, the sensor modules are attached on the fingertips and the generator 

coils are placed near to the metacarpophalangeal (MCP) joints on the dorsal surface of the metacarpals. 

The distances between the generator coils and sensor modules are close enough such that the potential 

interference caused by a metallic object with the distance greater than 20 cm from the data glove can 

be ignored.  

Owing to the highly articulated characteristic of a human hand, it possesses approximately 30 DOF 

that produce almost all hand gestures. Although the hand has so many DOF, the movements of the 

fingers, however, are highly constrained, so that it cannot make arbitrary gestures. There are many 

examples of such constraints, for instance, fingers cannot bend backward too much. The constraints 

that are applicable to simplifying the development of our data glove typically can be classified as 

follows: 

(i) Intrafinger constraints  

It is the constraint between two joints of the same finger. By applying these constraints, the index, 

middle, ring, and pinkie distal interphalangeal (DIP) joint movements can be approximated by the 

following equation: 

PIPDIP  67.0       (11) 

where θDIP is the bending angle of a DIP joint and θPIP is the bending angle of a proximal 

interphalangeal (PIP) joint. 

(ii) Angle range constraints 

This type of constraints refers to the limits of the ranges of finger motion as a result of hand 

anatomy. It is usually represented by the following equation: 

 900 _ FlexionMCP  

)100~90(0 _  FlexionPIP  

 900 __ FlexionIPThumb  

 0_ abductionMCP  for the middle finger 

 300 _ abductionMCP  for the other fingers   (12) 
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(iii) One-axis constraints 

For DIP, PIP, and thumb interphalangeal (IP) joints, only one axis of movements is available. It 

means that the bending angle is the unique parameter to be measured. 

3.1. The Hand Model 

As mentioned in the above motion constraints of the hand, each of DIP, PIP, and thumb IP joints 

has only one DOF. It is also assumed that the MCP joint of the middle finger has only one DOF, but 

the MCP joints of the other fingers have two DOF; namely, MCP bending angles and abduction 

angles. Figure 4 describes the hand model and the positions of the sensor modules and generator coils 

of the data glove. 

Figure 4. The hand model and the positions of the sensor modules and generator coils. 

DIP joint 

PIP joint 

MCP joint 

IP joint 

MCP joint 

TM joint 

: Sensor modules            : Generator coils  

In this data glove, we measure the positions of five fingertips of the hand using five sensor modules 

and ten generator coils that are arranged into five groups. For the middle finger, one additional sensor 

coil is installed such that it is co-centered and perpendicular with the generator coils. This sensor coil 

is used for measuring three abduction angles called index-middle, ring-middle, and pinkie-ring 

abduction angles. By tracking fingertip positions, the object manipulation tasks in a virtual 

environment or teleoperation system can be carried out more precisely, because in most of grasping 

processes, fingertips are the foremost areas that reach the surface of an object. After the fingertip 

position has been determined, the shape of the associated finger can be modeled using the relationship 

between adjacent phalanges, and the corresponding bending angles of finger joints can be calculated, 

too. With this technique, our data glove has the ability of measuring 17 DOF of the hand. These 

bending angles are listed in Table 1. 



Sensors 2010, 10                

 

 

1127

Table 1. The list of seventeen bending angles. 

Bending Angles 
Index PIP Index MCP Index DIP Index-middle abduction
Middle PIP Middle MCP Middle DIP Ring-middle abduction 
Ring PIP Ring MCP Ring DIP Pinkie-ring abduction 
Pinkie PIP Pinkie MCP Pinkie DIP  
Thumb IP Thumb MCP   

3.2. Measuring the Fingertip Position 

The data glove we develop contains sensor modules and generator coils that are placed on the 

fingertips and metacarpals of the hand, respectively. To make the measurement process easier, they 

must be installed in such a way, so that the orientation of the sensor module from the XL-axis is always 

equal to zero (c = 0). To achieve this, each generator coil must be made rotatable such that its 

rotational direction is consistent with the rotation of the abduction angle for the corresponding finger. 

