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Abstract: Temperature in an urban area exhibits a complicated patterndue to complexity

of infrastructure. Despite geographical proximity, structures of a group of buildings and

streets affect changes in temperature. To investigate the pattern of fine-grained distribution

of temperature, we installed a densely distributed sensor network calledUScan. In this paper,

we describe the system architecture of UScan as well as experience learned from installing

200 sensors in downtown Tokyo. The field experiment of UScan system operated for two

months to collect long-term urban temperature data. To analyze the collected data in an

efficient manner, we propose a lightweight clustering methodology to study the correlation

between the pattern of temperature and various environmental factors including the amount

of sunshine, the width of streets, and the existence of trees. The analysis reveals meaningful

results and asserts the necessity of fine-grained deployment of sensors in an urban area.

Keywords: urban sensing; fine-grained sensor network; fine granularity; temperature;

empirical analysis; clustering
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1. Introduction

Since the vision of Smart Dust [1] has been introduced, researchers have explored wireless sensing

applications in various fields including healthcare and medical science [2–4], shipping industry [5],

environmental monitoring system [6–10]. Although we cannot assert that environmental monitoringis a

promising application of wireless sensor networks, its possibility of enhancing our daily lives is highly

expected. Thus we are interested in applying a wireless sensor network to support people’s urban life

by providing useful information about microclimate in a geographically fine-grained manner. Based

on empirical study in this paper, fine granularity of sensorsis important for applications of our interest

because it increases the possibility of capturing additional and meaningful information. For example,

two sensors in our deployment show quite different measuredvalues; nevertheless they are separated by

less than three meters. Upon having such fine-grained information in an urban area, one can easily find

an ambient walking route, an oasis spot, or a windy and low temperature location in hot summer, for

example [11]. In contrast to our work, coarse-grained networks cannot provide detailed information of

measured areas. Airy Notes [12] aims to discover the difference of climate between inside and outside

of a 583,000-m2 park. It cannot capture differences among many spots in the park, e.g., French, English,

and Japanese gardens. Also, sparse deployment of CitySense[13] cannot provide as detailed as lane’s or

alley’s sensing information. In particular, we cannot acquire air pollutants of an individual alley or water

contaminant of a specific rill. Participatory sensing systems such as BikeNet [14], CarTel [15], and [16]

extend sensing coverage by allowing sensors go with human; however, we cannot assure availability

and/or granularity of sensor data at a certain point. In other words, sensor data at any points are collected

intermittently. Hence we cannot collect complete long-term data (for example, a whole week) for further

analysis and usage of any applications.

The navigation system developed for pedestrians [11] is one of applications that motivate our work.

After installing software into mobile phone, the application acquires temperature data to calculate

the most comfortable route. This kind of application requires real-time processing and lightweight

computation due to the scarce resource of mobile phone. Finegranularity of sensing is required in

order to provide pedestrians with accurate navigation because sensor installed at an opposite side of a

building will measure different values of temperature. Fine-grained temperature data are also useful for

urban planning. For example, if we know a potential place where heat stroke or heat wave is likely

to happen, a city mayor might increase the number of trees andshaded areas by some procedures.

Also an electric roof could be installed, and opened or closed automatically according to the current

temperature. Regardless of distance between two nearby sensors which are placed under direct sunlight

and shaded area, the measured temperature should be quite different. Therefore, it is necessary to deploy

a fine-grained wireless sensor network in a city where various factors such as complex infrastructure,

miscellaneous roads and streets, tall buildings and skyscrapers, and high population density, affect

temperature distribution as well as the flow and strength of wind. The fine-grained sensor network

is capable of capturing complexity of environmental information in a city. Hence we have deployed

and operated a sensing system calledUScanby which temperature in fine resolution was measured

in downtown Tokyo [17]. The UScan system consists of three main components: a server, wireless

relay nodes, and sensor nodes. The server is responsible forcollecting temperature data from numerous
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sensors and managing the database of such sensor data. The wireless relay nodes, which are referred to

as wireless bridges, are intermediate nodes that forward received sensing data to the server. To acquire

fine-grained sensor data, we installed more than 200 uParts [18] as sensor nodes in 107,500-m2 area and

collected data for a period of two months during July and August 2007.

After acquiring raw sensor data, the next process is data analysis. Different kinds of sensor data

(sound, image, odor, acceleration,etc.) have different characteristics; thereby a tailor-made analysis

methodology for each data type is preferred [19–23]. Although we collect the same kind of sensor data,

each application employs different techniques to interpret and understand the data for specific purposes.

Based on a large amount of collected temperature data, we show meaningful experimental results and

discuss the correlation between environment factors and the observed temperature by utilizing a proposed

clustering methodology. Because the well-known k-means algorithm [24] uses an iterative refinement

technique, its processing time is not appropriate for very large database of UScan system. When we

utilize sensor data for any real services in an urban area, the amount of data will obviously be larger than

that of UScan which is merely a pilot project operated in a small area of downtown Tokyo. Our proposed

clustering technique is tailor-made for expediting the calculation process. The environmental factors

we are interested include the amount of sunshine, the width of street, and the presence of trees. We

extract three features from the variation of temperature data of each day, and utilize such features in the

clustering methodology. The proposed clustering method helps understand fine-grained temperature data

faster in an efficient manner. The clustering results are able to reveal characteristic of each area or city.

