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Abstract: Presently, the quality assurance of agarwood oil is performed by sensory panels 

which has significant drawbacks in terms of objectivity and repeatability. In this paper, it is 

shown how an electronic nose (e-nose) may be successfully utilised for the classification of 

agarwood oil. Hierarchical Cluster Analysis (HCA) and Principal Component Analysis 

(PCA), were used to classify different types of oil. The HCA produced a dendrogram 

showing the separation of e-nose data into three different groups of oils. The PCA scatter 

plot revealed a distinct separation between the three groups. An Artificial Neural Network 

(ANN) was used for a better prediction of unknown samples.  
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1. Introduction 

 

Agarwood is the well-known name for a resinous heartwood from ‘wounded/infected’ Aquilaria 

trees, a tropical forest product which has a high value in international trading. There are increasing 

demands for agarwood-based products for use in medicine, perfume, and incense. Agarwood is traded 

in the form of product derivatives such as wood chips, powder, and oil. The wholesale price for high 

quality agarwood oils is around US$30,000–US$50,000 per liter [1], depending on the oil quality, 

which is based upon the fragrance strength and longevity, resin content, geographical origin, and  

oil purity [2].  
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Traditionally, agarwood grading has been performed by trained human graders (sensory panels). 

However, the method has disadvantages in terms of objectivity and repeatability [3]. In addition, a 

human nose cannot tolerate a high number of samples because it fatigues rapidly with increasing 

number of samples. In this paper, it is shown how an electronic nose (e-nose) may be used to resolve 

these issues. A commercial e-nose, the Cyranose 320 (Smith Detection, USA) was used to collect the 

smell (fragrance) data (herein termed as ‘smellprint’) which was then processed on a personal 

computer using different pattern recognition methods: Hierarchical Cluster Analysis (HCA), Principal 

Component Analysis (PCA) and Artificial Neural Network (ANN). 

 

2. Experimental 

 

An experiment aimed to produce a data set with robust consistency was conducted using a  

Cyranose 320 (see Figure 1). The important features of the Cyranose 320 are provided in Table 1 [4]. 

The acquired raw data was then processed and interpreted into meaningful information. The samples 

were obtained from three groups of agarwood oils originating from Laos, Johor (Malaysia) and 

Terengganu (Malaysia), which were labelled as G12, G22, and G32, respectively. Two µL samples 

from each locality was diluted using 500 mL glycerol as a solvent. The samples were placed in  

a 40 mL stoppered vial connected to a Cyranose 320 via an inert tubing and heated to 60 °C in a heater 

block. Each experiment was run for 30 min. 

Figure 1. The Cyranose 320 [4]. 

 

 

Table 1. Important features of the Cyranose 320 [4]. 

Sensors 32 polymer carbon black composites 

Operating Temperature 0 to 40 °C (32 to 104 °F) 

Response Time 10 sec 

Sampling Pump  Low: 50 mL/min, Medium: 120 mL/min,  

High: 180 mL/min. 

Communication  RS–232 @ 9,600 to 57,600 bps  

Algorithms PCA, KNN, K-means, CDA 
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Figure 2 illustrates an airtight recycle system for continuous sniffing. This approach could avoid 

volatile concentration loss and also pressure loss at the glass vial, which would affect the experiment. 

An automatic valve as well as a small pump was provided in the Cyranose 320 to control the system 

flow. In addition, the use of an extra valve mechanism outside the Cyranose 320 was improvised to 

facilitate sensor cleansing. In Figure 2, the red arrows (solid-line) indicate a sampling cycle. An 

internal valve was switched to the sample inlet (X). The volatile was then sucked into the e-nose 

through inlet (X) and was retained for 20 s in the sensor chamber before being removed through 

outlet (Z). At the same time, the external valve allowed volatile from Z to fill the glass vial. At the end  

of 10 cycles, the internal valve allowed the nitrogen gas (N2) to purge the sensors via inlet (Y) and 

removed out to the atmosphere through port (Z). The purge cycle is illustrated by the blue arrows 

(dashed-line) in Figure 2. The experiments were controlled by the Cyranose 320 according to the  

set-up parameters as shown in Table 2.  

Figure 2. Experimental setup for the classification of agarwood oil. 

 

Table 2. Cyranose 320 parameter set up for sampling agarwood oil. 

