
Sensors 2010, 10, 2770-2792; doi:10.3390/s100402770

OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors
Article

Acquiring Authentic Data in Unattended Wireless Sensor
Networks
Chia-Mu Yu 1,2, Chi-Yuan Chen 3, Chun-Shien Lu 1,⋆, Sy-Yen Kuo 2 and Han-Chieh Chao 3,4

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan;
E-Mail: r91045@csie.ntu.edu.tw (C.-M.Y.); lcs@iis.sinica.edu.tw (C.-S.L.)

2 Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan;
E-Mail: sykuo@cc.ee.ntu.edu.tw

3 Department of Electrical Engineering, National Dong Hwa University, Hualian, Taiwan;
E-Mail: chiyuan.chen@gmail.com (C.-Y.C.)

4 Department of Electronic Engineering and Institute of Computer Science & Information Engineering,
National Ilan University, I-Lan, Taiwan; E-Mail: hcc@niu.edu.tw (H.-C.C.)

⋆ Author to whom correspondence should be addressed; E-Mail: lcs@iis.sinica.edu.tw;
Tel.: +886-2-2788-3799#1513; Fax: +886-2-2782-4814.

Received: 10 February 2010; in revised form: 25 February 2010 / Accepted: 16 March 2010 /
Published: 26 March 2010

Abstract: An Unattended Wireless Sensor Network (UWSN) can be used in many
applications to collect valuable data. Nevertheless, due to the unattended nature, the sensors
could be compromised and the sensor readings would be maliciously altered so that the
sink accepts the falsified sensor readings. Unfortunately, few attentions have been given to
this authentication problem. Moreover, existing methods suffer from different kinds of DoS
attacks such as Path-Based DoS (PDoS) and False Endorsement-based DoS (FEDoS) attacks.
In this paper, a scheme, called AAD, is proposed to Acquire Authentic Data in UWSNs. We
exploit the collaboration among sensors to address the authentication problem. With the
proper design of the collaboration mechanism, AAD has superior resilience against sensor
compromises, PDoS attack, and FEDoS attack. In addition, compared with prior works,
AAD also has relatively low energy consumption. In particular, according to our simulation,
in a network with 1, 000 sensors, the energy consumed by AAD is lower than 30% of that
consumed by the existing method, ExCo. The analysis and simulation are also conducted to
demonstrate the superiority of the proposed AAD scheme over the existing methods.

Keywords: unattended wireless sensor network; UWSN; authentication

Sensors 2010, 10 2771

1. Introduction

The use of wireless sensor networks (WSNs) on data gathering applications has been popularized
in recent years. Since WSNs could be deployed in the hostile environments, one of the fundamental
issues is how to secure the collected data. Unfortunately, with the consideration of the sensors’ scarce
resources, the security issue becomes very challenging because conventional computationally-intensive
cryptographic primitives cannot be utilized.

WSNs considered in the literature are usually assumed to have a constant connection between sensors
and a trusted data collection unit, e.g., the sink. From the security point of view, in such a scenario,
sensors can collect and then report the sensitive data to the sink at will. With the cryptographic primitives
such as encryption and authentication, the confidentiality and authenticity of the transmitted sensed data
can be guaranteed. More importantly, this avoid storing a large amount of data in sensors that are easily to
be compromised. Even more, with the aid of the always-present sink, the network can defend against the
attacks such as sensor compromises more efficiently and effectively. Nevertheless, due to the application
restrictions, the above scenario is not always the case. In real world applications, there could be the
cases where after the sensor deployment, the sensed data should be temporarily stored in the sensors
because the sink is away from the network in most of the sensor network lifetime. Only at the end of
each collection interval, will the itinerant sink roams around the sensing region and collects the data
sensed by sensors. In contrast to the usual sensor networks, to emphasize the unattended WSN feature,
this type of WSN consisting of sensors and an itinerant sink that periodically collects sensed data is
termed as unattended wireless sensor networks (UWSNs). In fact, UWSNs have been used in practical
WSN applications [1,2]. In particular, the unattended sensor networks in [1] operate in an unmanned
manner. For example, the nuclear emission sensor network could be deployed to monitor potential
nuclear activity. In addition, another example is to deploy unattended sensors to detect underground
sound and vibration, in order to be aware of troop movements, border crossings, and enemy’s aircrafts
as soon as possible. Trident systems [2] deploy the unattended ground sensors for providing reliable
communication links. It is often used for transmitting timely message back to command and control
centers. These sensors can be used in battlefield applications including perimeter defense, border patrol
and surveillance, target acquisition, and situation awareness. The conceptional illustration is shown in
Figure 1.

Due to its inability to offload the sensed data in a real-time manner, sensors should keep the data
sensed in the local memory within the collection interval between successive sink visits, incentivizing
various attacks. The adversary may have different goals; it may be interested in learning the data
sensed by a specific set of sensors, or want to prevent certain data from reaching the data sink. In
this paper, we consider the adversary whose goal is to alter the sensors’ data so that the falsified data
can mislead the sink. In spite of the paramount importance of this authentication problem, only few
solutions [3,4] are proposed. Specifically, in [3], a novel authentication function was proposed to deal
with the authentication problem in a storage-efficient manner. Nevertheless, it is effective only against
the reactive adversary (described in Section 3.2) that is relatively weak and is easily to be overcame.
In [4], two collaborative authentication schemes, CoMAC and ExCo, were proposed to defend against
the stronger adversary, proactive adversary (described in Section 3.2).

Sensors 2010, 10 2772

Figure 1. In a UWSN, the itinerant sink roams around the sensing region and collects the
data sensed by sensors.

Unfortunately, the simple collaboration among the sensors in CoMAC and ExCo incurs more attacks
such as Path-Based DoS (PDoS) [5] and False-Endorsement DoS (FEDoS) [6] attacks (described in
Section 4.1). In addition, the resilience of ExCo against sensor compromises is not as strong as [4]
claims (described in Section 4.1). Furthermore, due to the lack of the proper use of sensors’ position
information, CoMAC and ExCo have relatively high energy consumption especially in a large scale
network. The above reasons motivate us to develop a secure and efficient collaborative authentication
scheme in UWSNs.

1.1. Contribution

We identify the security flaws of the schemes in [4]. Aiming at solving the identified problems,
a scheme, called AAD, is proposed to Acquire Authentic Data in UWSNs. AAD possesses three
characteristics. (1) Due to the proper use of sensors’ position information, it is communication-efficient.
(2) In addition to acquiring authentic data, AAD is also resilient against both Path-Based DoS
(PDoS) [5] and False-Endorsement DoS (FEDoS) [6] attacks. (3) The resilience of AAD against sensor
compromises is superior to that in prior works [4]. From analytical and simulation results, the robustness
of AAD is demonstrated to be superior to those of CoMAC and ExCo.

2. Related Work

Due to the use of Bloom filter in our proposed AAD scheme, its brief introduction is given in
Section 2.1 Then, some related works performed on UWSNs are briefly described in Section 2.2

2.1. Bloom Filter

As a kind of probabilistic data structure, a Bloom filter consists of an array of n bits. Together with
k independently and randomly selected hash functions, h1, · · · , hk, with range [0, n − 1], it is used to
represent a set of elements with the support of membership query. Assume that a Bloom filter B is
used to represent a set S = {s1, . . . , sm} of m elements. To insert an element si, the bits B[hj(si)] for
1 ≤ j ≤ k are set to 1. Note that the bit remains unchanged when being already set to 1. To check
whether an element x is in the set S, we can check whether the bits B[hj(x)] for 1 ≤ j ≤ k are all 1’s.
If and only if they are all equal to 1, x is deemed to be an element of S. The size n of Bloom filter is

Sensors 2010, 10 2773

independent of the size of elements and can be constant, which is very memory-efficient. Nevertheless,
the membership query on Bloom filter has false positive but has no false negative. In other words, it is
probable to falsely consider an element that actually does not belong to S as an element of S. In [7],
such false positive probability can be obtained as (1 − (1 − 1

n
)km)k ≈ (1 − e

−km
n)k. The optimization

between the performance efficiency e.g., array length or hash functions required) of Bloom filter and the
false positive probability can be obtained but is beyond the scope of this paper. Note that one of the
characteristics of Bloom filter we use in the design of our proposed scheme is that the query result is
always correct if the content to be queried is indeed stored in the Bloom filter.