By clustering long-term data, we could capture the clustering patterns of an area, and also compare with

other areas. Areas whose clustering patterns are similar ordifferent are worth to study in details to reveal

the causes of similarity or difference. Urban planning could exploit this kind of information to improve

environments of communities by referring to environmentalcharacteristics of favorable communities.

2. Related Work

Investigating real-world information in a city is an important task. To achieve such purpose, CitySense

[13], which is one of several urban-scale networked sensing systems, has been launched. Sensor

nodes are Linux-based embedded PCs outfitted with dual 802.11 a/b/g radios and various sensors for

monitoring weather conditions and air pollutants. Nodes are mounted on buildings and streetlights

across the city of Cambridge to form a wireless mesh network.The project claimed that it shall consist

of approximately 100 nodes in the near future. The system covers wide area but it does not pay attention

to fine-grained deployment of sensors. Therefore, the data of complex urban city cannot be acquired by

the system.

Airy Notes [12] is an environmental monitoring system that captures temperature, humidity, and

acceleration data around sensor nodes. The authors installed 165 sensor nodes in a national park

(Shinjuku Gyoen National Garden) which covers 583,000 m2 area. The project aims to discover the

difference of climate between inside and outside of the park, which can be considered as coarser

granularity of sensor network than our work. Also the sensors are deployed in a leisure area, while

we focus on urban areas which are highly relevant to and important for our daily lives.

In addition to the above-mentioned works, many kinds of sensor networks have been deployed for

studies, experiments, and real-world operations, but mostof previous works [6–8, 10, 25, 26] have been
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installed in environments (garden, forest, lake, ocean,etc.) and/or the granularity of installed sensors

is not high. Table1 summarizes node density of previously deployed networks aswell as our UScan

system. Although we do not have exact deployment area of CitySense [13] and volcano monitoring

system [25], it is explicit that node density is lower than that of UScansystem.

Table 1. Node density.

Sensor Deployment Number of Nodes Area (m2) or Distance (m) Density (nodes/km2)

UScan 200 107,500 m2 1,860

Habitat monitoring [6] 32 959,105 m2 33

Airy Notes [12] 165 583,000 m2 283

CitySense [13] 100 City of Cambridge N/A

Volcano monitoring [25] 16 200–400 m apart N/A

Recently, researchers are interested in another type of urban sensing based on a concept of

participatory or people-centric sensing [27–29]. In this approach, sensors always go with human with

his/her daily life,i.e., a kind of mobile sensing system. BikeNet [14] utilizes bicycles mounted with

sensors as a mobile sensing system to collect and share ambient data when traveling or commuting.

Bicycles are equipped with a Nokia N80 mobile phone, Moteiv Tmote Invent motes, and other necessary

sensors. Collected information is exchanged via short-range radios and can be direct (i.e., bike-to-bike)

or indirect via the access points which are installed along roads and trails.

Similar to BikeNet, CarTel [15] is a mobile sensor computing system designed to collect data from

sensors located on automobiles. A CarTel node is a custom-made device built from a commodity Wi-Fi

access point with additional enhancements for other sensors. In the presence of opportunistic wireless

networks (e.g., Wi-Fi and Bluetooth), each node delivers the sensor readings to a central portal. In

addition to managing intermittent connectivity, CarTel provides a simple query-oriented programming

interface for the benefit of application developers.

In order to promote people-centric sensing, Ishidaet al. [16] introduced the concept ofimplicit

sensingby using footwear containing pressure sensors. The pressure sensors use the IEEE 802.15.4 radio

to send the sensor readings to a client module, which in turn forwards the data to a server via a cellular

network. Although the user is equipped with a GPS device, theuse of low-cost RFID-based infrastructure

has been proposed to determine the location information (indoor and outdoor) corresponding to each

sensor reading when GPS signals are not available.

Other mobile sensing systems (Zebranet [9], MetroSense [30], CenceMe [19], etc.) have been

proposed in the literature. Such systems extend the coverage area of sensing but we cannot assure

availability and/or granularity of sensor data at a certainpoint because mobile sensor nodes are free to

move.

3. System Architecture and Deployment

In contrast to prior works (e.g., [12, 13]), we deployed finer granularity of sensing system called

UScan. In particular, we define a network whose node density is higher than 1,500 nodes/km2 as a
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baseline of fine-grained network. This baseline is much higher than the density of previously deployed

networks (see Table1) which can be considered as coarse-grained networks. This section details system

architecture, sensor deployment, and packages of sensors as follows.

3.1. UScan System Architecture

The system architecture of UScan is shown in Figure1 [17]. The main components of UScan are a

server, wireless bridges (called WBridges), and sensors (called uParts). The uPart [18] sensing devices

are responsible for measuring ambient temperature and wirelessly sending data (less than one KB) to

the WBridge [31] at a predetermined interval which was set to 30 seconds in our field experiment.

The OpenWRT [32], which manages incoming sensor data, is a software installed on the WBridge and

consists of Teco and Perl modules. The Teco module transfersthe data to the Perl module using a UDP

socket. Once the Perl module receives the data, it extracts temperature data and sends them to a UScan

server through the Internet. Because the server is set behind NAT (Network Address Translation), the

data is sent through port 80 in order to avoid being filtered byfirewall. To access the Internet in an

outdoor area where wired Internet infrastructure may not beavailable, we use the Personal Handy-phone

System (PHS) which is a mobile network operating in the 1,880–1,930 MHz frequency band. Thus a

PHS communication card is attached to each router for this purpose. Although the transmission rate

of PHS card (64 kbps) is lower than that of wired infrastructure, its convenience of infrastructure-less

connection is an essential requirement to collect data anywhere and anytime. Based on the experiments,

64-kbps transmission rate is high enough to report temperature measurement (less than one-KB packet

size) at every 30 seconds. If higher transmission rate is required, 3G cellular network is also available

and replacement of PHS card with 3G cellular card is straightforward. Upon receiving the sensor data,

the UScan server inserts the data into UScan Database. A Munin Plug-in [33] installed on the server is

responsible for monitoring the database and creating a graph as requested by a user through a web API.

