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Abstract: This paper describes the implementation of the Wide Area Differential Global 
Positioning System (WADGPS) system in order to evaluate the operational performance of 
a satellite based aviation navigation system within Taipei Flight Information Region (FIR). 
The main objective of the WADGPS is to provide real time integrity information regarding 
the use of GPS for civil aviation applications. This paper uses the e-GPS observation 
stations operated by the Taiwan Ministry of Interior (MOI) as the WADGPS reference 
stations to collect the L1-L2 dual-frequency GPS measurements. A WADGPS master 
station is also implemented to process all GPS measurements sent from each reference 
station, and then generate the vector corrections. These vector corrections consist of the 
satellite ephemeris and clock errors, and a grid of ionospheric delays. The data stream also 
includes confidence bounds for the corrections and “Use/Do Not Use” messages to provide 
integrity. These messages are then passed to the WADGPS user through the Internet. This 
paper discusses the WADGPS system architecture and the system performance analysis. A 
five-day operation performance in Taipei Flight Information Region (FIR) is presented in 
this paper. The results show that the WADGPS can improve the accuracy performance of 
GPS positioning and fulfill the integrity performance required by Non-Precision Approach 
(NPA) defined by the International Civil Aviation Organization (ICAO). 
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1. Introduction  

The Global Positioning System (GPS) provides positioning, navigation and timing services to 
around 400 million users in sea, air, terrestrial, and space applications [1]. In order to improve the 
performance of GPS-based navigation system providing support for the very demanding requirements 
of aircraft approach operations, various augmentation systems are being developed [2-4]. One such 
system is the Wide Area Differential GPS (WADGPS) system. The WADGPS system utilizes a 
geographically distributed network of reference receivers at precisely known locations throughout the 
service region, and these reference receivers, which are called Reference Stations (RSs), continuously 
monitor all GPS satellites and their propagation environments in real time. These RSs send raw GPS 
measurements back to the WADGPS Master Station (MS) where the WADGPS messages are 
generated. The WADGPS system provides both differential corrections to improve accuracy and 
associated confidence bounds to ensure integrity. The corrections will improve the accuracy of the 
system and more importantly, the integrity will open the door for widespread aviation use. The 
WADGPS concept is summarized in Figure 1. The Satellite Based Augmentation System (SBAS) is an 
extension of the WADGPS concept and there are several SBASs which are developing around world to 
enhance aviation navigation performance. For instance, the MTSAT-based Satellite Augmentation 
System (MSAS) is deployed in Japan, the European Space Agency (ESA) is working on the European 
Geostationary Navigation Overlay Service (EGNOS), and the Wide Area Augmentation System 
(WAAS) is under development in the United States [4]. Among them, WAAS began operation on July 
10, 2003, MSAS was commissioned for aviation use on September 27, 2007, and EGNOS open service 
started on October 1, 2009. However, in Taipei Flight Information Region (FIR), there is no SBAS 
service available for aviation users. Therefore, the objective of this paper is to implement a WADGPS 
system to investigate the augmented GPS performance for civil aviation users within the Taipei FIR. 

Figure 1. The Wide Area Differential GPS. 
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Similar to this work, in the early 1990s, the Federal Aviation Administration (FAA) implemented 
the National Satellite Test Bed (NSTB) as a WAAS prototype system to ensure the success of the 
WAAS. In 2006, the authors co-developed one of the RSs of the Asia-Pacific Economic Cooperation 
(APEC) Global Navigation Satellite System (GNSS) test bed which is a WADGPS-like system to 
conduct the preliminary analysis of the SBAS performance within Asia-Pacific [5]. With the 
experience of developing the WADGPS RS, this paper further implements the WADGPS master 
station to assess the performance of various architectures for the WADGPS. The e-GPS observation 
stations operated by the Taiwan Ministry of Interior (MOI) are used as the WADGPS RSs. Our focus 
will be one particular aircraft approach procedure known as Lateral NAVigation (LNAV), and the 
Required Navigation Performance (RNP) for LNAV is summarized in Table 1 [6,7]. The metrics used 
to quantify the performance will be the positioning accuracy and the service quality at a pre-defined 
and fixed level of integrity.  