2.2. Security Issues in UWSNs

Although UWSNs are studied only recently, many security issues have been investigated. The data
survival issue, which aims to prevent the sensed data from being arbitrarily erased by the adversary,
is first studied in [1,8]. Due to the fact that the adversary may compromise some sensors in order to
enhance its capability of subverting the network functionality, the self-healing techniques are proposed
in [9,10] to recover the compromised sensors. We refer the readers to [11] for a comprehensive overview
of security issues in UWSNs.

As for the authentication problem in UWSNs, few research efforts are conducted. Since the
data sensed within the collection interval should be stored in the sensor for a possibly considerable
period of time, in order to provide forward-security (described in Section 3.2), some authentication
schemes [3,12] were proposed. Moreover, in [4], two authentication schemes, CoMAC and ExCo, both
of which rely on the collaboration among multiple sensors, are presented for collecting authentic sensed
data. To our knowledge, CoMAC and ExCo are the only schemes having both forward and backward
security (described in Section 3.2). Particularly, in CoMAC, each sensor j, after obtaining its sensed
data drj at round r, constructs the corresponding authentication tag zrj . Then, it immediately sends
⟨drj , zrj ⟩ to a set of randomly selected sensors. To verify the authenticity of drj , the sink collects all the
corresponding authentication tags and checks whether the collected authentication tags can be generated
by using the claimed drj . ExCo is different from CoMAC in that the former stores the hash of all the
received authentication tags for each sensor while the latter directly keeps the received authentication
tags for each sensor.

Indeed, when CoMAC or ExCo is used, forward-security and backward-security can be achieved,
enabling the sink to acquire the authentic data from sensors. Unfortunately, the naı̈ve collaboration
among sensors used in CoMAC and ExCo incurs many more security problems. For example, the
adversary may arbitrarily inject a large number of bogus messages into the network, pretending that
it is proceeding with the collaborative authentication procedure albeit the false data will not be accepted
by the sink eventually. Such kind of Path-Based DoS (PDoS) attack [5] would deplete the energy
of sensors forwarding bogus messages, significantly reducing the network lifetime. Additionally,
the compromised sensor can either provide bogus authentication tags to the sink or contaminate the
transmitted authentication tags during the collaboration of sensors, forcing the genuine sensed data to
be rejected by the sink due to the inconsistency with the authentication tags. The above misbehavior is
similar to False-Endorsement DoS (FEDoS) attack [6], and is in common with most of the collaborative
security schemes. We also note that, although the resilience of ExCo against sensor compromises is

Sensors 2010, 10 2774

claimed in [4] to be stronger than that of CoMAC that works as a baseline scheme, when the adversary is
assumed to be capable of controlling all the compromise sensors and be aware of the target round right
after the end of the target round, their resilience will the same. We will describe the above problem in
more details in Section 4.1

3. Preliminaries

The network and security assumptions used in this paper, as described in the following, are similar
to those of the prior works. Nevertheless, the adversary considered in this paper is more realistic and
stronger than the ones in the literature.

3.1. Network Assumption

In this paper, a UWSN is composed of n homogeneous sensors, {s1, . . . , sn}, and a sink with mobility.
Here, only the sink is assumed to have mobility. The unattended sensors are assumed to be static. These
sensors are uniformly scattered over the sensing region to execute the pre-determined functionalities
such as data gathering. The underlying network is assumed to be connected such that two arbitrary
sensors can communicate with each other through either direct communication or multi-hop path. Time
is divided into collection intervals, each of which will be further divided into v rounds, and can be
synchronized by existing techniques [13–15]. In UWSNs, no constant connection between sensors and
the sink exists. Instead, the itinerant sink periodically visits the UWSN to collect data at the end of
each collection interval. Sensors are scheduled such that, in each round, each sensor obtains exactly
one sensed datum. For ease of presentation, we assume that each sensor in each round gets exactly one
sensed datum. Note that our proposed method actually can be applied on the case that each sensor can
derive multiple sensed data or nothing in a round. After the contact to the data sink, sensors are securely
re-initialized. We temporarily assume that the message transmission is reliable, which means that the
message can be always be sent to the destination sensor. We will relax this assumption in later sections.
In UWSNs, the geographic position of each sensor is known by the sink. This is due to the characteristic
of UWSNs that the mobile sink harvests the sensed data by directly visiting the sensors. To do so, the
sink must know the position of each sensor in advance. Two possible ways make the sink know the
position of each sensor. First, sensors are deterministically deployed one by one by the network owner
so that the position information will be passed to the sink by the owner. Second, sensors are randomly
deployed, but can be aware of their geographic positions by using techniques such as [16–19] or specific
hardwares such as Global Positioning System (GPS).

3.2. Security Assumption

In this paper, the adversary, whose goal is to let the sink accept the fraudulent data that is claimed to be
the one sensed by si at the target round r̄, is considered. The adversary can simultaneously compromise
k sensors at each round. The conceptual illustration is shown in Figure 2. It should be particularly
noted that the adversary is assumed to migrate and control different sets of compromised sensors in
the literature. We have a stronger adversarial assumption that, once being compromised, the sensor is
always under the control of the adversary. The secret information stored in the compromised sensors will

Sensors 2010, 10 2775

therefore be exposed to the adversary. The adversary can launch sensor compromise attack right after
the sensor deployment in order to maximize its the possibility of subverting the network functionality.
Nevertheless, since each sensor will be reset at the end of each collection interval, we focus on the
security issue in a specific collection interval. We also note that the adversary is a global eavesdropper,
which means that it can eavesdrop on each message transmitted over the network. In addition, the
adversary learns its objective, si and r̄, at the end of round r̄. Note that si and r̄ are unknown to the sink
so that the sink cannot apply protection only on specific sensors.

Figure 2. The adversary also roams around the sensing region and compromises the sensors.
In this plot, the adversary can compromise one sensor at each round, and three sensors are
compromised by the adversary after the first three rounds of a collection interval.

Since the adversary focuses on substituting specific data, with the consideration of the unattended
nature of UWSNs, forward-secure property, which means that the adversary gains no advantage about
the data sensed before the round r from the sensor compromised at the round r, can be useful in resisting
the adversary. Key evolution, in which the key used in round r is evolved from the key used in round r−1

through the cryptographic hash function, is a simple means to provide forward-security. Nevertheless,
forward-secure cryptographic techniques are effective against only reactive adversary, which means that
the adversary starts compromising sensors after it identifies the target, but is of no use when the proactive
adversary, which means that the adversary can compromise sensors even before identifying the target, is
considered. As a consequence, the backward-security, which means that the adversary learns no secret of
the next round, is required. An authentication scheme with both forward-security and backward-security
is called key-insulated, which means that the adversary can learn only the current secret.