Figure 5. The positions and orientations of: (a) the sensor module and generator coils of 

one finger; (b) the generator coils of four fingers. 
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On the assumption that the metacarpal of a finger is laid on the X-axis, the position of a fingertip 

can be expressed by the distance r measured from the sensor module to the generator coils and the 

angle θ1 measured from the X-axis. Two generator coils that are identical, perpendicular, and  

co-centered (the generator module) are used for measuring the above two parameters. They are placed 

on the metacarpal such that the normal vector of the first coil is parallel to the X-axis, as shown in 

Figure 5a. 

Since the two generator coils are perpendicular, the orientation of the second generator coil can be 

written as: 

 9012        (13) 

By substituting (13) into (10), the respective power Emf signals produced by the sensor module with 

respect to the first and the second generator coils can be expressed as: 
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Finally, the parameters θ1 and r can be solved from (14), and are summarized in the following: 
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3.3. Measuring the Abduction Angle 

To measure the abduction angles of three fingers, one additional sensor coil is installed on the 

metacarpal of the middle finger. This sensor coil is also co-centered and perpendicular with the 

generator coils, which is shown in Figure 5(b). There are three abduction angles to be measured, 

including index-middle, ring-middle, and pinkie-ring abduction angles. The parameters d1, d2 and d3 

used for calculating these three abduction angles are measured using the first generator coil of the 

middle finger during the calibration process. When measuring the associated abduction angle, only the 

first generator coil of the corresponding finger is activated; for example, to measure the index-middle 

abduction angle, only the first generator coil of the index finger is adopted. By applying (6), the Emf 

signal produced by the sensor coil of the middle finger can be expressed as: 

      902sincos31902cos3sin
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n
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d

k sin
4

3
   

 for 3 ,2 ,1n       (16) 

where Emf1, Emf2 and Emf3 correspond to the outputs of the sensor coils with respect to the first 

generator coil of the index, ring, and pinkie fingers, respectively. The angle γn can be solved from (16), 

which yields: 



















 

dt
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dEmf nn
n

2
sin 

3
1   for 3 ,2 ,1n     (17) 

Consequently, the three abduction angles can be determined below: 

Index-middle abduction angle =γ1, 

ring-middle abduction angle =γ2, 

and pinkie-ring abduction angle =γ3 – γ2. 
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3.4. Constructing the Shape of a Finger 

The objective of constructing the shape of a finger is to estimate the bending angles of the DIP, PIP, 

and thumb IP joints. To accomplish this, only the distance r between the sensor module and the 

generator coils is involved, while the parameter θ1 is used for estimating the bending angle of the MCP 

joint. Figure 6 illustrates the relationship between the distance r and the bending angles for the thumb 

and the other fingers. 

The parameters α1 and α2 are the bending angles of the thumb IP and MCP joints, while β1, β2, and 

β3 are the bending angles of the DIP, PIP, and MCP joints of the other fingers, respectively. The length 

of finger phalanges p1, p2, q1, q2, and q3 are calculated during the calibration process. From Figure 5 

and Figure 6, it is apparent that the bending angle of the MCP joint (α2 and β3) can be calculated using 

the following equations: 

212    and 313        (18) 
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The bending angle of the thumb IP joint related to the distance r can be calculated directly using the 

following equation: 


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According to the motion constraints, the bending angles of the DIP joints of the index, middle, ring, 

and pinkie fingers are closely related to those of the PIP joints. With reference to Figure 6, this 

relationship can be further written as: 

21 67.0         (21) 

The distance r between the sensor module and the generator coils can be formulated as follows: 

   21
2
1

22 67.0cos2mqqmr  

  223122321
2
1

2 sin67.0sin267.0coscos2  qqqqqqm   

231232221
2
3

2
2

2
1 67.1cos2cos267.0cos2  qqqqqqqqq    (22) 

Therefore, the angle β2 can be solved from (22), and thus the bending angles of DIP, PIP, and MCP 

joints can be calculated. 
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Figure 6. The relationship between the distance r and the bending angles of finger joints: 

(a) for the thumb; (b) for the other fingers. 
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4. Data Glove Calibration 

To make the data glove easy to use, the calibration process should be made as simple and efficient 

as possible. This means that there is no additional device needed; as a consequence, users merely wear 

the data glove during the calibration process. 