 Run time Pump speed 

Baseline purge time 10 sec 120 mL/min 

Sampling time   

  Draw 1 20 sec 180 mL/min 

Purge time   

  1st air intake purge 5 sec 180 mL/min 

  2nd sample gas purge 30 sec 180 mL/min 

Digital filtering On  

Substrate heater temperature 42 °C  

Training repeat count 10  
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3. Results and Discussion 

 

3.1. Smellprint 

 

The agarwood oil volatiles are adsorbed on the sensor’s surfaces and cause a change in its 

resistance. The response of the sensor is defined by using fractional baseline manipulation [5]: 

 (1)  

where Rs is the resistance change of sensor s, Rs,n is the output resistance and Rs,0 is the baseline 

output. The subscript index s is the sensor number used in the Cyranose (s = 1…32) and n is an index 

for the number of data (n = 1…N).  

As an example, Figure 3 shows responses from seven sensors of the Cyranose 320. The data was 

taken from one sampling cycle of a G12 experiment. The figure also illustrates the base line purge 

time, sampling time and purge time. 

Figure 3. Measurements taken from seven of the sensors for one sampling cycle. 

 

 

The average of values evaluated by Equation (1) is plotted as shown in Figure 4, and corresponds to 

the smellprints of the three different agarwood oils. Sensors with high responses are analyzed by 

comparing their peaks and profiles [6]. Sensor numbers 6, 31, 5, 23, and 28 (in the order of 

diminishing responses) have higher responses compared to the rest when exposed to the volatiles of the 

different grade of oils. However, the analysis of smellprints becomes more difficult when there is an 

increase in the number of samples having overlapping profiles. This issue can be solved using 

graphical methods based on statistical theories [7], and this was adopted and presented in the  

next section. 



Sensors 2010, 10                    

 

 

4679 

Figure 4. Smellprints of three different agarwood oils. 

 

 

3.2. Statistical Analysis 

 

There are many statistical-based methods for processing e-nose data. This paper presents the 

implementation of the Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) 

to distinguish the different agarwood oil grades.  

 

3.2.1. Hierarchical Cluster Analysis (HCA) 

 

The aim of performing Hierarchical cluster analysis (HCA) is to separate data into specific groups 

by considering similarity criterion, a distance metric such as Euclidean distance, as follows: 

2/1

1

2)( 







 



K

k

jkikij rrd  (2)  

where K is the number of variables (in this case K is equal to 32 that is the number of sensors in the 

Cyranose), while i and j are the indices for groups of samples. Hence, a parameter to measure the level 

of similarity, Sij, is defined as [8]: 

}max{/1 ijijij ddS   (3)  

The computational process of Sij using MATLAB gives a dendrogram as shown in Figure 5. The 

figure proved the capability of HCA to differentiate between G12, G22, and G33. 
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Figure 5. A dendrogram for the three-object data set from each 10 samples of G12, G22, 

and G32. 

 

 

3.2.2. Principal Component Analysis (PCA) 

 

Principal component analysis (PCA) is an unsupervised statistical method that generates a new set 

of variables, called principal components. Each principal component is a linear combination of the 

original variables (rs,n) defined by [9]: 

nsspnpnpnpPC ,,,22,,11,,     (4)  

where PCp,n is the notation for the p-th order principal component for the overall n number of data and 

is termed as scores. Coefficients transformations (αp,s), referred as loadings, are obtained by taking 

elements of the eigenvectors from the covariant of the original data. The eigenvalue represents the 

variance associated with each principal component. By using MATLAB software, the two principal 

components {PC1,n, PC2,n} are obtained and have the two greatest variances: 88.096% and 11.202% 

(or total cumulative variance of 99.298%). The results of the PCA analysis are shown in Figure 6. The 

scores of the three groups of oils are plotted for principal component 2 (PC2) versus principal 

component 1 (PC1). The discrimination between the different types of oils can be clearly seen from  

the figure. 
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Figure 6. Principal components score plot proves the capability of e-nose to classify the 

different types of oils G12, G22, and G32. 

 

 

3.3. Artificial Neural Network (ANN) 

 

3.3.1. Result from 32 Sensors as Input 

 

The previous two statistical approaches, HCA and PCA, successfully showed their capabilities to 

distinguish different types of agarwood oils. Both are typically used for exploratory data analysis to see 

how the multivariate data is clustered and to assess the linear separability of the odour classes. 

However, in cases where prediction is required (e.g., when implementing an automated classifier), the 

ANN is the more appropriate tool [7]. This section presents the use of ANN as an alternative choice to 

solve the classification problem in this work.  

In this experiment, the backpropagation ANN with the Levenberg-Marquardt training algorithm was 

applied. The training used all the 32 sensors as inputs, 20 neurons in the single hidden layer, and three 

neurons at the output layer. The activation functions used are sigmoid and identity functions at the 

hidden and output layer, respectively. Figure 7 illustrates the structure of the ANN and how the input 

and output data were organised and indexed.  
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Figure 7. The architecture of three layers ANN with Levenberg-Marquardt algorithm 

applied for training and identification G12, G22, and G32. 