Currently, users can request temperature graphs by specifying days, time, areas, and sensor IDs.

As mentioned above, we utilize the uPart [18] as a sensor node in our experiment. Although the

device is a tiny-sized sensing apparatus,i.e., a dimension of 1 cm by 1 cm by 1 cm, it includes many

functions and components such as a wireless communication module, CPU, memory, and many kinds of

sensors (illumination, vibration, temperature, and battery’s voltage). It is driven by a button (or coin) cell

and can operate for six months (if a packet is sent once every 30 seconds). We choose the uPart because

of its light weight and long-life battery which are suitablefor long-term environmental monitoring in an

urban area. Note that we did not need to replace the battery ofall uParts during the entire period (two

months) of our experiment. The specification of the uPart is summarized in Table2.
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Figure 1. System architecture of UScan.
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Table 2. uPart Specification.

Dimension 1 cm× 1 cm× 1 cm

Sensors Temperature, vibration, illumination, and battery’s voltage

Communication Wireless radio (315 MHz)

Power supply A button cell (140 mAh)

Battery life 6 months (if transmission interval is 30 seconds)

3.2. Fine-Grained Deployment of Sensors

In an urban area such as downtown Tokyo, there are various environmental factors such as the

existence of buildings, parks, and trees that affect the flowof wind and shaded areas which in turn

correlate to the variation of temperature. Our policy is to let all observation points cover a wide range of

environmental factors that are likely to affect temperature for the benefit of further analysis. However, we

have had to negotiate landlords to grant us a permission to install uParts and WBridges, although more

than half of landlords refused our requests. In addition, a power supply is necessary for each observation

point because WBridge must be in stand-by mode to receive data from uParts,i.e., it cannot switch to

sleep mode to minimize energy consumption. We note here thatWBridge is able to resume its operation

immediately after receiving power in the case of power down or blackout. Finally, we have been granted

to deploy approximately 200 uParts in eight observation points which cover a 250m-by-430m area (see

Figure2). As a result, the node density of UScan system is approximately 1,800 nodes/km2. To cover

various environmental factors, for example, both pointsP1 andP5 locate at pedestrians’ sidewalks along

broad streets but they differ in whether shaded areas due to roadside trees exist or not. There are many

trees atP1, while none exists atP5. Thus each observation point has different environmental factors.
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Figure 2. Eight installation points in 250m-by-430m area for 200 sensors.
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Due to the complexity of urban area, more than 20 uParts were densely installed at each observation

point so as to capture possible microscopic characteristics of weather in downtown Tokyo. In particular,

we tried to cover all directions (north, east, west, and south) because it is intuitive that temperature

measured at the east and west side of a building should be different. Various conditions such as

installation on trees, fences, roofs, walls, floors, and verandas are also included as much as possible

at any observation points. Even if installation permissionhas been granted by landlords, we cannot

install sensors at any arbitrary points because the landlords asked us to avoid installing sensors in some

specific positions due to inappropriate appearance of sensors. In addition, we avoided measuring useless

values due to improper installation positions such as nearby exhaust pipes or high-temperature apparatus.

Figure3 shows the detailed sensor deployment of the observation point P2. The red circles in the figure

indicate sensors. Sensors at other observation points werealso deployed under the same policy.

3.3. Packages of Sensors

The system operates in outdoor areas without human intervention; therefore sensing devices should be

able to tolerate various extreme conditions in order to realize fine-grained urban sensing in long period.

We developed two types of packages for setting sensors as shown in Figure4. A package in Figure4ais

used when setting sensors on roadside trees, rain pipes, etc. This type of package is able to shut out direct

sunlight and is also waterproof. Temperature sensor is covered with a white roof which is made from

waterproof paper. The white color of package helps to reflectthe light, i.e., the temperature inside the

package is affected the least in comparison with other colors. A simpler one in Figure4b is used when

setting sensors on the wall of building because it is very small and light. Both types of packages are

not a closed box,i.e., both left and right sides are open to allow air always flows through the packages.

Therefore the sensor inside the package is able to measure correct temperature. However, we have

conducted a preliminary experiment to study the effect of the packages to the measured temperature.

Based on the preliminary experiment, the temperatures measured by the sensor with the package and

the sensor without the package are identical. If there are any effects or differences on the measured

temperature, calibration can be easily done.

Figure 4. Two types of uPart packages.
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Figure 5. Temperature change measured by 23 sensors placed in a 250m-by-340m area on

August 22, 2007.