Figure 7. Illustration of a calibration gesture: (a) the pose of a real hand; (b) the 

corresponding virtual hand. 
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For our data glove, the calibration process consists of only one calibration gesture, as shown in 

Figure 7(a). The Emf signals produced by each sensor module and sensor coil are measured and stored 
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into memory for further processing. When performing the calibration, the bending angle for each 

finger joint is equal to zero; accordingly, the parameters θ1 and r will be equal to: 

 01  

r = p1 + p2 for the thumb and r = q1 + q2 + q3 for the other fingers   (23) 

Then the parameters p1, p2, q1, q2, and q3 can be calculated based on the proportional length of the 

finger phalanges from the virtual hand as Figure 7(b) shows. The equations of those parameters can be 

summarized as follows:  

21

1
1 pp

pr
p




  and 
21

2
2 pp

pr
p




 , 

321

1
1 qqq

qr
q




 , 
321

2
2 qqq

qr
q




  and 
321

3
3 qqq

qr
q




    (24) 

In this calibration process, the first generator coil of the middle finger is also used as the sensor coil 

for measuring the parameters of the abduction angles. When a user is making the calibration gesture, 

the normal vectors of the sensor and generator coils will parallel such that the orientation parameters 

can be written as: 

 90  and  0c       (25) 

The parameters of the abduction angle, that is, the distances between the sensor and generator coils, 

can be solved by substituting (25) into (6), which are stated in the following: 

3
2

dt

dI

Emf

k
d

n
n   for n = 1,2,3     (26) 

5. Experimental Glove Sensor Results 

To verify the validity of the derived Emf equations, experiments of bending angle, linear movement, 

and rotational angle measurements were performed. In those experiments, a signal generator circuit 

that produced a sinusoidal waveform was inputted to the generator coils, and the Emf signals generated 

by the sensor coil and sensor module were measured using an oscilloscope. 

5.1. Bending Angle Experiment 

In this experiment, the generator and sensor coils are placed on the bending angle measurement 

device as Figure 8 (a) shows. The generator coils are located on the rotational axis of the device, while 

the sensor module is placed on the moveable ruler, so that the distance between the sensor module and 

generator coils is adjustable. The power Emf signals produced by the sensor module with the rotational 

degrees ranging from 10 to 120 for r = 6 cm are recorded and listed in Table 2, where the constant k 
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is equal to 1.2523  10–5 Hcm3. These measured values are used for calculating the cosine of the 

bending angles to compare with their derived values from (15) as follows: 

 
 21

21

3

5
  

EmfMEmfM

EmfMEmfM
alueMeasured-v




  

Derived-value = cos2θ1
     (27) 

Table 2. The power Emf signal produced by a sensor module in the bending angle experiment. 

1  EmfM1 ( 2mV ) EmfM2 ( 2mV ) 
10 2.690 0.746 
20 2.466 0.900 
30 2.152 1.143 
40 1.773 1.446 
50 1.354 1.731 
60 1.100 2.100 
70 0.833 2.500 
80 0.745 2.700 
90 0.654 2.500 
100 0.720 2.500 
110 0.867 2.400 
120 1.200 2.200 

Figure 8(b) plots the derived values versus the measured values of the bending angles. It is obvious 

that the measured values almost coincide with the theoretic values. 

Figure 8. Illustration of a bending angle experiment: (a) the bending angle measurement 

device; (b) the derived angles versus the measured angles in the bending angle experiment. 
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5.2. Linear Movement Experiment 

In this experiment, the generator coils and sensor modules are also placed on the bending angle 

measurement device, as shown in Figure 8(a). The angle θ1 is set to 60, while the distance r is varied 

from 5 to 10 cm.  

Table 3. The power Emf signal produced by a sensor module in the linear movement experiment. 

Distance r (cm) EmfM1 (
2mV ) EmfM2 (

2mV ) 

5 3.334 6.548 
6 1.100 2.100 
7 0.468 0.942 
8 0.216 0.420 
9 0.111 0.205 
10 0.063 0.114 

 

Figure 9. The power Emf function versus the measured values for: (a) EmfM1; (b) EmfM2 

in the linear movement experiment. 

      (a)              (b) 

EmfM1 function EmfM2 functionMeasured values Measured values

cm cm
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The power Emf signals produced by the sensor module with the distance ranging from 5 to 10 cm 

from the generator coils are recorded and listed in Table 3, where the constant k is also equal  

to 1.2523  10–5 Hcm3. Figure 9 plots the power Emf function of (14) versus the measured values. We 

can see that the measured values perfectly match the power Emf function. 