4. Proposed Method

For completeness, before describing our proposed authentication scheme, we first briefly review the
ExCo scheme proposed in [4] and describe its three security defeats in more details in Section 4.1 After
that, the basic idea of our proposed Acquire Authentic Data (AAD) method is presented in Section 4.2
Finally, the detailed description of AAD will be presented in Section 4.3

4.1. Motivation

In ExCo, at each round r, each sensor j constructs the MAC zrj of its sensed value drj and sends zrj
to a random subset Rr

j of sensors. Within the round r, each sensor j has certain possibility of receiving
MACs from the other sensors. If this happens, it temporarily keeps them in the local memory. At the

Sensors 2010, 10 2776

end of round r, each sensor j constructs and stores the MAC, Hr
j = MAC(zrj ||zrq1 || · · · ||z

r
qϕ
), where ||

denotes the bit-string concatenation, if it receives MACs from the sensors q1, . . . , qϕ. Afterwards, except
for Hr

j , all the MACs generated and received in the round r are deleted. From the sink point of view, to
authenticate the drj , it involves the verification of MAC, Hr

j , and the MACs in Rr
j , where Rr

j is the set of
sensors that send the authentication tags to sj . Note that the sensors in Rr

j are called the co-authenticators
of sj at round r. For example, if Rr

j contains q1, . . . , qϕ, then, in addition to the verification of Hr
j , the

MACs, Hr
q1
, . . . , Hr

qϕ
are required to be verified as well.

First, although it is claimed in [4] that ExCo is stronger than CoMAC in terms of sensor compromises,
their resilience against sensor compromises is actually the same in practice. Particularly, according
to [4], it is claimed that the adversary needs to compromise all the sensors in {sj} ∪ Rr

j ∪ Sr
j ∪ T r

j ,
where Sr

j is the set of sensors that receive the authentication tags from sj and T r
j is the set of sensors that

send the authentication tags to the sensors in Sr
j , before the round r, to successfully subvert the security

ExCo provides. Nevertheless, if r̄ is the target round, the adversary is aware of r̄ at the round r̄ + 1,
and the adversary only compromises the sensors in {sj} ∪ Rr

j , then the adversary can still provide to
the sink a counterfeit sensed data without being detected. It can proceed as follows. At first, we assume
that, for each round r, each compromised sensor keeps the data received in rounds r − 1 and r in its
local memory. As soon as the compromised sensor sj and compromised sensors in Rr̄

j are aware of r̄,
sj instantly replaces the original sensor reading dr̄j with the value d̂r̄j the adversary wants to report to the
sink. In addition, the compromised sensors in Rr̄

j pretend that they also receive d̂r̄j . Hence, before the end
of round r̄+ 1, sj can collaborate with the sensors in Rr̄

j to generate their own MACs that are consistent
with each other and are consistent with d̂r̄j . With these generated MACs, the d̂r̄j to be reported to the sink
will not be recognized to be counterfeit. Moreover, this is not an attack in an ideal case. Instead, this is
a practical attack, because, in practice, the length of each round will not be too short and the adversary
can be aware of the target round right after something desired happens. Hence, ExCo is not as strong
as [4] claims and has the same security strength as CoMAC.

Second, Exco is vulnerable to PDoS attacks. In particular, after the adversary compromises a few
sensors, these compromised sensors can be used to intentionally inject a large amount of useless traffic
claimed to be the MACs in ExCo to waste the precious energy of sensors so that the network lifetime
will be significantly reduced. Although a simple defense that limits the number of message forwarding
at each sensor seems to be helpful in alleviating PDoS attacks, it is indeed useless because the network
traffic on each sensor cannot be estimated in advance. As a consequence, if some limits are applied on
the number of message forwarding at each sensor, some packets such as transmitted MACs in ExCo will
be dropped somewhere on its way to the destination Under the circumstance, the verification will fail
and some sensor readings will be regarded as falsified ones because some of the co-authenticators cannot
provide the MACs.

Third, ExCo is also vulnerable to FEDoS attacks. In fact, this is a common attack if only a simply
designed collaboration scheme is used. Specifically, after a sensor is compromised and is inquired by the
sink to ask for the MAC used for authenticating the sensed data of the other sensors, it can always reply
a random string to the sink. This implies that some data sensed by genuine sensors will be thought of as
fake. This is because the MACs involved in a large number of sensors are necessary for authentication,
leading to be easily vulnerable to FEDoS attacks. Simply taking the majority of the verification results

Sensors 2010, 10 2777

of MACs from different co-authenticators seems to be helpful in alleviating FEDoS attacks, but it also
reduces the resilience against sensor compromises. As a matter of fact, without the proper design,
there always exists a dilemma of enhancing the resilience against sensor compromises or enhancing the
resilience against FEDoS attacks. In addition, it has been demonstrated [4] that the expected number
ν(n, t) of sensors involved in the authentication of the sensed data of one sensor in ExCo is

ν(n, t) = n
(
1−

(t

n− 1

)2(
1− t

n− 2

)t) (1)

where |Rr
j | = t is the number of co-authenticators. Figure 3 shows different settings of ν(n, t). Here,

we further define a metric Rr, called FEDoS ratio of r, which denotes the ratio of the number of sensors
required to be compromised to the total number of sensors in the network. Note that the parameter r
means that r× 100% of the verifications of sensor readings are affected. FEDoS ratio is used to evaluate
and quantify the resilience against FEDoS attacks. According to the ν(n, t)’s derived as above, R0.5’s in
different settings are shown in Figure 4. It can be observed that when the number of co-authenticators
used in ExCo is 2 and approximately 10% of sensors are compromised, over 50% of sensor readings will
be regarded as bogus by the sink because of the bogus authentication tags provided by the compromised
sensors. When t = 4, less than 2% of sensor compromises would result in above 50% of contaminated
sensor readings, which will be a disaster in terms of the network security.

Figure 3. Expected number ν(n, t) of sensors involved in the authentication of the sensed
data of one sensor.

0
200

400
600

800
1000

0

2

4

6

8

10
0

20

40

60

80

100

120

n
t

nu
m

be
r

of
 s

en
so

rs
 in

vo
lv

ed
 in

 th
e

au
th

en
tic

at
io

n

4.2. Basic Idea

The previous methods are vulnerable to PDoS attack because each sensor can arbitrarily select distant
sensors, and sends the authentication tag to the selected sensors. To deal with this problem, our approach
is straightforward but effective, i.e., we restrict that the sensor to which the authentication tag is sent

Sensors 2010, 10 2778

Figure 4. R0.5’s in different settings.

0
200

400
600

800
1000

2
4

6
8

10

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t
n

R
0.

5

cannot be too far away from the sensor sending the authentication tag. Clearly, the effect of PDoS attack
can be mitigated because the energy waste due to the message relaying on the intermediate sensors can
be reduced. Afterwards, the problem turns to be the design of a proper mechanism that can support the
query of proximity information. Here, with the observation that the mobile sink in UWSNs is able to
harvest the sensed data because it knows the position of each sensor, different Bloom filters containing
different proximity information are stored in different sensors for the query purpose.

On the other hand, the reason that the prior methods suffer from the FEDoS attacks is due to the fact
that the compromised sensor can always provide an MAC claimed to be legitimate to the sink. All the
sink can do is to verify the data authenticity according to the received MACs. Nevertheless, the received
authentication tag could be a random string generated by the compromised sensor, and therefore, the
sink declines to accepting the authenticated data. In this respect, our idea is that the MAC used in the
authentication procedure should be made in a specific fashion so that the legitimacy of the authentication
tag can be verified by the sink before the sink verifies the data authenticity. It should be noted that our
defense against FEDoS attacks can also enhance the resilience against sensor compromises. This reveals
a particular merit of our method over ExCo.