4. Preliminary Results and Investigation

In this paper, we focus on microclimate during day time because ordinary activities of human life

are more active than those of the night time. Thus we use temperature data between 8:00 a.m. and

8:00 p.m. (12 hours each day) for analysis purpose. The median time of the above period is 2:00 p.m.

and six hours are available ahead and behind the median time.Figure5 shows temperature measured by

23 sensors during the day time. We randomly selected 23 sensors from more than 200 available sensors

deployed in the 250m-by-340m area so as to ensure that the graph is legible. It is obvious from the figure

that the temperatures measured by each sensor at the same time are quite different. In particular, the

highest temperature difference is9 ∘C at 2:00 p.m. Despite high temperature difference, these 23 sensors

located within 500 meters of each other. The underlying reasons of high temperature difference are

various environmental factors such as the existence of roadside trees, the width of roads, etc. In addition

to temperature difference, there are two distinct patternsof temperature change during the day,i.e.,

the peak temperature that appears in the morning as opposed to the peak temperature in the afternoon.

This is a result of installing sensors on opposite directions (i.e., east versus west). When focusing on

microscopic scale,i.e., sensor deployment of observation pointP2 in Figure3, the temperature difference

measured by sensor IDs 52 and 67 which located 10 cm apart is ashigh as3 ∘C on August 22, 2007.

The experiment and preliminary investigation support the necessity of fine-grained deployment of

sensors. Note that the data of this field experiment are publicly available at the UScan Website [34].

5. Clustering Methodology

To understand the complexity of fine-grained sensor data, anefficient technique to analyze a large

amount of collected data is required.
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We try to clarify the environmental factors through clustering analysis because clustering divides data

into several groups where the characteristics of data in thesame group are similar. Based on clustering

results, we can further study each group of data in more detail and investigate environmental factors

corresponding to each group.

Our clustering methodology is based on three features: biasof temperature, changing rate of

temperature, and the maximum temperature of time series temperature data. We plot the results of

three features on a 3D-graph where clustering of temperature data is determined.

The variables used in the clustering methodology are definedbelow.

∙ D : the number of observation days.

∙ d : the index of observation days(d = 1, . . . , D).

∙ M : the number of observation points.

∙ j : the index of observation points(j = 1, . . . ,M).

∙ n : the number of data in one day at each observation point.

∙ i : the index of data in one day(i = 1, . . . , n).

∙ k : the index of features or metrics(k = 1, 2, 3).

∙ Tdji : the temperature data where the observation day isd, the observation point isj, and the index

of data isi.

∙ fdj1 : the bias of temperature data (i.e., the first feature) where the observation day isd and the

observation point isj.

∙ fdj2 : the changing rate of temperature data (i.e., the second feature) where the observation day is

d and the observation point isj.

∙ fdj3 : the maximum temperature (i.e., the third feature) where the observation day isd and the

observation point isj.

∙ Fdjk : the normalized value of featurefdjk wherek = 1, 2, and3.

Determining features is an essential issue of clustering. We intend to choose three features where

their combination is applicable to any seasons as explainedbelow.

5.1. Definition of Features

fdj1: Bias of Temperature

The bias of temperature represents the distribution of temperature graph for a given period. The bias

is defined as an average of weighted temperature as expressedin Equation (1).

fdj1 =
1

n

n
∑

i=1

�iTdji, where �i =

⎧

⎨

⎩

−n−1
2
, . . . ,−2,−1, 0, 1, 2, . . . , n−1

2
if n is odd,

−n−1
2
, . . . ,−3

2
,−1

2
, 1
2
, 3
2
, . . . , n−1

2
if n is even.

(1)
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The weight�i is decided by the number of datan and the indexi of time series data. The weight starts

from −n−1
2

for the first data (i = 1) in time series, and increases one for each following data orindex.

The weight of the last index (i = n) is explicitly n−1
2

.

According to the above definition, if the time index is far from the median time (2:00 p.m.) in

positive or negative direction (i.e., the right or left direction from the median), the weight�i will become

positively or negatively higher. If the left tail of temperature graph is longer or a temperature graph

distorts/bends to the right side, the mass of distribution is concentrated on the right side of the graph and

the value offdj1 is positive—which are referred to aspositive bias. On the other hand, if the right tail of

temperature graph is longer or a temperature graph distorts/bends to the left side, the mass of distribution

is concentrated on the left side of the graph and the value offdj1 is negative—which are referred to as

negative bias.

The bias is an important feature because it provides the trend of temperature change in a given period.

The weight helps to emphasize unclear characteristic of thebias whether it is positive or negative. The

value of weight can be adjusted if necessary as long as we use the same definition of weights on the

same set of analyzed data. For example, if the bias is not easily noticeable, we may increase the values

of weight.

fdj2: Changing Rate of Temperature

The changing rate of temperature is defined in Equation (2).

fdj2 =

∑n

i=1 [maxi(Tdji)− Tdji]

n [maxi(Tdji)−mini(Tdji)]
. (2)

The termsmaxi(Tdji) andmini(Tdji) are the maximum and minimum of temperatures observed by sensor

j in day d, respectively. Equation (2) calculates the ratio of temperature difference compared to the

maximum to the maximum temperature difference of a day. If weconsider temperature graph, in other

words, the equation returns the ratio of the area between themaximum temperature and the measured

temperature to the entire area of temperature graph.

This feature is an important one because it implies the levelof temperature change along a day

regardless of average temperature or seasons. The high value of fdj2 indicates radical change of

temperature during the day, and vice versa. For example, if the temperature is quite low and steady

at 0 ∘C for a whole day in winter or the temperature is quite high and steady at30 ∘C for a whole day in

summer, the changing rate of temperature is low. On the otherhand, the changing rate of temperature is

high, if the temperature varies along a day in spring or fall where average temperature is15 ∘C.

fdj3: Maximum Temperature

According to Figure5, the maximum temperatures are different for each observation point. Thus, the

maximum value expressed in Equation (3) should be a practical metric when clustering the temperature

data.

fdj3 = max
i

(Tdji). (3)

In addition, the maximum temperature highly relates to outdoor illness such as hyperthermia; thereby it

is worth to include it as a feature for clustering purpose.
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Figure 6. An illustration of eight clusters based on three normalizedfeatures.
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5.2. Normalization

Since the values of each feature have different scales, we normalize the features as expressed in

Equation (4).