5.3. Rotational Angle Experiment 

In this experiment, both sensor and generator coils are placed on the rotational angle measurement 

device, as shown in Figure 10 (a). The generator coil is rotatable, while the sensor coil is fixed on the 

X-axis with the distance equal to 5 cm from the generator coil. The constant k is equal  

to 0.995957  10–5 Hcm3. The Emf signals produced by the sensor coil with the rotational angle γ  
from 0 to 45 are recorded and listed in Table 4. Figure 10 (b) plots the Emf function of (16) versus 

the measured values. Apparently, the measured values flawlessly match the Emf function. 
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Table 4. The Emf signal produced by a sensor coil in the rotational angle experiment. 

  Emf (mV)   Emf (mV) 
0 1 25 30 
5 6 30 35 

10 12 35 40 
15 19 40 45 
20 25 45 50 

Figure 10. Illustration of a bending angle experiment: (a) the rotational angle measurement 

device; (b) the Emf function versus the measured values. 
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6. Realization of the Data Glove System 

The data glove we have developed applies generator coils to generate electromagnetic signals. The 

sensor coil and sensor modules arranged on the metacarpal of the middle finger and fingertips, 

respectively, sense the electromagnetic signals and then measure the generated Emf signals. Based on 

the measured Emf signals, the abduction angles and fingertip positions of the hand are calculated using 

the derived equations as formulated in Section 3. Since ten generator coils are installed on the data 

glove, we should pay attention to the prevention of interference among them. There are three 

commonly used techniques for solving this problem: 

(i) Frequency division method  

Each generator coil is driven by a sinusoidal waveform of different frequencies and the outputs of 

the sensor coil and sensor module are bandpass-filtered to get an appropriate Emf signal. 

(ii) Time division method  

In this technique, only one sinusoidal signal is used to drive the generator coils. To prevent 

interference, each generator coil is given an activation time slice and scanned on a round-robin basis. 

Within each time slice, the outputs of the associated sensor coil and sensor module are detected and the 

resulting analog streams are fed to an A/D converter. 
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(iii) Mix of frequency and time division method  

With this method, two frequency bands of sinusoidal signals can be applied to activating the 

generator coils. Such generator coils are organized into five groups corresponding to each finger of the 

hand. Then, these five groups of generator coils are controlled by the time division method. 

Both the time division and mix of frequency and time division methods are feasible for developing 

the prototype of our data glove, because the sinusoidal signals that drive the generator module must 

have similar characteristics. In this prototype, we adopt the time division method to control the 

generator and sensor coils. The advantage of this method is the feasibility of controlling them entirely 

via digital circuits. The block diagram of the data glove control system is shown in Figure 11. 

Figure 11. The block diagram of the data glove control system. 
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The sinusoidal generator circuit will continuously produce a sinusoidal signal that is fetched into an 

analog demultiplexer. The micro controller unit will generate timing and control signals for selecting 

an appropriate generator coil and enabling the output of the associated sensor module or sensor coil 

followed by a pre-amplifier to be passed to a bandpass filter by sending a control signal to an analog 

multiplexer. Before entering the analog multiplexer, the outputs of the pre-amplifier and sensor 

modules are fetched into the respective programmable-gain amplifiers for further amplification. 

Because we are only interested to the intensity of the Emf signal produced by the sensor coil, a peak 

hold circuit is connected with the output of the bandpass filter for tracking the maximum value of the 

sinusoidal signal generated by the sensor coil. The output of the peak hold circuit is a DC level signal 

originated from the maximum Emf signal of the sensor output. This DC level signal is then sampled by 

an A/D converter and stored into temporary memory in the micro controller unit. All the sensor outputs 

are sent to a host computer through a parallel communication port. The sensor module shown in  

Figure 12 consists of two sensor coils that are perpendicular and co-centered. The two pre-amplifiers 

are used for signal enhancement. 
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Figure 12. The block diagram of the sensor module. 
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In the development of this data glove, we use the 16-bit microprocessor SPCE061 with a built-in 

10-bit A/D converter provided by Sunplus Technology. Figure 13 depicts the timing diagram of the 

control signals. 