4.3. Proposed Method: AAD

Our proposed AAD scheme consists of five phases: pre-deployment phase, post-deployment phase,
sensing phase, receiving/forwarding phase, and verification phase. The pre-deployment phase is
executed by the network owner to store necessary materials into the sensors. As its name shows, the
post-deployment phase is performed by the sink right after the sensor deployment in order to store the
materials required for the authentic data acquisition in the sensors. Sensing phase is executed by each
sensor so as to sense data, and distribute the sensed data and the necessary MACs. Once receiving the

Sensors 2010, 10 2779

packet, each sensor executes forwarding phase to forward the received message to the destination sensor.
Verification phase is performed by the sink to collect the sensed data and verify their authenticity. The
notations used in the following discussion are listed in Table 1. The details of these five phases are
described as follows.

Table 1. Notation table.

Notation Description

sj The sensor j
r The r-th round
drj The data sensed by sj at round r

kr
j The key used by sj at round r

Ekrj
(drj) The encryption of drj with key kr

j

zrj = hkrj
(drj) The hash value of drj with key kr

j

Sr
j A random subset of sensors selected by sj at round r

t̄rj The number of co-authenticators selected by sj at round r

Pre-Deployment Phase. For each sensor sj , the sink randomly selects a unique key Kj and a prime
number pj . Note that the prime numbers to be stored in different sensors should be chosen to be distinct.
Afterwards, Kj and pj are stored in the sensor sj . The sensors are then deployed over the sensing region.

Post-Deployment Phase. Let λ be a user-selected parameter, which leverages the security and the
energy consumption. The post-deployment phase is used to equip each sensor with a proper Bloom filter
for the query of its λ-hop proximity relationship. Here, we say that the sensor sj has λ-hop proximity
relationship with the sensor si (or, sj is the λ-hop neighbor of si) if the hop distance between sj and si is
within λ. The post-deployment phase is automatically accomplished when sensors are deterministically
deployed by the sink. This is because when deploying the sensor sj , the sink can also store the Bloom
filter Bj containing the λ-hop proximity information of sj in sj , given that the position of each sensor is
pre-determined by the network owner.

On the other hand, the post-deployment phase will be accomplished within a period of time right after
the sensor deployment if sensors are randomly deployed. More specifically, after the sensor deployment,
each sensor acquires its geographic position using well-known positioning techniques [16–19], and then
reports the acquired position to the sink. Such a reporting should be accompanied by the message
authentication code (MAC) with the unique key Kj so that the authenticity of the reported position
can be guaranteed. Note that, the falsified position information could be injected by the adversary.
Nevertheless, the falsified position information will be found by the sink because the sink will move to
the position, trying to collect the sensed data. Thus, if falsified positions are injected by the adversary,
they will be easily detected. After receiving each sensor’s position information, the sink first checks its
authenticity by examining whether it has the correct MAC. In particular, when the received message is
⟨ℓj, ~⟩, if ~ is equal to hKj

(ℓj), then ℓj is regarded as the position of sj . With the geographic position of
each sensor, the sink can construct the network graph, wherein the vertices denote the sensors and the
edge between two vertices exists if the corresponding sensors can communicate with each other directly,
according to the communication range predefined on each sensor. With the constructed network graph,

Sensors 2010, 10 2780

the sink can be aware of the λ-hop proximity relationship of each sensor. Now, before the sensors start
to sense data, the mobile sink starts its first itinerary over the network. For the contact of each sensor
sj , the sink stores a Bloom filter, Bj , containing the λ-hop proximity information of sj , in sj . Bj can
be constructed by the sink according to the topology of the network graph. Specifically, for each si that
has λ-hop proximity relationship with sj , the sink embeds sj||si into Bj . Note that although the number
of λ-hop neighbors of sj could be different for each sj , the size of Bloom filter used is chosen to be
the same.

Sensing Phase. The description of sensing phase is shown in Figure 5. The sensing phase is executed
by each sensor at each round. The sensor sj constructs the corresponding MAC, zrj = hkrj

(drj), after it
has the sensed data drj at round r. If the sensed data and corresponding MAC are simply stored in its local
memory, once the sensor is compromised by the adversary, all the security materials will be exposed to
the adversary, and drj and zrj can be arbitrarily generated so that the security breach will occur. Thus,
in the sensing phase, the sensed data and its corresponding MACs of a sensor will be distributed over
some sensors randomly chosen from its λ-hop neighbors. Specifically, a subset Sr

j of t sensors is first
randomly sampled from {s1, . . . , sn} (line 3 in Figure 5). SELECT − DISTINCT (t, n, j, kr

j) is a
function randomly generating t sensor IDs from {s1, . . . , sn} \ {sj}. It can be implemented by using
the hash function whose output is of length ⌈log n⌉ bits. Then, a subset S̄r

j of Sr
j is constructed by

choosing the sensors in Sr
j whose hop distance to sj is within the pre-determined threshold λ. Here,

each sensor sj uses the Bloom filter Bj constructed in post-deployment phase to check the hop distances
to the randomly selected sensors in S̄r

j . To construct S̄r
j , what each sensor sj needs to do is to check

whether the sj itself has λ-hop proximity relationship with the generated sensors in Sr
j . For example, for

si ∈ Sr
j , the sensor issues sj||si to query Bj . We can know that si ∈ S̄r

j if the query result is positive
and si /∈ S̄r

j otherwise (line 4 in Figure 5). Afterwards, the MAC, zrj , is transmitted to the sensors in
S̄r
j . Note that S̄r

j = t̄rj may vary as j and r vary. In general, t̄rj is not a constant. Nonetheless, for ease
of the explanation, t̄rj is described as if it is a constant. In the following, the term “authentication tag of
sj” is used to denote zrj and the term “co-authenticator of sj at round r” is used to denote the sensors
in S̄r

j . Then, sj , according to drj , derives Ekrj
(drj) and zrj to guarantee the data privacy and authenticity,

respectively. Lastly, sj sends Ωr
j to the sensors in S̄r

j whose second and third fields are always fixed to
be 1 (lines 5 and 6 in Figure 5).

Sensors 2010, 10 2781

Figure 5. The algorithm of sensing phase.

Receiving/Forwarding Phase. The algorithm of this phase is described in Figure 6. This phase is
executed by each sensor when a message is received. According to the role it acts, each sensor executes
different tasks (lines 1∼7 in Figure 6); the receiving task will be executed if the received message is
destined to itself, and the forwarding task (lines 8∼13 in Figure 6) is performed otherwise. Assume that
sj is the forwarding sensor and receives Ω = ⟨si, P, C,E, Z, si′⟩ (line 9 in Figure 6). At first, sj checks
if it has λ-hop proximity relationship to the destination sensor si′ (lines 9∼13 in Figure 6). sj proceeds
the procedures if sj has λ-hop proximity relationship to the destination sensor si′ and drops the received
Ω otherwise. sj then adds the existence evidence of itself on the forwarding path on Ω so that the sink
can check whether the received authentication tag passes through exactly those sensors it should pass.
To achieve this goal, sj applies the keyed hash function with its secret key kr

j on Z to have hkrj
(Z).

Moreover, to enable the sink to accomplish the verification, the information about the forwarding path
should be included in Ω; it is the usage of P and C in Ω. C means that sj is on the (C + 1)-th sensor
of the forwarding path and P can be used to extract all the sensor IDs on the forwarding path (The
details will be stated in the description of the verification phase later). More specifically, after receiving
Ω, sj increases C by one and multiplies P with pC+1

j , where pj is the prime number stored in sj in
pre-deployment phase. Afterwards, the packet ⟨si, P · pC+1

j , C + 1, E, hkrj
(Z), si′⟩ will be forwarded to

the next sensor on the forwarding path. Note that the selection of the next sensor depends on the routing
protocol the underlying network uses and is not the focus of this paper. Nevertheless, due to the fact that
each sensor knows its position, geographic routing [20] is a reasonable choice.