Fdjk =
fdjk −min(d,j)(fdjk)

max(d,j)(fdjk)−min(d,j)(fdjk)
, wherek = 1, 2, and3. (4)

The termsmax(d,j)(fdjk) andmin(d,j)(fdjk) are the maximum and minimum values of featurek of all

M sensors (j = 1, . . . ,M) for all D days (d = 1, . . . , D), respectively. After conducting normalization,

the range of all features is between zero and one. Thus we can use the normalized featuresFdjk (where

k = 1, 2, and3) in the same space to analyze the complexity of urban environment.

Since the normalized features are relative values of each day, they are applicable to any seasons or

weather conditions (e.g., sunny, rainy, cloudy) on the daysof interest. Also, we can have meaningful

comparison of each day with the help of normalization. Without normalization, we do not know whether

a value is high or low in comparison with others.

5.3. Definition of Clusters

The normalized bias, changing rate, and maximum of temperature data are plotted on a 3D-graph for

clustering purpose. Each feature is divided into two types,i.e., whether a value of feature is higher or

lower than a threshold of 0.5. By utilizing three features, there are eight clusters which are referred to as

A, B, C, D, E, F, G, and H and illustrated by eight cubes in Figure6. The first four clusters (A, B, C and

D) are allocated to four lower-level cubes (Fdj3 < 0.5) in counterclockwise direction. Similarly, the last
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four clusters (E, F, G and H) are allocated to four upper-level cubes (Fdj3 ≥ 0.5) in counterclockwise

direction. The definitions of each cluster are detailed below.

Cluster A: Fdj1 ≥ 0.5 andFdj2 ≥ 0.5 andFdj3 < 0.5

Cluster B: Fdj1 < 0.5 andFdj2 ≥ 0.5 andFdj3 < 0.5

Cluster C: Fdj1 < 0.5 andFdj2 < 0.5 andFdj3 < 0.5

Cluster D: Fdj1 ≥ 0.5 andFdj2 < 0.5 andFdj3 < 0.5

Cluster E: Fdj1 ≥ 0.5 andFdj2 ≥ 0.5 andFdj3 ≥ 0.5

Cluster F: Fdj1 < 0.5 andFdj2 ≥ 0.5 andFdj3 ≥ 0.5

Cluster G: Fdj1 < 0.5 andFdj2 < 0.5 andFdj3 ≥ 0.5

Cluster H: Fdj1 ≥ 0.5 andFdj2 < 0.5 andFdj3 ≥ 0.5

As some other clustering techniques (e.g., k-means and fuzzy c-means clustering algorithms), the

number of clusters is an input parameter of the proposed method. An appropriate value, which is a

priori unknown, depends on various factors such as the characteristics of data, the number of data, the

purpose of clustering, and the clustering algorithm. We could also divide each feature into three ranges

equally which leads to 27 clusters in total. Undoubtedly, the data will distribute among 27 clusters

and it would be more difficult to capture patterns of any distinctive clusters. Therefore, we decide to

use eight clusters and the clustering results in the following section confirm that coarse grain of eight

clusters is sufficient for our clustering purpose. Also, a disadvantage of applying finer clustering is higher

computational cost.

Specifying the number of clusters a priori is a weakness of our proposed method because an

inappropriate choice of number of clusters may yield poor results. As stated in Section1., this paper

focuses on temperature data so that the proposed clusteringmethodology is designed for temperature

data and some features may not be appropriate for other kindsof sensor data. As a result, low adaptability

or flexibility of the proposed method is one of possible weaknesses.

6. Clustering Results and Comparative Study

This section discusses clustering results and followed by consideration in comparison to the

k-means algorithm.

6.1. Clustering Results and Analysis

Figure7 represents three normalized features of temperature data collected on August 22, 2007. There

are eight kinds of symbols in the figure where each symbol indicates the sensors being set under the same

environmental factors. As one would expect, the same symbols roughly position near each other in the

3D space. We can conclude that the sensors shown by the same symbols detect the same characteristic

of temperature on the day of experiment.

Since the temperature variation differs day by day, we investigate temperature data by considering

the distribution of defined clusters on one-day basis for a whole week during August 21–27, 2007. The
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percentages of sensor data in each cluster of each day are represented in Figure8. The temperature

variation highly depends on the weather condition of each day (sunny, cloudy,etc.). Thus we include

the period of sunshine in percentage for every two hours from8:00 a.m. to 8:00 p.m. in Table3. The

data of sunshine period is coarse grain,i.e., they are the percentages of sunshine period in the whole

experimental area that covers all of eight installation points. Although the sunshine period over each

sensor should be different from the approximate values shown in Table3, knowing such data is helpful

when discussing the clustering results in this section. Thedata of sunshine period in the table are publicly

available at the Japan Meteorological Agency website [35].

Figure 7. A plot of three features on a 3D-graph (August 22, 2007). Eachsymbol indicates

the sensors being installed under the same environmental factors.
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Table 3. Percentages of sunshine period for every two hours during August 21–27, 2007.