 

 

The same experimental procedure was carried out for the training as well as the testing data.  

The 200 raw data points were collected by experiments for each of the oil types G12, G22, and G32. 

This resulted in 600 data points for use in training and validation. After performing baseline 

manipulation and auto-scaling, the data were organised in one matrix to be fed as input. The testing 

data was collected on a different day, by sniffing the odour of the oils in nine vials that were assigned 

for testing only. The total of 1,800 data points was used as the testing data.  

As shown in Table 3, the ANN performed very well in discriminating the three types of oils  

with 5.713345 × 10
−8

 mean square error (MSE) and 100% prediction performance. The prediction 

performance was defined as: (number of correct classification/number of total data) × 100%.  

Table 3. ANN output for 32 sensors. 

 

3.3.2. Results from Selected Sensors  

 

The use of too many sensors may increase noise, redundant information and provides no real 

benefit, whereas minimizing the number of sensors can result in the loss of some useful input 

information [10,11]. Thus, optimization for a specific application can be achieved by observing the 

sensors which provide high contribution to the system and eliminating the lower ones.  

No. 
Sensor 

MSE Gradient Sample 
Target  ANN Output (Averaged) 

Accuracy 
selection T1 T2 T3  O1 O2 O3 

1 All 5.7133 × 10
−8 

0.3536 G12 1 0 0  0.9999 0.0001 0.0000 100% 

    G22 0 1 0  0.0003 0.9997 0.0000 100% 

    G32 0 0 1  0.0005 0.0002 0.9997 100% 
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In this work, PCA is used to reduce high dimensionality data and to improve ANN training [12]. 

Table 4 is the list of loadings for PC1 that was sorted in descending order. The summation of the 

correlation coefficient from the matrix response data for each sensor is also provided in Table 4 as a 

comparison with the PCA results. It is evident that the higher loading values of PC1 for all sensors 

correspond to the less correlated sensors.   

From Table 4, the data from the five least correlated sensors (sensor number 23, 31, 1, 2, and 4) are 

selected as input for the ANN training. The result shows an improvement where the ANN has a lower 

MSE, 8.20279 × 10
−9

 and 100% successful prediction of unknown data. The time spent for training and 

identification also decrease. For specific application, in this case to discriminate the three different 

types of agarwood oils G12, G22, and G32, the five selected sensors (from the 32 total sensors in the 

Cyranose) is an effective choice in terms of speed of detection and high accuracy. Attempts to further 

reduce the number of sensors was not successful. Table 5 compares the results of the ANN training for 

the case of using reduced number of sensors. 

Table 4. The value of total correlation coefficient and loadings of PC1 for seven sensors. 

No Sensor 

number 

The summation of  

correlation coefficient  

Sensor 

number 

Loadings for  

PC1 

1 23 5.4960 23 –0.03041 

2 31 16.016 31 –0.09815 

3 1 19.334 1 –0.12595 

4 2 24.291 2 –0.15748 

5 4 25.343 4 –0.16391 

6 9 25.714 9 –0.16607 

7 5 26.599 5 –0.17615 

Table 5. The comparison performance of ANN using selected sensors. 

 

4. Conclusions 

 

Classification of agarwood oils using an e-nose is able to provide rapid and accurate results. The 

data from the Cyranose 320 were processed using in-house developed software in MATLAB and was 

able to identify three different types of agarwood oils G12, G22, and G32. Hierarchical cluster analysis 

(HCA) and principal component analysis (PCA) were successful in separating the samples into 

No. 
Sensor 

MSE Gradient Sample 
Target  ANN Output (Averaged) 

Accuracy 
selection T1 T2 T3  O1 O2 O3 

1 S23, S31, 8.2038 × 10
−9 

0.1074 G12 1 0 0  0.9983 0.0045 0.0070 100% 

 S1, S2,   G22 0 1 0  0.0001 0.9999 0.0070 100% 

 S4   G32 0 0 1  0.0001 0.0000 0.9999 100% 

2 S23 and 8.9927 × 10
−8

 0.00246 G12 1 0 0  0.9803 0.0125 0.0070 100% 

 S31   G22 0 1 0  0.0010 0.9999 0.0009 100% 

    G32 0 0 1  0.6203 0.0000 0.3797 37.18% 
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different groups or clusters. ANN was also successfully applied to predict unknown agarwood samples. 

The optimum number of sensors for this application has been determined by PCA analysis, which 

subsequently minimize the number of ANN input variables. The current research in our laboratories is 

to verify the purity and grading of the oil based on quantitative analysis using  

the e-nose.  
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