On the other hand, assume that sj is the destination sensor and receives Ω = ⟨si, P, C,E, Z, sj⟩
(line 4 in Figure 6). Under this situation, sj simply extracts ⟨si, P, E, Z⟩ from Ω and then stores it into
an ordered set Rr

j (line 5 in Figure 6). At the end of the round r, the key kr
j will be evolved to the key

kr+1
j of the next round r + 1 using the publicly-known hash function h (line 7 in Figure 6).

Sensors 2010, 10 2782

Figure 6. The algorithm of receiving/forwarding phase.

Verification Phase. The algorithm describing the verification phase is shown in Figure 7. Assume
that the sink would like to obtain the data dr̄j sensed by sensor sj at the round r̄. What the sink should
do is to perform the verification phase. Since the initial key of sj is given by the sink, the key kr̄

j will be
known by the sink. Thus, the co-authenticators of sj at r̄ will also be known by the sink. This prevents the
traces from being deleted by the adversary. The strategy of the sink is to move to the positions near those
co-authenticators to collect dr̄j , acquiring the proper authentication tags. More specifically, assume that
the co-authenticators of sj are sq1 , . . . , sqt̄r̄

j

, sq1 , . . . , sqt̄r̄
j

∈ {1, . . . , n} \ {j}. For each sqi , i ∈ [1, t̄r̄j], the

sink acquires Rr̄
i and extracts ⟨sj, P, E, Z⟩ (lines 3∼4 in Figure 7). Here, ⟨sj, P, E, Z⟩’s extracted from

different co-authenticators will not be the same in essence. We, however, omit the necessary subscript
and superscript of P,E, and Z without the ambiguity for convenience. From the acquired ⟨sj, P, E, Z⟩,
with the proper key, the sink can decrypt to obtain the d̄r̄j (line 6 in Figure 7), which is claimed by
sqi to be the data sensed by sj at round r̄. Based on the decrypted d̄r̄j , the sink would try to verify if
the authentication tag can be regenerated to match the authentication tag extracted from Rr̄

i . Here, to
reproduce the authentication tag, the sink needs to obtain the sensor IDs on the forwarding path of Ω in
the correct order. Then, since the sink knows the keys of all the sensors on the forwarding path, if we
can know that sj → sm1 → sm2 → · · · → smϕ

is the correct order of sensors on the forwarding path
connecting sj and sqi , the sink can construct hkr̄j

(hkr̄m1
(· · ·hkr̄mϕ

(hr̄
ksqi

(d̄r̄j)) · · ·)), where sm1 , . . . , smϕ

are the sensors on the route from sj to sqi , and see if it is equal to the authentication tag extracted
from ⟨sj, P, E, Z⟩. To know sm1 , . . . , smϕ

(line 5 in Figure 7), the sink simply performs prime number
factorization of P , obtaining p̂1x1

, p̂2x2
, . . . , p̂ϕxϕ

, where ϕ is the length of the path connecting the sensor sj
and its co-authenticator being examined by the sink. Here, we should note that ϕ varies when different
co-authenticators are considered. Nonetheless, for ease of explanation, we also omit the necessary
subscript and superscript. Then, the sink knows that smi

= sxi
for all 1 ≤ i ≤ ϕ. Note that after

Sensors 2010, 10 2783

the factorization of P , if P cannot be represented as the form of p̂1x1
, p̂2x2

, . . . , p̂ϕxϕ
, then the authentication

material provided by the co-authenticator being examined will be ignored. The authentication material
⟨sj, P, E, Z⟩ extracted from sqi is dropped by the sink if the regenerated authentication tag does not
match the authentication tag in ⟨sj, P, E, Z⟩ (line 7 in Figure 7). The decrypted data d̄r̄j is stored if
hkr̄j

(hkr̄m1
(· · ·hkr̄mϕ

(hr̄
ksqi

(d̄r̄j)) · · ·)) is equal to the authentication tag extracted from Rr̄
i . After the sink

accomplishes the above procedures, if no authentication tag can be successfully verified, then all the data
claimed to be the data sensed by sj at round r̄ are dropped. Assume that the sink accomplishes the above
procedures and at least one authentication tag of co-authenticators can be successfully verified. If and
only if d̄r̄j extracted from the authentication materials sent from co-authenticators are all the same, d̄r̄j are
regarded as genuine (lines 9∼12 in Figure 7).

Figure 7. The algorithm of verification procedure.

Example. Assume that λ = 3 and a specific round r is considered. For the sensor s1, we have the
assumption that dr1 = 5, kr

1 = 7, Ekr1
(dr1) = E7(5) = 10, and zr1 = h7(5) = 8. In addition, we assume

that after the execution of SELECT −DISTINCT and the checking procedure on Bj , S̄r
1 = {s6, s7}.

Suppose that the shortest path connecting s1 and s6 is s1 → s2 → s3 → s6, and the shortest path
connecting s1 and s7 is s1 → s4 → s5 → s7. The network topology in this example is shown in
Figure 8. Then, since s1 has to transmit E7(5) and zr1 to s6 and s7, s1 will
send Ωr

1 = ⟨s1, 1, 1, Ekr1
(5), zr1, s6⟩ and Ωr

1 = ⟨s1, 1, 1, Ekr1
(5), zr1, s7⟩ to s2 and s3, respectively. Since

the sensors on these two paths work similarly, we only discuss the path s1 → s2 → s3 → s6. When s2

receives ⟨s1, 1, 1, 10, 8, s6⟩, it first check its λ-hop proximity relationship to s1. Here, since we assume
that λ = 3, the check can be passed. Thus, assuming that p2 = 3, s2 forwards ⟨s1, 9, 2, 10, hkr2

(8), s6⟩
to s3. Similarly, if we assume that p3 = 7, after receiving ⟨s1, 9, 2, 10, hkr2

(8), s6⟩, s3 sends

Sensors 2010, 10 2784

⟨s1, 3087, 3, 10, hkr3
(hkr2

(8)), s6⟩ to s6. When s6 receives ⟨s1, 3087, 3, 10, hkr3
(hkr2

(8)), s6⟩, it stores
⟨s1, 3087, 10, hkr6

(hkr3
(hkr2

(8))), s6⟩ in its local memory.

Figure 8. The network topology in the example.

Now consider that the sink wants to obtain dr1. In our method, the sink has to perform two verifications
on s6 and s7. Basically, because the verification performed on s6 is the same as the one performed on s7,
we only describe the one performed on s6. From s6, the sink can obtain ⟨s1, 3087, 10, hkr6

(hkr3
(hkr2

(8)))⟩.
After performing the prime number factorization of the value 3087, the sink can know that
3087 = 32 × 73, which means that the second hop sensor and the third hop sensor on the path
connecting s1 and s6 are s2 and s3, respectively. The sink also extracts d̄r̄j = 5 from Ekr1

(5) = 10.
Then, the sink checks if hkr6

(hkr3
(hkr2

(8))) is equal to the value obtained by sequentially applying three
keyed hash functions hkr2

(·), hkr3
(·), and hkr6

(·) on zr1 = 8. d̄r̄j will be temporarily stored if the above
check is passed and dropped otherwise. Finally, when all the co-authenticators are visited, the sink
checks the consistency of d̄r̄j’s obtained from different co-authenticators. Note that for the notational
simplicity, we do not put additional subscript on d̄r̄j to distinguish different d̄r̄j’s obtained from different
co-authenticators. d̄r̄j is deemed to be genuine if they are consistent and bogus otherwise.

5. Performance and Security Analysis

In the section, the performance and security of AAD will be evaluated. Recall that at each round r,
the adversary is able to compromise the set Cr of k sensors. Without the loss of generality, we assume
in the subsequent discussion that Cr ∩ Cr′ = ∅ if r ̸= r′.