Accordingly, this paper is organized as follows: In Section 2, we define the metrics that are 
normally used to quantify the performance of GPS-based aircraft approach systems. In Section 3, we 
describe the details of the WADGPS architecture. Section 4 shows the main processes of the 
WADGPS master station. In Section 5, we first validate the implementation of the WADGPS using the 
U.S. NSTB data, and we then conduct several experiments to evaluate the LNAV performance of the 
WADGPS within Taipei FIR. Finally, Section 6 presents the summary and concluding remarks.  

Table 1. Required Navigation Performance (RNP) [6,7]. 

Phase of 
Flight 

Accuracy  
(95% 
error)  

Integrity  Alert Limit  
(H: Horizontal 

V: Vertical)  

Continuit
y  Availability Time to 

Alarm  Pr(HMI)  

En route 
(continental)  

H: 740 m  
V: NA  15 s 1 × 10–7 

/h  H: 3,704 m  
V: NA  1 × 10–5/hr  0.99 to 

0.99999  

Terminal  H: 220 m  
V: NA  15 s 1 × 10–7 /h  H: 1,852 m  

V: NA  1 × 10–5/h  0.99 to 
0.99999  

LNAV(NPA)  H: 220 m  
V: NA  10 s 1 × 10–7 /h  H: 556 m  

V: NA  1 × 10–5/h  0.99 to 
0.99999  

LNAV/VNAV H: 220 m  
V: 20 m  10 s 2 × 10–7

/approach  
H: 556 m  
V: 50 m  

5.5 × 10–5 
/ 

approach  
0.99 to 
0.999  

LPV  H: 16 m  
V: 20 m  6 s 2 × 10–7

/approach  
H: 40 m  
V: 50 m  

5.5 × 10–5 
/ 

approach  
0.99 to 
0.99999  

2. Performance Analysis of the WADGPS System 

The Protection Level (PL) calculation [8] and Stanford Chart [9,10] are used as the metrics to 
evaluate the performance of a GPS-based aircraft approach and landing system. The performance 
criterion chosen for this paper is the comparison of the LNAV availability. The PL is the computation 
of the confidence bounds on the post-correction position errors, and the PL calculation is defined in the 
Minimum Operational Performance Standards for GPS/WAAS Airborne Equipment (WAAS MOPS, 
RTCA DO-229D) [8]. The ionospheric delay error and satellite ephemeris and clock errors will be 
corrected according to the WAAS MOPS, and then the local errors such as the tropospheric delay error 



Sensors 2010, 10                
 

 

2998

and user receiver noise and multipath errors will be removed by a standard model [11]. The corrected 
range measurements are used to compute the GPS position and receiver clock errors using weighted 
least squares as follows: 

      (1) 

where:  
 is the position and clock errors,  

G is the observation matrix,  
W is the weighting matrix for the measurement, and  
y is the corrected range residual vector. 
The weighting matrix, W, is a diagonal matrix and the inverse of the ith diagonal element is given by 

the variance for the corresponding satellite, as depicted in Equation (2). 

      (2) 

where,  is calculated in Equation (3). 
     (3) 

where: 
 is the fast and long-term degradation confidence, which is the confidence bound on satellite 

clock and ephemeris corrections [8,12], 
 is the user ionospheric range error confidence, which is the confidence bound on ionospheric 

delay corrections [8,11], 
 is the airborne receiver error confidence, which is the confidence bound on aircraft user 

receiver error [8], and 
 is the tropospheric error confidence, which is the confidence bound on residual tropospheric 

error [8]. 
The position error is proportional to the measurement errors and the satellite geometry through the 

matrix (GTWG)–1. This matrix is composed of the variance from each direction as indicated in Equation 
(4). The variance of the position estimate is shown in Equation (4) as well:  

     (4) 

where: 
 is variance in the east direction, 
 is variance in the north direction, 

 is variance in the up direction, 
 is variance in time, and 
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3. WADGPS Architecture 