21st 22nd 23rd 24th 25th 26th 27th

8:00 65% 100% 0% 5% 25% 50% 90%

10:00 75% 100% 10% 0% 85% 85% 80%

12:00 100% 100% 50% 25% 80% 75% 100%

14:00 100% 100% 40% 25% 100% 100% 20%

16:00 100% 80% 15% 50% 80% 90% 25%

18:00 40% 20% 0% 5% 10% 0% 20%

20:00 0% 0% 0% 0% 0% 0% 0%

In Figure8, cluster D is apparently distinct on the 23rd, 24th, and 25thwhere more than half of

temperature data (i.e.,96%, 77%, and 63%, respectively) fall under this cluster. The cluster D indicates

positive bias (Fdj1 ≥ 0.5), low changing rate (Fdj2 < 0.5), and low maximum temperature (Fdj3 < 0.5).

Low amount of sunshine on the 23rd and 24th correlates to two features of cluster D,i.e., low changing
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rate and low maximum temperature. Although the variation ofsunshine does not obviously contribute

to positive bias of temperature, the normalized bias of these two days is high enough to cross the border

line of 0.5. Merely 4% of data on the 23rd fall under cluster A because of sensors which were installed

toward the east and west were affected by the sunshine (sunrise and sunset) andFdj2 of a small amount

of sensors are high enough to cross the threshold of 0.5. If the percentage of sunshine is high, more

percentage of data should fall under cluster A. The amount ofsunshine on the 25th directly leads to

positive bias and low changing rate of temperature. However, the amount of sunshine is high on this

sunny day; thereby normalized maximum temperature of some data (23%) is above the threshold of 0.5

and falls under other clusters. Therefore, the percentage of cluster D on the 25th (63%) is not so high as

those of the 23rd (96%) and 24th (77%).

Figure 8. Distribution of temperature in each cluster for the whole week (August 21–27,

2007).

100
Cluster A(%

)

70

80

90
Cluster A

Cluster B

Cluster C

Cluster D

h
 c

lu
st

er
 

50

60

70
Cluster E

Cluster F

Cluster G

ta
 i

n
 e

ac
h

30

40
Cluster H

g
e 

o
f 

d
at

0

10

20

P
er

ce
n

ta
g

A C G A C G A C G A C G A C G A C G A C G0

21st 22nd 23rd 24th 25th 26th 27th

P ABCDEFGH ABCDEFGH ABCDEFGH ABCDEFGH ABCDEFGH ABCDEFGH ABCDEFGH

Although the ratio of cluster D on the 26th (38%) is less than half, it is the most distinct cluster of the

day. The underlying reason is that the amount of sunshine is high in the morning in comparison with that

of the afternoon. As a result, some of data (25%) show negative bias and fall under cluster C which is

the second distinct cluster of the day. Note that the only difference between clusters C and D is the bias

of temperature,i.e, the features of changing rate and maximum temperature are the same.

The most distinct cluster of the 27th is the cluster C (55%) which indicates negative bias (Fdj1 < 0.5),

low changing rate (Fdj2 < 0.5), and low maximum temperature (Fdj3 < 0.5). The variation of sunshine

obviously correlates to the properties of negative bias andlow changing rate. However, some data show

high maximum temperature due to high amount of sunshine in the morning. As a result, 45% of data

fall under cluster G, the second-rank cluster of the day, where the only difference in comparison with

cluster C is the maximum temperature. We note here that the sensors that were installed toward the east

were affected by the sunrise in the morning and the maximum temperature is higher than the threshold

of 0.5. If the percentage of sunshine is high all day (both morning and afternoon), the sensors that were
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installed toward the west should be affected by the sunset inthe afternoon and most of data

should fall in cluster G.

Cluster G occupies the highest ratio (40%) on the 22nd which is the sunniest day of the week. The

result is plausible since cluster G indicates negative bias(Fdj1 < 0.5), low changing rate (Fdj2 < 0.5),

and high maximum temperature (Fdj3 ≥ 0.5). Due to the stable amount of sunshine on this day, it is

obvious that the maximum temperature should be high and the changing rate of temperature should be

low. Also, the 22nd has negative bias because the amount of sunshine in the morning is higher than that

of the afternoon.

Two clusters, D and H, equally occupy 30% of the temperature data collected on the 21st. Both

clusters indicate positive bias (Fdj1 ≥ 0.5) and low changing rate (Fdj2 < 0.5), while the characteristic

of maximum temperature is different. Cluster D indicates low maximum temperature (Fdj3 < 0.5),

whereas cluster H shows the opposite one. The amount of sunshine clearly implies positive bias and low

changing rate of temperature which are common characteristics of both clusters. It is intuitive that the

maximum temperature of each sensor stay around the threshold, i.e., some is above and some is below;

thus the temperature data fall under both clusters D and H.

6.2. Comparative Study

To study how well the proposed methodology presents the characteristics of the clusters, we include

the clustering results based on the k-means algorithm in Figure9 where the number of clusters is set to

eight. The eight clusters are named S, T, U, V, W, X, Y, and Z because the definitions of clusters differ

from ours. In particular, the definition of cluster is determined by centroids of each cluster which are

different on each day. For example, the centroids of each cluster on the 26th are shown in Table4.

Figure 9. Distribution of temperature in each cluster based on k-means algorithm.
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Table 4. Centroids of each cluster on August 26, 2007.