5.1. Security Analysis

In what follows, the resilience of AAD against sensor compromises, PDoS attack and FEDoS attack
will be described, respectively.

Resilience Against Sensor Compromises. Let d̂r̄j be the counterfeit data the adversary constructs to
substitute dr̄j . For the adversary, to successfully deceive the sink into accepting the bogus d̂r̄j , it needs to
compromise all the sensors in S̄ r̄

j and ES̄r̄
j
, where ES̄r̄

j
denotes the set of all the sensors on the route from

sj to the sensors in S̄ r̄
j , before the target round r̄. In other words,

S̄ r̄
j ∪ ES̄r̄

j
⊆ {C1, . . . , Cr̄} (2)

Sensors 2010, 10 2785

Compromising the sensors in S̄ r̄
j is used to substitute the authentication tag corresponding to d̂r̄j while

compromising the sensors in ES̄r̄
j

aims to know the keys stored in the sensors in ES̄r̄
j

so that the legitimacy
of the bogus authentication tag can also be counterfeited.

To evaluate the resilience of AAD against the sensor compromises, we have to estimate the number
of sensors involved in the authentication procedure of one datum in AAD. Let |Nσ| be the number
of sensors that is exactly σ-hop away from a specific sensor in a randomly deployed network. Before
starting to estimate the number of sensors involved in the authentication procedure of one datum in AAD,
we first need to know how to calculate |Nσ|, 1 ≤ σ ≤ λ. Obviously, |Nσ| is dependent on the size of
the sensing region, the number n of sensors, and the communication range R of each sensor. Although
|N1| = πR2 n

A
−1 can be easily obtained, there is no explicit formula for the expression of Nσ for σ ≥ 2.

An approximation of |Nσ| is calculated in [21]. Although the calculation of N1 is straightforward and
the calculation of N2 is not difficult, calculating N3 is quite difficult. Considering two sensors a and
b with communication range being r. There could be the case that b lies in the communication disk
centered at a with the radius 3r but a cannot reach b via the exactly 3-hop communication. Even if b
which lies in the communication disk centered at a with the radius 3r can reach a, we have to make sure
whether they can communicate with each other via 3-hop communication or they can communicate with
each other via 2 or 1-hop communication. Simultaneously considering all these kinds of possibilities
is an extremely difficult task. To the best of our knowledge, no exact formula has been proposed to
deal with the calculation of Nσ. As [21] indicates, Nσ is well approximated by using their proposed
approximation formula. In our AAD scheme, for the energy conservation, λ is usually not too large,
which means that we do not need to consider Nσ for large σ. Thus, although the approximation formula
of Nσ gradually deviates from the true Nσ as σ increases, it is still sufficient for our use. Therefore,
in the following discussion, we refer to [21] for the derivation of |Nσ|, 2 ≤ σ ≤ λ. For 1 ≤ σ ≤ λ,
the probability of randomly selecting a sensor whose hop distance to the sensor sj is exactly σ can be
expressed as |Nσ |

n
. Therefore, the probability of randomly selecting a sensor whose hop distance to sj

is within λ is
∑λ

σ=1 |Nσ |
n

, and the expected number of randomly chosen sensors whose hop distance to

sj is within σ is
∑λ

σ=1 |Nσ |
n

· t when t sensors are randomly chosen. These
∑λ

σ=1 |Nσ|
n

· t sensors exactly
constitute the set of sensors in S̄ r̄

j . Recall that one of the characteristics of Bloom filter is that the query
result is always correct if the content to be queried is indeed stored in the Bloom filter. Thus, we have
t̄rj =

∑λ
σ=1 |Nσ |

n
· t. On the other hand, all the sensors on the route to the sensors in S̄ r̄

j also contribute to
the authentication procedure. As the number of these sensors is difficult to be precisely calculated, we
will approximate it by assuming that the routes to the selected sensors in S̄ r̄

j are non-overlapping. For
each sensor si that is exactly σ-hop away from sj , σ−1 sensors lie on the route between sj and si. Thus,∑λ

σ=1
|Nσ |
n

t(σ− 1) sensors are involved when
∑λ

σ=1 |Nσ|
n

t sensors are in S̄ r̄
j . It implies that, |S̄ r̄

j ∪ES̄r̄
j
| can

be upper bounded by:

|N1|
n

t(1 + 0) + · · ·+ |Nλ|
n

t(1 + λ− 1)

=
λ∑

σ=1

|Nσ|
n

tσ (3)

Because of our assumption that the routes from sj to the sensors in S̄ r̄
j are non-overlapped, this

value overestimates |S̄ r̄
j ∪ ES̄r̄

j
| and, thus, can only work as the upper bound of |S̄ r̄

j ∪ ES̄r̄
j
|. In practice,

Sensors 2010, 10 2786

the approximation of |S̄ r̄
j ∪ ES̄r̄

j
| in Equation (3) is quite accurate when the ratio

t̄rj
η

, where η denotes
the average number of one-hop neighbors for a sensor, is sufficiently small. Nonetheless, since we know
that the fewer the sensors involved in the authentication procedure, the lower the resilience against sensor
compromises, even Equation (3) provides a good approximation of |S̄ r̄

j ∪ ES̄r̄
j
| in most cases and can be

used to estimate the upper bound of communication overhead in Section 5.2, we still need a lower bound
of |S̄ r̄

j ∪ES̄r̄
j
| to derive the lower bound of the resilience of AAD against sensor compromises. In essence,

even if the setting of t̄rj ≥ 1 is used, the lower bound of |S̄ r̄
j ∪ES̄r̄

j
| can be obtained according to the setting

of t̄rj = 1. By the similar calculation as in Equation (3), we can know that |S̄ r̄
j ∪ ES̄r̄

j
| ≥ L(λ, n), where

L(λ, n) =
λ∑

σ=1

|Nσ|
n

σ (4)

Define PADV as the probability that the event described in Equation (2) happens. Thus, for the
adversary that always randomly compromises the sensors over the whole network, the upper bound
of probability PADV can be obtained as:

(n−L(λ,n)
kr̄−L(λ,n))
(n
kr̄)

if kr̄ ≤ n

1 if kr̄ > n
(5)

With kr̄ > n, it means that all the sensors are compromised and the whole network is in the complete
control of the adversary. On the other hand, with kr̄ ≤ n, there are

(
n
kr̄

)
ways to compromise the sensors

in the networks and at least
∑λ

σ=1
|Nσ|
n

σ specific sensors should be included in the set {C1, . . . , Cr̄} of
compromised sensors. As a result, the upper bound of PADV defined in Equation (5) holds. Here, it
should be noted that instead of compromising random sensors over the network, the adversary that is
aware of the application of AAD on the network may intentionally compromise the sensors in the nearby
region of sj so as to increase its success probability PADV . Nevertheless, this strategy is infeasible for
the adversary since the target sensor sj and the target round r̄ are known only after the end of the target
round. Thus, without the prior knowledge of the target sensor, in general, what the adversary can do is
only to randomly compromise the sensors over the network. Define PAAD as the survival probability,
the probability that the data dr̄j remain unforged can be calculated as:

PAAD = 1− PADV (6)

Because of the upper bound of PADV in Equation (5), the lower bound of PAAD can be represented as: 1− (n−L(λ,n)
kr̄−L(λ,n))
(n
kr̄)

if kr̄ ≤ n

0 if kr̄ > n
(7)

PAAD’s in different settings are shown in Figure 9. Note that the dotted line represents the lower bound
of PAAD in the setting of n = 100, k = 10, and |N1| = 10, irrespective of the parameter t used in
AAD. Although the dashed line and solid line act as the upper bound of PAAD in the setting of n = 100,
k = 10, and |N1| = 10. They, however, are pretty accurate approximations of PAAD in a relatively
dense network. We can observe that the curve of survival probabilities generated by the use of AAD
with the parameters t̄rj = 3 and λ = 5 is close to that in [4] with 15 co-authenticators used in their

Sensors 2010, 10 2787

Figure 9. PAAD in the setting of n = 100, k = 10, and |N1| = 10.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

target round

P
A

A
D

λ=3, t
j
r=1

λ=5, t
j
r=2,

λ=5, t
j
r=3

proposed protocol. Therefore, we can also claim that, when the similar level of security is required, the
communication overhead incurred by AAD is lower than that incurred by prior works.