The WADGPS is a network composed of several Reference Stations (RSs) and a Master Station 
(MS). The RSs are distributed geographically at the precisely known locations that receive GPS L1-L2 
dual-frequency signals and archive the raw observations from the monitored GPS satellites. The GPS 
L1-L2 dual-frequency measurements collected at each RS are sent to the MS. The MS data collector 
receives GPS raw measurements from each RS and updates the previous measurements in real time. 
Moreover, the statuses of GPS signals for all monitored satellites are checked including the 
rationalities of the code and carrier phase measurement at L1 and L2 frequencies, Signal-to-Noise 
Ratios (SNR), and Doppler frequency. The raw GPS observations are subsequently processed to 
reduce local errors by the carrier smoothing method [11]. The WADGPS MS then uses these smoothed 
measurements to generate vector corrections for the ionospheric delay, and the satellites ephemeris and 
clock errors [3]. In addition to these vector corrections, the messages generated by the MS also include 
the confidence bounds of these corrections. These messages are packed into the SBAS message  
format [8] and then transmitted to users via Internet according to the appropriate scheduling time. The 
WADGPS MS implemented in this paper includes a monitor and control graphic user interface (GUI) 
to show the real time statuses of all RSs and MS processes. Figure 3 shows a diagram that summarizes 
the overall WADGPS system architecture and data processes.  

Figure 3. The WADGPS architecture. 
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4. The WADGPS Master Station Processes  

The WADGPS master station (MS) receives and processes the measurements from all WADGPS 
reference stations (RSs). The data collected from each RS is calibrated and used to generate the 
differential corrections to ionosphere and satellite errors. There are two main correction generation 
modules: one is for the ionosphere and the other is for satellite errors. WADGPS provides the user 
with the differential corrections and two system accuracy metrics, namely, the user differential range 
error (UDRE) and the grid ionospheric vertical error (GIVE) [8]. This section begins with the 
introduction of GPS observations, and then presents the dual-frequency carrier smoothing process in 
Section 4.2. The estimation of ionospheric delay and the calculation of GIVE will be detailed in 
Section 4.3 and the estimation of satellite errors and the calculation of UDRE will be described in 
Section 4.4. 

4.1. GPS Observations Modeling 

Each RS uses a dual-frequency receiver to receive code and carrier phase observations at the L1 and 
L2 frequencies. These raw observations are sent to the WADGPS master station to process the 
corrections for common errors and the corresponding confidences [3,4]. The common errors include 
the ionospheric delay and satellites ephemeris and clock errors. The observations are expressed as 
follows [1,15]: 

     (6) 

     (7) 

    (8) 

    (9) 

     (10) 

where: 
PR is the pseudorange and the subscripts L1 and L2 indicates L1 and L2 frequencies, respectively, 

 is the geometric range from satellite j to user i, 

φ is the carrier phase and the subscripts L1 and L2 indicates L1 and L2 frequencies, respectively, 
b is the receiver clock bias, 
B is the satellite clock error,  
Nλ is the integer ambiguities and the subscripts L1 and L2 indicates L1 and L2  

frequencies, respectively, 
I is the ionospheric delay at L1 frequency, 
T is the tropospheric delay, 
v is the pseudorange measurements noise and the subscripts L1 and L2 indicates L1 and L2 

frequencies, respectively, and 
e is the carrier phase measurements noise and the subscripts L1 and L2 indicates L1 and L2 

frequencies, respectively. 
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The differences in these observation equations are the ionospheric delays. The pseudorange (code 
phase) measurement is delayed and the carrier phase is advanced, and this is the reason of the sign 
difference of I in Equations (6–7) and Equations (8–9). This delay is inversely proportional to the 
signal frequency [1]. In Equations (7) and (9), γ equals 1.647. Thus, the ionospheric delay on L2 is 
1.647 times larger than that on L1. Additionally, the carrier phase observations also suffer from integer 
ambiguity (Nλ) [1]. 

4.2. Dual-Frequency Carrier Smoothing of Pseudorange and Ionospheric Delays 

To mitigate the measurements noise and multipath effects, a dual-frequency carrier smoothing filter 
is used after raw GPS observations collecting from each RS [11]. Because the measurement noise of 
the carrier phase observations are much smaller than that of the pseudorange measurements, the 
pseudorange and carrier phase are combined to reduce the measurement noise [1]. The smoothing filter 
is implemented using three ionospheric measurements from the dual-frequency observables, and the 
filter design is detailed in [11]. The ionospheric delay measurements could be derived by the linear 
combination of GPS L1 and L2 pseudorange and carrier phase observables [11]: 

     (11) 

     (12) 