Fdj1 Fdj2 Fdj3 Mapping results

Cluster S 0.1835 0.5297 0.5768 Cluster F

Cluster T 0.5697 0.0674 0.3116 Cluster D

Cluster U 0.5565 0.2339 0.4509 Cluster D

Cluster V 0.2879 0.2894 0.5128 Cluster G

Cluster W 0.1070 0.7334 0.8436 Cluster F

Cluster X 0.4663 0.5385 0.6404 Cluster F

Cluster Y 0.4130 0.2067 0.3951 Cluster C

Cluster Z 0.4981 0.4268 0.4961 Cluster C

It is apparent from Figure9 that there are no distinctive clusters on each day,i.e., the percentages of

each cluster are lower than 30%. As a result, we cannot have any insightful discussion and meaningful

information based on these results. Therefore, we decide tomap the above results to our definition of

clusters (i.e., the clusters A, B, C, D, E, F, G, and H). The centroid of each cluster is used as a criterion

to map the whole cluster. For example, cluster S in Table4 (Fdj1 = 0.1835,Fdj2 = 0.5297, andFdj3 =

0.5768) falls under cluster F (Fdj1 < 0.5,Fdj2 ≥ 0.5, andFdj3 ≥ 0.5). Figure10 shows the results of

mapping k-means clusters for the whole week (August 21–27, 2007).

Figure 10. Distribution of temperature after mapping k-means clustering results to the

proposed definition of clusters.
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The results of our method (Figure8) and k-means algorithm (Figure10) are exactly the same on the

22nd, 23rd, and 24th, while the results are slightly different on the 21st, 25th, 26th, and 27th. However,

the trends of clustering results or distinctive clusters are exactly identical. Thus we conclude that our

proposed method presents the characteristics of the clusters as well as those of the k-means algorithm.
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When considering computational complexity, the proposed clustering technique is linear,i.e.,

O(2DM(2n + 1)), while the clustering of k-means algorithm [24] can be calculated in exponential

time, i.e.,O(DMxn+1 logM), wherex is the number of clusters. Obviously, the proposed clustering is

lightweight and much faster than the k-means algorithm.

7. Empirical Analysis on Fine-Grained Data

Previous sections have addressed the correlation between weather and temperature through the results

of clustering. In this section, we empirically analyze the fine-grained temperature data by focusing on

other environmental factors.

7.1. Selection of Representative Data

We selected three days,i.e., the 22nd, 23rd, and 27th, which represent different weatherconditions

as detailed in Table5. The 22nd was sunny; the 23rd was rainy; the 27th was sunny in the morning

but turned to cloudy in the afternoon. Then we selected threeobservation points (S1, S2, andS3) with

different environmental factors as summarized in Table6. The environmental factors we are interested

include width of street and existence of trees around the installation points of sensors. The width of

streets atS1 andS2 is six lanes, whileS3 is one-lane street. Trees exist atS1 andS3, while none exists at

S2. The locations of three observation points are representedin Figure11.

Table 5. Weather condition of three selected days.

Morning Afternoon

22nd Sunny Sunny

23rd Rainy Rainy

27th Sunny Cloudy

Table 6. Environmental characteristics of three observation points.

Observation points Width of street Trees

S1 Broad Exist

S2 Broad Not exist

S3 Narrow Exist
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Figure 11. Three observation pointsS1, S2, andS3.
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7.2. Feature-based Distance

We calculate thefeature-based distancebetween any arbitrary observation pointsSv andSw by using

the definition of Euclidean distance as expressed in Equation (5).

Dist(Sv, Sw) =

√

(Fdv1 − Fdw1)
2 + (Fdv2 − Fdw2)

2 + (Fdv3 − Fdw3)
2
, (5)

whered is the observation day.

There are also other definitions of distance to describe how two elements are close to or far away

from each other. For example, Mahalanobis distance and normalized Euclidean distance, which are

widely used in cluster analysis, take into account the correlations of the data set (i.e., the covariance). In

particular, the calculated distance indicates how far a test point is to the center of mass by also considering

the deviation of the data set. As a result, the distance highly depends on the distribution of data set, and

it is a useful way of determining similarity of an unknown sample set to a known one.

It is intuitive that similar environmental factors lead to similar pattern of measured temperature.

Hence, Mahalanobis distance of an observation point whose environmental factors holds high percentage

of data set will be short, and vice versa. In other words, Mahalanobis distance depends on sensor

installation of UScan system. Sensors were installed in eight observation points selected from a

250m-by-430m area where the data set may not be large enough to represent the correct distribution

of various environmental factors in Tokyo. Therefore, using Mahalanobis distance may not be an

appropriate measure because it indicates distance based onthe distribution of environmental factors

in the limited area. The purpose of calculating feature-based distance is to find relative distance between

any two observation points and simple Euclidean distance isable to satisfy the objective.

To refer easily, we define feature-based distances between each of three observation points as follows.

u1= Dist(S1, S2), u2= Dist(S1, S3), u3= Dist(S2, S3).

7.3. Empirical Investigation and Discussion

Based on the environmental characteristics of three selected points described in Table6, u1, u2, and

u3 indicate the impact of trees, width of street, and both trees and width of street on temperature change,
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respectively (see Table8). The results of feature-based distances (see Figure12) obviously show that

the impact of street width is much higher than that of trees because the distance u2 is longer than u1 on

all three days. The values of features used for calculating the distances are given in Table7. Previous

section has showed the correlation between temperature andthe amount of sunshine. The result in

Figure12 confirms that the impact of sunshine on temperature also depends on the width of street and

the existence of trees,i.e., the distances on sunny day (the 22nd) are the longest.

