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Abstract: Metal cutting processes are important due to increased consumer demands for 

quality metal cutting related products (more precise tolerances and better product surface 

roughness) that has driven the metal cutting industry to continuously improve quality 

control of metal cutting processes. This paper presents optimum surface roughness by using 

milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization 

(RACO). The approach is based on Response Surface Method (RSM) and Ant Colony 

Optimization (ACO). The main objectives to find the optimized parameters and the most 

dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order 

model indicates that the feedrate is the most significant factor affecting surface roughness. 

Keywords: response surface method; ant colony; aluminium alloys; surface roughness 

 

1. Introduction 

Roughness plays an important role in determining how a real object will interact with its 

environment. Rough surfaces usually wear more quickly and have higher friction coefficients than 

smooth surfaces. Roughness is performance of a mechanical component, since irregularities in the 

surface may form nucleation soften a good prediction for cracks or corrosion. Although roughness is 
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usually undesirable, it is difficult and expensive to control in manufacturing. Decreasing the roughness 

of a surface will usually exponentially increase its manufacturing costs. This often results in a trade-off 

between the manufacturing cost of a component and its performance in an application. 

Planning of experiments through design of experiments has been used quite successfully in process 

optimization by Chen and Chen [1], Fung and Kang [2], Tang et al. [3], Vijian and Arunachalam [4], 

Yang [5] as well as Zhang et al. [6], etc. Four controlling factors including the cutting speed, the feed 

rate, the depth of cut, and the cutting fluid mixture ratios with three levels for each factor were 

selected. The Grey relational analysis is then applied to examine how the turning operation factors 

influence the quality targets of roughness average, roughness maximum and roundness. An optimal 

parameter combination was then obtained. Additionally, ANOVA was also utilized to examine the 

most significant factors for the turning process when the roughness average, roughness maximum and 

roundness are simultaneously considered. 

Aslan et al., [7], using Design optimization of cutting parameters when turning hardened AISI 4140 

steel (63 HRC) with Al2O3 + TiCN mixed ceramic tool used an orthogonal array and the analysis of 

variance (ANOVA) to optimization of cutting parameters. The flank wear (VB) and surface roughness 

(Ra) had investigated. Nalbant et al. [8] used a Taguchi method to find the optimal cutting parameters 

for surface roughness in turning operations of AISI 1030 steel bars using TiN coated tools. Three 

cutting parameters, namely, insert radius, feed rate, and depth of cut, are optimized with considerations 

of surface roughness, and so on. However, very few studies have been conducted to investigate 

roundness under different turning parameters. Additionally, proper application of cutting fluids as 

studied by Kalpakjian and Schmid, [9] and EI Baradie, [10], can increase productivity and reduce costs 

by allowing one to choose higher cutting speeds, higher feed rates and greater depths of cut. Effective 

application of cutting fluids can also increase tool life, decrease surface roughness, increase 

dimensional accuracy and decrease the amount of power consumed. Water-soluble (water-miscible) 

cutting fluids are primarily used for high speed machining operations because they have better cooling 

capabilities [10]. There fluids are also best for cooling machined parts to minimize thermal distortions. 

Water-soluble cutting fluids are mixed with water at different ratios depending on the machining 

operation. Therefore, the effect of water-soluble cutting fluids under different ratios was also 

considered in this study. 

A recent investigation performed by Alauddin et al. [11] has revealed that when the cutting speed is 

increased, productivity can be maximised and, meanwhile, surface quality can be improved. According 

to Hasegawa et al. [12], surface finish can be characterised by various parameters such as average 

roughness (Ra), smoothening depth (Rp), root mean square (Rq) and maximum peak-to-valley height 

(Rt). The present study uses average roughness (Ra) for the characterisation of surface finish, since it 

is widely used in industry. By using factors such as cutting speed, feed rate and depth of cut, Hashmi 

and his coworkers [13,14] have developed surface roughness models and determined the cutting 

conditions for 190 BHN steel and Inconel 718. EI-Baradie [15] and Bandyopadhyay [16] have shown 

that by increasing the cutting speed, the productivity can be maximised and, at the same time, the 

surface quality can be improved. According to Gorlenko [17] and Thomas [18], surface finish can be 

characterised by various parameters. Numerous roughness height parameters such as average 

roughness (Ra), can be closely correlated. Mital and Mehta [19] have conducted a survey of the 

previously developed surface roughness prediction models and factors influencing the surface 
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roughness. They have found that most of the surface roughness prediction models have been developed 

for steels.  