    (13) 

where:  
IL1 is ionospheric delay at the L1 frequency, the extra subscripts present the observations used in  

the combination,  
Amb is the combination of ambiguities from the L1 and L2 carrier phases, and  
the magnitude of noises are vPR > vL1 > vφ [1].  
The dual-frequency carrier smoothing filter is depicted in Figure 4. The filter estimated the 

smoothed ionospheric delay, Îsmth, and smoothed ionosphere-free pseudorange, PRL1. The first step in 
the filter is to generate Îsmth and its confidence by smoothing the IL1,PR with the low noise IL1,φ. Then 
combining the Îsmth and Equation (14) to estimate the constant NL1λL1 by moving average. If the cycle 
slip is not present, the NL1λL1 is constant. Finally, substituting Îsmth and NL1λL1 into the L1 carrier phase, 
φL1 (i.e., Equation (8)), the ionosphere-free pseudorange, PRL1, is obtained [11]. 
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Figure 4. The dual-frequency smoothing of ionospheric delay and pseudorange. 
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     (15) 

where: 
ωi is the weight of the ith IPP measurement, 
IKlobuchar,G is the vertical ionospheric delay at the grid point using the Klobuchar model  

parameters [1], 
IMeasure,i is the vertical ionospheric delay measurement at the pierce point, and 
IKlobuchar,i is the vertical ionospheric delay at the pierce point using the Klobuchar model parameters. 
The weight is calculated by the inverse of the vertical delay measurements variance according to the 

correlation distance between the grid point and the IPP as shows in Equation (17) [11].  
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       (16) 

where: 
σi is ith vertical ionospheric delay measurements variance [11], and  
∆ is a function of the correlation distance of the ionosphere [11].  
Specifically, this model scales the measurements using the Klobuchar model to transport the 

measurement from the IPP location to the location of the desired grid point through the relationship of 
latitude and longitude dependence provided by the Klobuchar model [16]. The generation process of 
this grid model is illustrated in the upper plot of Figure 5. 

Figure 5. The WADGPS ionospheric vertical delay grid model flow chart. 
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The bottom plot of Figure 5 describes the ionospheric correction algorithm for WADGPS user 
receiver which uses the nearest IGPs around the IPP to estimate the vertical ionospheric delay at a 
specific IPP by the interpolation algorithm. The interpolation algorithm is expressed as:  

    (17) 

    (18) 

where: 
 is the vertical ionospheric delay at the ith IPP, estimated with the broadcasted  

ionospheric corrections, 
Wi(xIPP,i,yIPP,i) is the weighting factor of the ith IPP whose location is (xIPP,i,yIPP,i) [8], 
IIGP,V,i is the broadcast vertical ionospheric delay at ith IGP, 
UIVEIPP,i is the user ionospheric vertical error (UIVE) which is a 99.9% confidence (error bound) 

on the post-correction ionospheric vertical delay residual [8], and 
GIVEi is a confidence bound of the corrected ionospheric delay residual at the ith IGP. 

Figure 6. The feedback algorithm for GIVE. 
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model (based on above user algorithms, Equations (17)) and that from the RSs’ own dual-frequency 
measurements. If not, the MS must increases the GIVEs of the four grid points surrounding the IPP 
measurement. After checking all IPPs from the entire network, the GIVEs are guaranteed to cover 
99.9% of the corrected ionospheric residuals statistically [11]. Figure 6 summarizes this process. 

4.4. Satellite Ephemeris and Clock Corrections 

This section describes the MS procedures for satellite ephemeris and clock errors estimations. 
Figure 7 depicts the flow chart regarding the calculations of the satellites ephemeris and clock errors 
including the Common View Time Transfer (CVTT), ephemeris error estimation, satellite clock error 
estimation, and the User Differential Range Error (UDRE) estimation [4,12]. 

Figure 7. Ephemeris and clock errors estimation flow chart. 
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where:  
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 is the measurement noise.  

Then, the clock bias difference, , is described in Equation (20): 

      (20)  

where k is the number of satellites in the common view of both RSs.  

Figure 8. The common view time transfer flow chart. 