Table 7. Three features of three observation points (S1, S2, andS3) in three selected days

(the 22nd, 23rd, and 27th).

22nd F(22nd)j1 F(22nd)j2 F(22nd)j3

S1 0.40 0.22 0.62

S2 0.45 0.12 0.83

S3 0.23 0.68 0.46

23rd F(23rd)j1 F(23rd)j2 F(23rd)j3

S1 0.78 0.47 0.18

S2 0.80 0.40 0.34

S3 0.58 0.14 0.24

27th F(27tℎ)j1 F(27tℎ)j2 F(27tℎ)j3

S1 0.42 0.43 0.38

S2 0.35 0.33 0.53

S3 0.34 0.66 0.42

Figure 12. Feature-based distances between selected observation points.
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Figure12 reveals the difference between two observation points, butwe cannot identify the

temperature trend of each individual point. With the help ofthe proposed three features (Table7), it

suggests thatS2, which is a broad street without tree, has the highest maximum temperature with low

changing rate (less than the threshold 0.5). This trend is apparent on the sunny 22nd, since temperature

highly correlates to the amount of sunshine.
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Table 8. Environmental factors of interest of each feature-based distance.

Feature-based distances Environmental factors of interest

u1= Dist(S1, S2) Trees

u2= Dist(S1, S3) Width of street

u3= Dist(S2, S3) Trees and width of street

With the exception of the rainy 23rd, the distance u3 is the longest among three distances because it

indicates the difference between a six-lane street withouttree (S2) and a one-lane street with trees (S3).

We can conclude that temperature change on a rainy day, whichis not affected by sunshine, depends on

other factors rather than the width of street and the existence of trees.

The difference of feature-based distance betweenS1 andS2 supports the necessity of fine-grained

sensor networks. Both observation points are in very close proximity (see Figure11). The Euclidean

distance between these two points is less than three meters.However, when investigating Table7,

the differences of normalized maximum temperature are approximately 0.15–0.20,i.e., 15%–20%

difference.

8. Conclusions

In this paper, we have described the system architecture of UScan which is a fine-grained sensor

network for studying the characteristic of complex temperature in an urban area. More than 200 sensors

have been installed in a 250m-by-430m area in downtown Tokyo, and the temperature data have been

continuously collected for two months without any human intervention. The preliminary results in

Section4., where the temperature different of nearby sensors is as high as9 ∘C, assert the necessity

of fine-grained deployment of sensors in an urban area due to its complexity.

To study the large amount of fine-grained sensor data in an efficient manner, we have proposed a

clustering method which is able to classify the variation oftemperature and discovered the correlation

between temperature change and the amount of sunshine. The clustering results of the proposed method

are comparable with those of k-means algorithm, while the propose method enables the cost-effective

analysis on very large database without involving high computational cost such as iterative calculations

used by the well-known k-means algorithm [24]. In particular, computational complexity of the proposed

clustering method is linear, while the k-means algorithm solves the problem of clustering in exponential

time. We have further investigated temperature data in fine-grained manners by considering other

environmental factors such as the width of street and the existence of trees that also affect temperature

change. As a next step, we are planning to study the correlation between temperature and other dynamic

factors such as the amount of pedestrians’ and vehicles’ traffic. Traffic information can be obtained by

using cameras and pattern recognition techniques [36, 37].

Although fine-grained sensor data provide insightful information in an urban area, we should not

deploy sensors too densely because it is not a cost-effective method. However, an appropriate density

of sensor deployment depends on both controllable and uncontrollable factors such as deployment

environments, target applications, and security concerns. In particular, complicated and unplanned
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downtown areas require high density of sensors to capture detailed information. High number of

redundant sensors is necessary to substitute for malfunctioned sensors in harsh environments. Moreover,

an appropriate density is different for each application. Our testbed was deployed for several usages and

each node consists of several kinds of sensors (i.e., temperature, vibration, and illumination) which

can be utilized for different target applications. When focusing on the scope of the paper where

complexity of urban area is an issue, an appropriate densityis different for each observation point.

To investigate an appropriate value of sensor density by comparing clustering results of multiple node

densities, the number of sensors deployed should be higher than an appropriate one which is a priori

unknown. However, as mentioned in Section3.2., the problem of limited installation points hinders us

from installing highly dense network to pursue this important issue. As one of our future works, we plan

to find more flexible places to perform experiments and investigate the issue of appropriate density.

The computational complexity of both proposed method and k-means algorithm has been analyzed

in Section6.2. Another future work includes further verification by actually measuring the execution

times of these both methods because such experiment would show whether the time to cluster the data is

significant when the total latency is considered.

As suggested in Section1., clustering patterns of long-term data could reveal characteristic of each

area. To help analyzers to understand data in a more convenient way, we plan to enhance the current

web API by letting the analyzers select areas of interest andpreferred conditions such as sunny, rainy,

or cloudy days to compare clustering results. The analyzerscould know, for example, the temperature

of which areas change drastically on sunny day. Also, the system could automatically find areas whose

clustering patterns are similar as complementary information for the analyzers. If the clustering patterns

are similar, we might let some or all sensors of an area sleep temporality so as to prolong the lifetime of

sensors. Besides, the analyzers could infer temperature related information from the area where sensors

are operating.

By using the UScan data, we will analyze the acquired data in more detail for the purpose of creating

efficient fine-grained urban sensing applications. Investigating other kinds of feature as different means

of clustering is also our future plan.
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