Figure 13. The timing diagram of the data glove control signals. 
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The A/D SOC in Figure 13 is the start of the conversion signal for the A/D converter, where ts is the 

setup time required by the generator and sensor coils to produce a stable Emf signal. Table 5 lists the 

mapping pairs of the generator and sensor coils in the scanning process. 

Table 5. The mapping pairs of the generator and sensor coils. 

Generator coil Sensor coil Generator coil Sensor coil 

1 1 6 6 
2 2 7 7, 11 
3 3, 11 8 8 
4 4 9 9, 11 
5 5 10 10 

Figure 14 illustrates the sinusoidal output waveform from the analog demultiplexer for a generator 

coil as well as the sinusoidal output waveform of the associated sensor coil with the time division 

method. To get a clear inspection on the sinusoidal waveform, in this demonstration, only two 

generator coils are scanned on a round-robin basis. 
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Figure 14. Sinusoidal output waveforms of the demultiplexer and the sensor coil. 

 

Demultiplexer 

output 

Sensor output

ts
 

7. Conclusions 

In this paper, the development of a data glove with fingertip tracking technology based on magnetic 

induction has been presented. This data glove has the ability of measuring 17 DOF by reconstructing 

the shape of the fingers after the positions and orientations of the fingertips have been estimated. By 

tracking the fingertips of the hand, the object manipulation tasks in a virtual environment or 

teleoperation system can be controlled more precisely, since in most of grasping processes, fingertips 

are the foremost areas that reach the surface of an object. To track the fingertips, we use five sensor 

modules and one sensor coil that are attached on the fingertips and metacarpal of the middle finger of 

a hand. The sensors and generators constructed with small magnetic induction coils are called the 

sensor coils and generator coils of the data glove, respectively. The sensor module consists of two 

sensor coils that are perpendicular and co-centered. All of these sensor and generator coils are placed 

on the fingertips and metacarpal positions of the hand, so that there is no direct contact point between 

the sensors and the finger joints. It means that the data glove sensors do not change their shapes when 

the fingers are bending. Thus, not only the quality of measurement is greatly improved, but also the 

lifetime of the sensors is greatly prolonged. 

To facilitate the action of the data glove, the sensor module can be constructed entirely by hardware 

using the currently available semiconductor technology, so that the power Emf signal is calculated 

directly using hardware as shown in Figure 15. Thus, more accurate results can be gained due to a 

higher SNR of the signal in the transmission wire. 

Figure 15. Hardware implementation of the sensor module. 
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The motion constraints applicable to simplifying the development of the data glove are also 

investigated. They are classified into three categories: intrafinger constraints, angle range constraints, 

and one-axis constraints. With the intrafinger constraints, the shape of a finger can be constructed 

based on the measured fingertip position, and hence, the DIP and PIP bending angles can be 

calculated. The angle range and one-axis constraints are devoted to simplify the Emf equations, so that 

the fingertip position and orientation can be easily calculated. For the convenience of using the data 

glove, we also propose a simple and efficient calibration process that comprises only one  

calibration gesture. 

The theoretical formulation of the fingertip position and orientation, and the abduction angles of the 

finger joints as well as the calibration equations are derived directly from the positions and 

orientations of the generator and sensor coils on the data glove. Beside this, the circuit block diagram 

and the construction of the data glove system are described and realized. To prevent the interference 

among the generator coils, three methods of scanning the generator and sensor coils, including the 

frequency division, time division, and mix of frequency and time division techniques, are also 

discussed. After the evaluation, we adopted the time division method to control the generator and 

sensor coils in developing the prototype of our data glove. The advantage of this method is the 

feasibility of controlling them entirely via digital circuits. Another superiority of this data glove 

compared to use the Pohemus motion tracking system [21] is that the distances between the generator 

coils and sensor modules are close enough such that only small power of electromagnetic radiation is 

needed, and the interference of a metallic object with the distance greater than 20 cm from the data 

glove can be ignored. But the supporting of the Pohemus motion tracking system for detecting the 

positions of hands in a 3D environment becomes significantly important when the complete 

movements of hands are required. So far, the experimental results of the sensors performing linear 

movement and bending angle measurements are very satisfactory. It reveals that our data glove can act 

as an practical man-machine interface. 
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