 

Through the CVTT module, the pseudorange residuals from all RSs are synchronized based on a 
common clock, and the pseudorange residuals consist of satellite ephemeris and clock errors. The 
corrections to the ephemeris error and the clock error have to be sent frequently, and they occupy lots 
of bandwidth. To reduce the bandwidth, separating the satellite clock error term is necessary. 
Therefore, the single difference is used to remove the satellite clock error term as shown in the 
following equation:  

    (21) 

where:  
∆Rj is ephemeris error which is this process solving for, and 
the subscript “m” denotes the key RS which has the smallest variance [12].  
Then, the Equation (21) is re-written in matrix forms as follows:  

      (22) 
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∆Rj is the ephemeris error which will be denoted as x in following discussions, 
N is number of synchronized RSs, and 
v is measurement noise with zero mean and variance of W.  
As indicated in Equation (23), the satellite position errors are estimated by the minimum variance 

estimator [4]:  

    (23) 

where: 

 

After estimating the ephemeris error by the minimum variance method, the clock error 
measurements for all satellites can be derived from the synchronized pseudorange residuals. Equation 
(24) shows the clock error measurements for the jth satellite from the ith RS [12]: 

     (24) 

Then, the Equation (24) is re-written in matrix forms as follows: 

      (25) 

where: 
the subscript c denotes clock,  
Hc is a column vector with all 1’s, 
nc is the measurement noise with covariance matrix Wc.  
In Equation (26), a weighted least-square method is used to derive the satellite clock error [12]. 

    (26) 

Finally, to bound and indicate the uncertainty of the satellite ephemeris and clock corrected 
pseudorange, UDRE is calculated for each visible satellite as in Equation (27) [17]:  

     (27) 

where:  
R is the measurement covariance matrix of the synchronized pseudorange residuals,  

 is the covariance of the estimated ephemeris and clock errors, and  
H is the design matrix composed by unit length line of sight vectors and satellites clock term, and 

the line of sight vectors cover all users inside the reference network [12].  
The UDRE value is calculated in Equation (29): 

      (28) 

      (29) 

where PUDRE,ii is the ith diagonal element of the PUDRE. 
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When the WADGPS users receive the satellite ephemeris and clock corrections, the corrections 
need to be converted to the pseudorange domain. Equation (30) shows the pseudorange correction 
error for satellite i which is corrected by satellite ephemeris and clock errors, and this pseudorange 
correction error has to be bounded by the combined UDRE and pseudorange sigma values [12]: 

     (30) 

where: 
PRi is pseudorange from the ith visible satellite,  
∆Ri is satellite ephemeris corrections,  
li is line of sight vector from the user to the satellite, and  

 is clock corrections.  

5. Experiments and Performance Evaluation 

To implement the WADGPS system in Taipei flight information region (FIR), the stable RSs 
collection of dual-frequency GPS observations are essential. This paper uses the e-GPS observation 
stations in Taiwan as the WADGPS RSs, and the e-GPS observation stations are operated by Taiwan 
Ministry of Interior. The WADGPS RSs send four types of raw dual-frequency GPS observations to 
the WADGPS MS including: 

 Range data: it is composed of L1–L2 dual-frequency pseudorange, carrier phase, Doppler 
frequency, and signal to noise ratio of each satellite in view by the network [1]. The data update 
rate is 1 Hz.  

 Ephemeris data [15]: it includes GPS orbit parameters and satellite clock correction coefficients 
of each satellite in view by the network. It is updated every 50 seconds.  

 Almanac data [15]: it consists of the simplified GPS orbit parameters. It is updated every 500 
seconds. 

 The Klobuchar model coefficients [15]: it provides the common ionospheric model for single 
frequency users. It is updated every 500 seconds 

 
5.1. WADGPS Implementation Procedures 

 
The WADGPS system implemented in this paper is based on that of the NSTB which is operated by 

FAA in the United States. Therefore, the NSTB archive data are used to verify the WADGPS 
performance. On the other hand, the GPS receivers used in the e-GPS observation stations might be 
different, for ease of data processing, the common GPS observation data format, the Receiver 
INdependent EXchange format (RINEX), is adopted for this work. Before the WADGS MS can use 
the observations to generate the WADGPS messages, the RINEX data needs to be decoded and 
organized in a proper format. Figure 9 shows the experiment setup. A computer is used to collect the 
RINEX data and NSTB archive data for data pre-process which transforms them into the WADGPS 
data format. This computer then sends the GPS observations to the WADGPS MS via the Internet to 
execute the WADGPS MS algorithms to generate the corresponding WADGPS messages. Finally, the 
WADGPS messages are sent to the WADGPS users via the Internet.  

ˆ ˆi i i i i
corrected PR R l Bρ = − Δ ⋅ + Δ

ˆ iBΔ
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Figure 9. Experiment setup. 