Resilience Against PDoS attacks. In general, the adversary is always able to launch PDoS attacks.
In other words, PDoS attacks can only be mitigated, but not eliminated. The evaluation method similar
to the ones used in [22–25] is conducted here to demonstrate the superiority of AAD over CoMAC
and ExCo in terms of the resilience against PDoS attacks. Recall that the resilience of CoMAC and
ExCo are the same. Let LAAD and LExCo be the bit-length of the authentication material of AAD and
ExCo, respectively. Assume that a MAC is of length 128 bits and an encrypted data is also of length
128 bits. In AAD, the field representing the counter C is assumed to be of length 8 bits because the
setting of λ ≤ 28 − 1 is sufficient in most cases. The field representing the aggregated prime number
P is assumed to have 32 bits. Assume that in total n sensors are deployed. Consequently, LAAD can
be calculated as 128 + 128 + 32 + 8 + 32 + 2

√
n = 328 + 2

√
n bits. On the other hand, since the

authentication material only contains the authentication tag, the size of LExCo is 128 + 2
√
n bits. For

a flat network whose n sensors are uniformly distributed, the average hop distance between arbitrary
two sensors is

√
n [26]. In the following evaluation, it is assumed that the compromised sensor sends

bogus message to a random sensor, instead of sending to the most distant sensors. Also note that such
evaluation is advantageous to the calculation of ExCo’s energy consumption but is disadvantageous to
the calculation of ours. Nevertheless, such evaluation will imply the lower bound of the energy saving
of our AAD over ExCo. We can know from [23] that when telosB motes [27] are used, the energy for
receiving one bit requires 0.2707µJ and the energy for transmitting one bit requires 0.2505µJ. In ExCo,
the energy EExCo wasted by the forwarding of one single bogus message in the PDoS attack is therefore
0.5212 · (

√
n− 1) · LExCo = 0.5212 · (

√
n− 1) · (128 + 2

√
n)µJ. In AAD, the energy EAAD wasted by

the forwarding of one single bogus message in the PDoS attack is therefore 0.5212 · (λ − 1) · LAAD =

0.5212 · (λ− 1) · (328+ 2
√
n)µJ. Hence, the ratio of energy saving of our AAD method to ExCo can be

Sensors 2010, 10 2788

expressed as 0.5212·(λ−1)·(328+2
√
n)

0.5212·(
√
n−1)·(128+2

√
n)

and is depicted in Figure 10. Since the ratio less than one means that
the energy consumed by AAD is lower than that consumed by ExCo, we can observe in Figure 10 that in
most cases the energy consumption of AAD is lower than that of ExCo. Note that the energy calculation
is based on the energy consumed by the message transmission from the source to the destination. Since
the adversary can always launch PDoS attacks, the calculation is independent of the parameter t. The
energy saving of AAD is due to the use of λ in restricting the number of hops used to relay the messages.

Figure 10. The ratio of energy saving of our AAD method over ExCo in different settings.

0
200

400
600

800
1000 1

2
3

4
50

0.2

0.4

0.6

0.8

1

1.2

1.4

λ
n

R
at

io
 o

f e
ne

rg
y

sa
vi

ng

Resilience Against FEDoS attacks. Recall that FEDoS attacks aim to deceive the sink into rejecting
the genuine sensor readings by providing false authentication tags. FEDoS attacks easily work because
what the sink can trust is only the authentication tag the co-authenticators provide. Therefore, if one
of co-authenticators is compromised, the false authentication tag generated by it makes FEDoS attack
successful. Nevertheless, in AAD, for a compromised sensor that happens to be a co-authenticator of the
data of the sink’s interest, it cannot simply generate and then provide a random bit string acting as the
authentication tag to the sink. Instead, together with the claimed authentication tag, some additional
information should be accompanied so that before accepting the received bit string as the genuine
authentication tag, the sink can check the legitimacy of the claimed authentication tag. Specifically,
P and E serve for this purpose. From the algorithm of the verification phase summarized in Figure 7,
it can be observed that for the route to a specific co-authenticator, unless the keys of all the sensors on
the route are known by the adversary and the corresponding co-authenticator is compromised prior to
the round r̄, the authentication tag cannot be counterfeited. We have an interesting observation that, in
the case where t̄r̄j = 1, successfully launching FEDoS attacks is as difficult as successfully replacing the
data on the target sensor at the target round because they all need to compromise the sensors in S̄ r̄

j and
the sensors on the route from the target sensor to the sensor in S̄ r̄

j . Here, we also employ FEDoS ratio to
evaluate the resilience of AAD against FEDoS attacks. When the average number |N1| of the one-hop

Sensors 2010, 10 2789

number of the sensor in a network is 5, R0.5’s of AAD in different settings are shown in Figure 11.
When the average number |N1| of the one-hop number of the sensor in a network is 10, R0.5’s of AAD
in different settings are shown in Figure 12. It can be known from Figures 11 and 12 that the resilience
of AAD against FEDoS attacks is independent of the network topology such as the sensor density and
the number of sensors. In addition, it can be observed that, as t̄rj increases, R0.5 will be decreased.
The reason for this phenomenon is that, the increase of t̄rj means the increase of the number of sensors
involved in the authentication procedure, resulting in the possibility of the adversary compromising the
involving sensors and launching FEDoS attacks.

Figure 11. R0.5’s of AAD in different settings (|N1| = 5).

02004006008001000

1

2

3

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

t
j
r

n

R
0.

5

Figure 12. R0.5’s of AAD in different settings (|N1| = 10).

02004006008001000

1

2

3

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

t
j
r

n

R
0.

5

Sensors 2010, 10 2790

5.2. Performance Analysis

Storage Overhead. Each sensor needs to store a Bloom filter, key, and prime number. They imply the
constant storage overhead. At each round r, each sensor sj sends t̄rj authentication materials, ⟨j, P, E, Z⟩,
to the randomly selected sensors. As a collection interval consists of v rounds, we therefore know that
the storage overhead of each sensor in each collection interval is O(v · t̄rj).

Communication and Computation Overhead. As described in Section 5.1, the upper bound of the
number of sensors involved in the authentication procedure for a single datum is

∑λ
σ=1

|Nσ |
n

tσ. Since each
involved sensor performs either sending or receiving operation, the number of involved sensors can be
used to estimate the communication and computation overhead of AAD. As the size of the authentication
material is constant in terms of the network size, n, the communication overhead of each sensor in AAD
is O(

∑λ
σ=1

|Nσ|
n

tσ). In addition, as the number of the operations needed to be performed is also a constant
in terms of the network size, the communication overhead of each sensor in AAD is O(

∑λ
σ=1

|Nσ |
n

tσ)

as well.

6. Conclusions

In this paper, a scheme, called AAD, is proposed to Acquire Authentic Data in UWSNs. AAD
has superior resilience against sensor compromises over the prior works. Compared with the existing
methods that are vulnerable to PDoS and FEDoS attacks, AAD can also be resilient against PDoS and
FEDoS attacks. Interestingly, the communication overhead, which dominates the energy consumption
of sensor networks, can be even lower than that of prior works. The efficiency and effectiveness of AAD
have been demonstrated via the analysis and simulation.