2. Theoretical Background 

2.1. Response Surface Method 

This is a method for obtaining an approximate function using results of several numerical 

calculations to increase calculation efficiency and thereby implement design optimization. In the 

response surface method, design parameters are changed to formulate an approximate equation by the 

design of experiments method. An approximate sensitivity calculation of a multicrestedness problem 

can be performed using a convex continuous function and applied to optimization. The Box-Behnken 

Design is normally used when performing non-sequential experiments. That is, performing the 

experiment only once. These designs allow efficient estimation of the first and second–order 

coefficients. Because Box-Behnken designs have fewer design points, they are less expensive to run 

than central composite designs with the same number of factors. Box-Behnken designs do not have 

axial points, thus we can be sure that all design points fall within the safe operating zone. Box-

Behnken designs also ensure that all factors are never set at their high levels simultaneously [20-22]. 

The proposed linear model correlating the responses and independent variables can be represented by 

the following expression: 

ChpAxialdeptnFeedrateeedmCuttingspy                                    (1) 

where y is the response, C, m, n and p are the constants Equation (1) can be written in the Equation (2): 

 33221100 xxxxy                                              (2) 

where y is the response, x0 = 1(dummy variable), x1= cutting speed, x2 = feedrate, and x3 = axial depth. 

β0 = C and β1, β2, and β3, are the model parameters. The second-order model can be expressed as 

shown in Equation (3): 

                                                                                                                                 (3) 

 

2.2. Ant Colony Optimisation 

Ant colony optimization algorithms are part of swarm intelligence, that is, the research field that 

studies algorithms inspired by the observation of the behaviour of swarms. Swarm intelligence 

algorithms are made up of simple individuals that cooperate through self-organization, that is, without 

any form of central control over the swarm members. A detailed overview of the self organization 

principles exploited by these algorithms, as well as examples from biology, can be found in [23].  

One of the first researchers to investigate the social behaviour of insects was the French 

entomologist Pierre-Paul Grassé. In the 1940s and 1950s, he was observing the behaviour of termites 

in particular, the Bellicositermes natalensis and Cubitermes species. He discovered [24] that these 

insects are capable of reacting to what he called “significant stimuli,” signals that activate a genetically 

encoded reaction. He observed [24] that the effects of these reactions can act as new significant stimuli 

for both the insect that produced them and for the other insects in the colony.  
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Goss et al. [25] developed a model to explain the behaviour observed in the binary bridge 

experiment. Assuming that after t time units since the start of the experiment, m1 ants had used the first 

bridge and m2 the second one, the probability p1 for the (m + 1)th ant to choose the first bridge can be 

given by Equation (4): 

ଵܲሺ௠ାଵሻ ൌ
ሺ݉ଵ ൅ ݇ሻ௛

ሺ݉ଵ ൅ ݇ሻ௛ ൅ ሺ݉ଶ ൅ ݇ሻ௛ (4) 

where parameters k and h are needed to fit the model to the experimental data. The probability that the 

same (m + 1)th ant chooses the second bridge is P2(m+1) = 1− P1(m+1). Monte Carlo simulations, run to 

test whether the model corresponds to the real data [10], showed very good fit for k ≈ 20 and h ≈ 2. 

This basic model, which explains the behaviour of real ants, may be used as an inspiration to design 

artificial ants that solve optimization problems defined in a similar way.  

Ant colony optimization has been formalized into a combinatorial optimization metaheuristic by 

Dorigo et al. [26,27] and has since been used to tackle many combinatorial optimization problems 

(COPS). Given a COP, the first step for the application of ACO to its solution consists in defining an 

adequate model. This is then used to defined the central component of ACO: the pheromone model. 

The model of a COP may be defined as follows: 

A model P = (S, Ω, f) of a COP consists of: 

 a search space S defined over a finite set of discrete decision variables and a set Ω of 

constraints among the variables; 

 an objective function f: S → ࣬଴
ାto be minimized 

Ant System was the first ACO algorithm to be proposed in the literature [28-30]. Its main 

characteristic is that the pheromone values are updated by all the ants that have completed the tour. 

The pheromone update for τij , that is, for edge joining cities i and j, is performed as follows  

[Equation (5)]: 

Tij← (1-ρ). Tij +∑ ΔTij
km

k=1
 (5) 

where ρ is the evaporation rate, m is the number of ants, and ΔTij
k
 is the quantity of pheromone per unit 

length laid on edge (i, j) by the kth ant [28] as shown in Equation (6): 

ΔTij
k ൌ ቐ

ܳ
௞ܮ

, ݐ݂݊ܽ݅ ݇ ݀݁ݏݑ ݁݀݃݁ ሺ݅, ݆ሻ݅݊ ݏݐ݅ ݎݑ݋ݐ

0, ݁ݏ݅ݓݎ݄݁ݐ݋
 (6) 

where Q is a constant and Lk is the tour length of the kth ant. 