 

To evaluate the performance of the WADGPS developed in this work, a WADGPS user monitor is 
developed based on WAAS MOPS [8] and its flow chart is depicted in Figure 10. The operating 
system (OS) of the WADGPS user monitor is FreeBSD [18] and the process is developed using C 
language and Open Motif [19]. After receiving and decoding the WADGPS messages, the WADGPS 
user applies the vector corrections to the GPS measurements according to WAAS MOPS. In addition, 
the protection level (PL) is calculated based on the received integrity messages [8]. The Horizontal 
Protection Level (HPL) calculation is also defined in WAAS MOPS [8]. For the convenience of 
monitoring the WADGPS MS processes, this work also develops a Graphic User Interface (GUI) to 
show the WADGPS MS status. Figures 11 to 13 depict the master station monitor and control GUI. In 
Figure 11, the first row describes the GPS time and the message types generated by the master station. 
The GPS satellites corrections status window also includes the satellite position error corrections in the 
ECEF coordinate, satellite clock error corrections, the UDRE and the health flag for each satellite. For 
the ionospheric grid corrections, Figure 12 shows the ionospheric vertical delays and their GIVE 
values at the grid points. Figure 13 exhibits the reference stations status which includes their 
positioning results and the satellites in view. The other status windows include the reference stations 
distribution map, the ground tracks of the satellites in view, and the WADGPS system status. 

Figure 10. The procedures of the WADGPS user software. 
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Figure 16. The vertical positioning error and 95% error bound using NSTB data. 

 

Table 2. Mean of the positioning error (NSTB). 

Mean Stand alone GPS WADGPS  
East (m) –0.506 0.090 

North (m) 0.436 –0.085 
Vertical (m) 15.707 –7.968 

Table 3. Accuracy of the positioning performance (NSTB). 

95% error bound 
(two-sigma) Stand alone GPS WADGPS  

Horizontal (m) 7.10 3.55 
Vertical (m) 16.10 8.10 

Figure 17. The HPL and horizontal positioning error (NSTB). 
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Figure 18. The LNAV (NPA) performance of the implemented WADGPS with NSTB data. 

 

Figure 19. The number of satellites used in positioning solutions (NSTB). 

 

Next, this work uses the e-GPS observation stations operated by Taiwan MOI to evaluate the 
LNAV performance of the WADGPS implementation. The e-GPS observation stations distribution is 
shown in Figure 20, and their locations are listed in Table 4. In order to evaluate the performance 
change due to the number of RSs, this paper uses two kinds of WADGPS RSs constellations in Taipei 

0 10 20 30 40 50 60 70
0

5

10

15

NSTB1930

Number of observations used in solution



S

 

F
R
th

d
d
th
a
A
m
(
A
n

Sensors 201

FIR. One us
RS 5 is used
hey are date

 
For the W

distributions
distribution.
he horizont

availability 
As shown i
misleading 
HPL) calcu

As a result,
number of sa

0, 10  

ses three RS
d as the WA
ed from 200

Fi

Tab

Station N

1 
2 
3 
4 

User 

WADGPS 
s in both e
 As for the

tal positioni
is 99.977%
in Figure 2
information

ulated by th
, the integr
atellites use

 

Ss (i.e., RS 
ADGPS use
09/10/01 to 

igure 20. Th

ble 4. The e

No.

system with
ast and nor
 integrity o
ing errors, a

% over the fi
24, there is
n (HMI) reg
his WADGP
rity (defined
ed in the sol

   

1, RS 2 an
er in the ex
2009/10/05

he e-GPS o

e-GPS obser

Station nam

Longdong
Shoufeng
Fugang

Kaohsiun
Taichung

h three RS
rth directio

of this WAD
as shown in
five-day per
s no data s
gion) of th
PS architec
d in Sectio
lutions is sh

nd RS 3) an
xperiments.
5.  

bservation 

rvation stati

me

g 2
g 2

2
ng 2
g 2

s in Taipei
ns, and Fig

DGPS imple
n Figure 23
riod for the 
sample loca
e figure, in
ture succes
n 2) of thi

hown in Figu

 

nd the other 
Five-day d

stations dist

ions’ names

Latitude 

25° 5′50′′N
23° 52′12′′N
22° 47′26′′N
22° 37′52′′N
24° 17′27′′N

i FIR, Figu
gure 22 sho
ementation,
. As depicte
developed 

ated in the
n other wor
ssfully boun
s WADGP
ure 25. 

uses four R
data is used 

tribution ma

s and locati

Lo

121
N 121
N 121
N 120
N 120

ure 21 show
ows the ver
, the HPL v
ed in Figure
WADGPS 

e red region
rds, the hor
nd the horiz
S impleme

  

RSs (i.e., R
d in the exp

ap. 