In addition to the PDoS and FEDoS attacks considered in the paper, there are actually many attacks
that need to be considered too. Thus, one of future works is to equip our proposed AAD scheme with the
ability to defend against radio jamming attacks. In addition, we also consider the possibility of mobile
sensors in future applications. For example, the sensors may cruise a given area to collect the data of
interest. For now, our method cannot apply to such scenario because our AAD scheme heavily relies on
the invariant position information of each sensor. Hence, another future work is to develop a variant of
AAD so that it can work on the mobile sensor networks.

Acknowledgements

This paper was supported, in part, by the National Science Council, Taiwan, ROC, under grant NSC
98-2221-E-001-004-MY3.

References

1. Pietro, R.D.; Mancini, L.V.; Spognardi, A.; Soriente, C.; Tsudik, G. Catch Me (If You Can):
Data Survival in Unattended Sensor Networks. In Proceedings of IEEE International Conference
on Pervasive Computing and Communications (PerCom), Hong Kong, China, March 2008;
pp. 185-194.

Sensors 2010, 10 2791

2. Trident Systems, Tridents Family of Unattended Ground Sensors. Available online:
http://www.tridsys.com/white-unattended-ground-sensors.htm (accessed on 21 December 2009).

3. Ma, D.; Tsudik, G. Extended Abstract: Forward-Secure Sequential Aggregate Authentication. In
Proceedings of IEEE Symposium on Security and Privacy (S&P), Oakland, CA, USA, May, 2007;
pp. 86-91.

4. Pietro, R.D.; Spognardi, A.; Soriente, C.; Tsudik, G. Collaborative Authentication In Unattended
WSNs. In Proceedings of ACM Conference on Wireless Network Security (WiSec), Zurich,
Switzerland, March, 2009; pp. 237-244.

5. Deng, J.; Han, R.; Mishra, S. Defending against Path-based DoS Attacks in Wireless Sensor
Networks. In Proceedings of ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN),
Alexandria, VA, USA, November, 2005; pp. 89-96.

6. Krauß, C.; Schneider, M.; Eckert, C. Defending Against False-endorsement-based Dos Attacks
in Wireless Sensor networks. In Proceedings of ACM Conference on Wireless Network Security
(WiSec), Alexandria, VA, USA, March, 2008; pp. 13-23.

7. Broder, A.; Mitzenmacher, M. Network Applications of Bloom Filters: A Survey. Internet Math.
2005, 1, 485-509.

8. Pietro, R.D.; Mancini, L.V.; Soriente, C.; Spognardi, A.; Tsudik, G. Data Security in Unattended
Wireless Sensor Networks. IEEE Trans. Comput. 2009, 58, 1500-1511.

9. Ma, D.; Tsudik, G. DISH: Distributed Self-Healing in Unattended Sensor Networks. In
Proceedings of International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), Detroit, MI, USA, November 2008; pp. 47-62.

10. Pietro, R.D.; Ma, D.; Soriente, C.; Tsudik, G. POSH: Proactive co-Operative Self-Healing in
Unattended Wireless Sensor Networks. In Proceedings of IEEE International Symposium on
Reliable Distributed Systems (SRDS), Napoli, Italy, October 2008; pp. 185-194.

11. Ma, D.; Soriente, C.; Tsudik, G. New Adversary and New Threats: Security in Unattended Sensor
Networks. IEEE Netw. 2009, 23, 43-88.

12. Yavuz, A.; Ning, P. Hash-Based Sequential Aggregate and Forward Secure Signature for
Unattended Wireless Sensor Networks. In Proceedings of the Sixth Annual International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
(MobiQuitous), Toronto, Canada, July 2009.

13. Boukerche, A.; Turgut, D. Secure Time Synchronization Protocols for Wireless Sensor Networks.
IEEE Wirel. Commun. 2007, 14, 64-69.

14. Ganeriwal, S.; Pöpper, C.; Čapkun, S.; Srivastava, M.B. Secure Time Synchronization in Sensor
Networks. ACM Trans. Inf. Syst. Secur. 2008, 11, 24:1-24:35.

15. Sun, K.; Ning, P.; Wang, C. Secure and Resilient Clock Synchronization in Wireless Sensor
Networks. IEEE J. Sel. Area. Commun. 2006, 24, 395-408.

16. Capkun, S.; Hubaux, J.P. Secure Positioning of Wireless Devices with Application to Sensor
Networks. In Proceedings of IEEE Conference on Computer Communications (INFOCOM),
Miami, FL, USA, March, 2005; pp. 1917-1928.

17. Capkun, S.; Hubaux, J.P. Secure Positioning in Wireless Networks. IEEE J. Sel. Area. Commun.
2006, 24, 221-232.

Sensors 2010, 10 2792

18. Lazos, L.; Poovendran, R. Serloc: Secure Range-Independent Localization for Wireless Sensor
Networks. In Proceedings of ACM Workshop on Wireless Security (WiSe), Philadelphia, PA, USA,
October, 2004; pp. 21-30.

19. Zhang, Y.; Liu, W.; Lou, W.; Fang, Y. Location-based Compromise Tolerant Security Mechanisms
for Wireless Sensor Networks, IEEE J. Sel. Area. Commun. 2006, 24, 247-260.

20. Karp, B.; Kung, H.T. GPSR: Greedy Perimeter Stateless Routing for Wireless Networks.
In Proceedings of the 6th Annual ACM International Conference on Mobile Computing and
Networking (MobiCom), Boston, MA, USA, August 2000; pp. 243-254.

21. Ma, L.; Cheng, X.; Liu, F.; An, F.; Rivera, J. iPAK: An In-situ Pairwise Key Bootstrapping Scheme
for Wireless Sensor Networks. IEEE Trans. Parall. istrib. Sys. 2007, 18, 1174-1184.

22. Ren, K.; Lou, W.; Zhang, Y. LEDS: Providing Location-aware End-to-end Data Security in
Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2006, 7, 585-598.

23. Yu, C.M.; Lu, C.S.; Kuo, S.Y. A Simple Non-Interactive Pairwise Key Establishment Scheme in
Sensor Networks. In Proceedings of IEEE Communications Society Conference on Sensor, Mesh
and Ad hoc Communications and Networks (SECON), Rome, Italy, June, 2009.

24. Ye, F.; Luo, H.; Lu, S.; Zhang, L. Statistical En-route Filtering of Injected False Data in Sensor
Networks. IEEE J. Sel. Area. Commun. 2005, 23, 839-850.

25. Zhu, S.; Setia, S.; Jajodia, S.; Ning, P. Interleaved Hop-by-hop Authentication against False Data
Injection Attacks in Sensor Networks. ACM Trans. Sens. Netw. 2007, 3, 14:1-14:33.

26. Chan, H.; Perrig, A.; Song, D. Random Key Predistribution Schemes for Sensor Networks. In
Proceedings of IEEE Symposium on Security and Privacy (S&P), Berkeley, CA, USA, May, 2003;
pp. 197-214.

27. TELOSB. Availalbe online: http://www.xbow.com/Products/Product-pdf-files/Wireless-pdf/
TelosB-Datasheet.pdf (accessed on 21 December 2009).

c⃝ 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license http://creativecommons.org/licenses/by/3.0/.

	Introduction
	Contribution

	Related Work
	Bloom Filter
	Security Issues in UWSNs

	Preliminaries
	Network Assumption
	Security Assumption

	Proposed Method
	Motivation
	Basic Idea
	Proposed Method: AAD

	Performance and Security Analysis
	Security Analysis
	Performance Analysis

	Conclusions