3. Experimental Setup 

The 27 experiments were carried out on a 6-axes Haans machining centre as shown in Figure 1. A 

water soluble coolant was used in these experiments. Each experiment was stopped after 90 mm 

cutting length. For the surface roughness measurement surface roughness tester was used. Each 

experiment was repeated three times using a new cutting edge every time to obtain accurate readings 

of the surface roughness. The physical and mechanical properties of the workpiece are shown in  

Table 1 and Table 2. After the preliminary investigation, the suitable levels of the factors are used in 
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Table 2. Cont. 

140 0.10 0.10 3.5 

140 0.20 0.20 3.5 

140 0.15 0.10 2.0 

100 0.10 0.15 3.5 

180 0.20 0.15 3.5 

140 0.10 0.20 3.5 

140 0.10 0.15 5.0 

Table 3. Mechanical properties of the workpiece. 

Hardness, Brinell 95 

Hardness, Knoop 120 

Hardness, Rockwell A 40 

Hardness, Rockwell B 60 

Hardness, Vickers 107 

Ultimate Tensile Strength 310 MPa 

Tensile Yield Strength 276 MPa 

Elongation at Break 12 % 

Elongation at Break 17 % 

Modulus of Elasticity 68.9 GPa 

Density                                                   2.7 g/cc 

4. Results and Discussion 

After conducting the first pass (one pass is equal to 90 mm length) of the 27 cutting experiments, 

the surface roughness readings are used to find the parameters appearing in the postulated first order 

model (Equation 1). In order to calculate these parameters, the least squares method is used with the 

aid of Minitab. The first-order linear equation used to predict the surface roughness is expressed by 

Equation 7: 

depthdepthspeeda r.a.f.C..R 016053831585030049057640   (7) 

where the Cspeed, f, adepth and rdepth are the cutting speed, feed rate, axial depth and radial depth 

respectively. 

Generally, reduction of cutting speed, axial depth of cut caused a larger surface roughness. On the 

other hand, the increase in feed rate and radial depth caused a slight reduction of surface roughness. 

The feed rate is the most dominant factor on the surface roughness, followed by the axial depth, cutting 

speed and radial depth, respectively. Hence, a better surface roughness is obtained with the 

combination of low cutting speed and axial depth, high feed rate and radial depth. Similar to the first-

order model, by examining the coefficients of the second-order terms, the feedrate (f) has the most 

dominant effect on the surface roughness. After examining the experimental data, it can be seen that 

the contribution of cutting speed (Cspeed) is the least significant. As seen from Figure 2, the predicted 

surface roughness using the second order RSM model is closely matched with the experimental results. 
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It exhibits better agreement compared to those from the first-order RSM model. A contour plot of feed 

rate versus cutting speed for the first-order model is shown in Figure 3. It is clear that the relationship 

between the surface roughness and design variables can be obtained. The analysis of variance 

(ANOVA) for first order is tabulated in Table 4. It indicates that the model is adequate as the P-value 

of the lack-of-fit is not significant (>0.05). 

Figure 2. Comparison between the experimental and predicted results. 

 

Figure 3. Feed rate versus cutting speed contour plotted for first-order model. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Number of Experiments

R
a(

um
) RSM 2nd-order

RSM 1st-order

Experimental

Cutting speed(m/min)

Fe
ed

ra
te

(m
m

/r
ev

)

1.20

1.05

0.90

0.75
0.60

180170160150140130120110100

0.20

0.18

0.16

0.14

0.12

0.10



Sensors 2010, 10                            

 

 

2061

Table 4. Analysis of variance for first-order equation. 

Source DOF Seq. SS Adj. SS Adj. MS F P 

Regression 4 0.9309 0.9309 0.2327 0.78 0.552 

Linear 4 0.9309 0.9309 0.2327 0.78 0.552 

Residual Error 22 6.5937 6.5937 0.2997     

Lack-of-Fit 20 6.3151 6.3151 0.3158 2.27 0.351 

Pure Error 2 0.2786 0.2786 0.1393     

Total 26 7.5246         

5. Test Validation 

The optimised surface roughness model is tested with experimental results. The predicted minimum 

surface roughness using optimised surface roughness model by RACO are compared with the 

measured surface roughness and these results are reported in Figure 4. The validation experiment is 

performed in the same machining environment as the training experiment. The errors of surface 

roughness obtained by optimised min surface roughness model are 4.65%. The optimum cutting 

parameters for minimum surface roughness are cutting speed 100 m/min; feed rate 0.2 mm/rev, axial 

depth 0.1 mm and radial depth 5 mm. On the other hand, the optimisation by RSM is 0.45 µm [31].  

Figure 4. Comparison of minimum optimised surface roughness with experimental and RSM. 
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and shows the efficacy of the prediction model. Finally, the simulation results show that ACO combine 

with RSM can be very successively used for reduction of the effort and time required. This means that 

it can solve many problems that have mathematical and time constraints.  
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