 

ons. 

ongitude  

1° 55′5′′E 
° 36′53′′E 
° 12′32′′E 
° 17′18′′E 

0° 32′6′′E 

ws the posi
rtical positi

values effec
e 24, the LN
system wit

n (i.e., the 
rizontal pro
zontal posit
ntation is e

   301

Ss 1–4). Th
eriments an

tioning erro
ioning error
ctively boun
NAV servic
th three RS
hazardousl

otection lev
tioning erro
ensured. Th

 
16

he 
nd 

or 
rs 

nd 
ce 

Ss. 
ly 
el 

or. 
he 



Sensors 2010, 10                
 

 

3017

Figure 21. (a) The positioning error distribution and 95% error bound in east direction in 
Taipei FIR (3 RSs). (b) The positioning error distribution and 95% error bound in north 
direction in Taipei FIR (3 RSs). 

 

Figure 22. The vertical positioning error and 95% error bound in Taipei FIR (3 RSs). 
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Figure 23. The HPL and horizontal position error in Taipei FIR (3 RSs). 

 

Figure 24. The LNAV (NPA) performance of the developed WADGPS with 3 RSs in 
Taipei FIR. 
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Figure 25. The number of satellites used in positioning in Taipei FIR (3 RSs). 

 

To achieve possible improvement of the system performance, this WADGPS implementation adds 
one more e-GPS observation station (Station number 4 in Table 4) to be the fourth RSs. Figure 26 
shows that the HPL values also bound the horizontal positioning errors successfully. Figure 27 shows 
the Stanford Chart of the WADGPS system with four RSs. In comparison to Figure 24, the total 
number of the epochs is increased from 380,142 epochs to 401,739 epochs (i.e., 21,597 more epochs), 
and the LNAV service availability is improved from 99.977% to 99.995%. Additionally, system 
unavailable epochs is reduced from 86 to 22. Tables 5 and 6 summarize the comparison of the 
positioning performance. The results show that the WADGPS system with four RSs performs slightly 
better than the WADGPS system with three RSs. 

Figure 26. The HPL and horizontal position error in Taipei FIR (4 RSs). 
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Figure 27. The LNAV (NPA) performance of the developed WADGPS with 4 RSs in 
Taipei FIR. 

 

Table 5. Mean of positioning error (Taipei FIR). 

Mean error Stand alone 
GPS  

WADGPS 
with 3 RSs 

WADGPS 
with 4 RSs 

East (m) 0.182  0.220 0.169 
North (m) 1.785  1.362 1.498 

Up (m) 13.400  -2.431 -2.440 

Table 6. Accuracy of positioning performance (Taipei FIR). 

95% error bound 
(two-sigma) 

Stand 
alone GPS 

WADGPS 
with 3 RSs 

WADGPS 
with 4 RSs 

Horizontal (m) 10.970  5.587 4.0893 
Vertical (m) 19.360  11.248 11.485 

6. Conclusions 

This paper implemented a Wide Area Differential Global Positioning System (WADGPS) system in 
Taipei Flight Information Region. The National Satellite Test Bed (NSTB) Reference Stations (RSs) 
were first used as the WADGPS RSs to validate the implementation. As shown in the three days 
validation results, the WADGPS system can provide enhanced GPS positioning services with full 
integrity required by the Lateral NAVigation (LNAV) service for civil aviation. This paper then used 
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the e-GPS observation stations operated by Taiwan Ministry of Interior (MOI) as the WADGPS RSs in 
Taipei FIR. Two kinds of WADGPS RSs constellations were utilized in this work, and one used three 
RSs and the other used four RSs. Five-day data were used to analyze both WADGPS implementations. 
The results showed that the WADGPS system with four RSs performed slightly better than that with 
three RSs. Importantly, in Taipei FIR, both WADGPS implementations can successfully provide 
LNAV service with integrity required by civil aviation.  
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