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Abstract: A novel class of multi-D-shaped optical fiber suited for refractive index 

measurements is presented. The multi-D-shaped optical fiber was constructed by forming 

several D-sections in a multimode optical fiber at localized regions with femtosecond laser 

pulses. The total number of D-shaped zones fabricated could range from three to seven. 

Each D-shaped zone covered a sensor volume of 100 μm depth, 250 μm width, and 1 mm 

length. The mean roughness of the core surface obtained by the AFM images was 

231.7 nm, which is relatively smooth. Results of the tensile test indicated that the fibers 

have sufficient mechanical strength to resist damage from further processing. The  

multi-D-shaped optical fiber as a high sensitive refractive-index sensor to detect changes in 

the surrounding refractive index was studied. The results for different concentrations of 

sucrose solution show that a resolution of 1.27 × 10−3–3.13 × 10−4 RIU is achieved for 

refractive indices in the range of 1.333 to 1.403, suggesting that the multi-D-shaped fibers 

are attractive for chemical, biological, and biochemical sensing with aqueous solutions. 
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1. Introduction 

Traditionally, the plastic cladding of the optical fiber was easily stripped by CO2 laser machining to 

expose the fiber core [1,2]. However, the core and cladding layers of communication grade multimode 

optical fiber are composed of fused silica, which is a transparent, hard, brittle, and high band gap (~9 eV) 

material that could not have been effectively machined by long-pulsed lasers (e.g., CO2 laser, pulse 

duration at range of μs). The peak power intensity of the long-pulsed laser is not high enough to 

generate a significant amount of free electrons [3-5]. Recently, femtosecond laser has been extensively 

used for microfabrication. The most prominent features of the femtosecond laser over conventional 

long-pulsed laser are ultra short pulse duration and very strong peak power intensity, which can 

photoinduce the non-linear multi-photon absorption of a material during irradiation. The material 

vaporizes immediately after absorbing ultra high transient pulse energy from the ultra short pulse of 

femtosecond laser [6,7]. It can be used to engrave on transparent, hard and brittle materials very 

precisely, such as optical fibers, without inducing any micro cracks and heat affected zone [8,9]. 

In this paper, we report a multi-D-shaped optical fiber sensor with a direct write technique by  

using high-power femtosecond laser pulses. A communication grade multimode optical fiber  

(Corning 62.5/125 optical fiber) was adopted in the present study. The optical fiber was composed of a 

silica-based core (62.5 μm in diameter), and cladding and polymeric jacket with outer diameters  

of 125 μm and 250 μm, respectively. Shown in Figure 1 is an illustration diagram of the fabricated  

multi-D-shaped optical fiber. For a single D-shaped zone the depth was 100 μm measured from the 

surface of the polymer jacket layer, and the length was 1 mm. The distance between two neighboring 

D-shaped zones was 1 mm. The number of D-shaped zones fabricated could range from three to seven, 

and they were distributed in line along the axis of the optical fiber. The operating principle of sensing 

is based on attenuated total internal reflection (ATR) via multiple internal reflections along the fiber 

and the attenuated light intensity of the multi-D-shaped fiber changes linearly with an increase of the 

surrounding refractive index. The loss of light energy caused by the sensing portion of the fiber is 

detected by a sensor interrogation system which is used to derive the refractive index of the 

surrounding media. In this scheme the fiber plays a role not only as a signal transmission line but also 

as a sensing component. The result of the tensile test of the multi-D-shaped fiber is reported. The 

ability of the multi-D-shape fiber as a high sensitive refractive-index sensor to detect changes in the 

surrounding refractive index was also studied. 

Figure 1. Illustration diagram of the multi-D-shaped optical fiber. 
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2. Sensor Fabrication 

A femtosecond laser micromachining system, as illustrated in Figure 2, was used for engraving the 

trench on the optical fiber. The femtosecond laser was a regenerative amplified mode-locked  

Ti: sapphire laser with pulse duration of ~120 fs after the compressor, central wavelength at 800 nm, 

repetition rate of 1 kHz, and maximum pulse energy of ~3.5 mJ. The energy of the linear polarized 

Gaussian laser beam was adjusted by a rotatable half-wave plate and a polarizing beam splitter (PBS). 

A certain fraction of the laser beam was split off by a beam splitter (BS) and the laser energy was 

measured by a power detector. The number of laser shots applied to the sample was controlled by an 

electromechanical shutter. The laser beam was tightly focused onto the fiber by a 10x objective lens 

(numerical aperture 0.26, M Plan Apo NIR, Mitutoyo) mounted on a Z stage. The multi-D-shaped 

trench under fabrication was translated by a computer controlled X-Y micro-positioning stage with 

error less than 1 μm. The fabrication process was monitored in situ by a charge-coupled device (CCD). 

Figure 2. Experimental setup of a femtosecond laser micromachining system.  
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Shown in Figures 1 and 3 are the representative diagram and the SEM image of the fabricated 

multi-D-shaped optical fibers, respectively. The diagram shows that the depth of a single  

D-shaped zone was 100 μm and the length was 1 mm. The space between the core center and the flat 

surface of the fiber was 25 μm. It indicates that the core of the fiber has been exposed and part of the 

jacket layer has provided enough mechanical strength for further processing. Since the material 

properties of the jacket layer and cladding layer are much different, there are three steps applied for 

fabricating the multi-D-shaped optical fibers. In Step 1, the jacket layer mainly composing of polymer 

was removed with a relatively high energy of 20 mW, and the scanning width and length were set  

to 100 μm and 1 mm, respectively. After processing of Step 1, part of jacket was exposed. In Step 2 

the femtosecond laser focus spot was then varied in height up to the cladding surface. The processing 

parameters were the same as Step 1 and the procedure kept on repeat until the material of D-shaped 

zone was all removed. A surface treatment was carried out in Step 3. In this process, a relatively high 

scanning speed (0.3 mm/s) and defocus strategy (30 μm above bottom of the D-shaped zone) for the 

annealing treatment were applied. As shown in Figure 4, the surface mean roughness is 231.7 nm as 
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measured by an AFM (model Multi Mode, Veeco, Inc.). Such surface quality allows the light easily 

propagating inside the D-shaped fiber to interact with surrounding medium through the evanescent 

wave or light reflection. 

Figure 3. SEM image of a multi-D-shaped optical fiber. 

 

Figure 4. AFM image of the exposed core surface (scanning area 10 μm × 10 μm). 

 
 

During the fabrication of the multi-D-shaped optical fiber, the transmission power was monitored 

with a fiber optic light source (λ = 1,550 nm, model MPS-8012, Lightwave, Inc.) and a multifunction 

optical meter (model AQ2140, ANDO, Inc.). The experimental setup is shown in Figure 5. For the  

multi-D-shaped fiber with five D-shaped zones, the average power loss measured for four samples  

was 0.92  0.31 dB (dB loss = 10 × logP2/P1, P1 = input power, P2 = output power) It can be seen that 

multi-D-shaped optical fiber produces about 22  4% transmission power loss while keeping enough 

transmission power for further testing. 
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Figure 5. Experimental setup for monitoring the transmission power loss of  

multi-D-shaped optical fibers during fabrication process. 

ANDO  AQ2140
AQ2732

Sensor Unit
869.52  μW

ILX  Lightwave MPS-8012

D-fiber

Fiber Optic Source

Optical Multimeter

fs laser

Multi-D-fiber
 

 

The tensile tests of the fibers after manufacturing were performed. Tensile testing is a standard 

procedure for determining the mechanical properties of materials. A standard tension test machine is 

shown in Figure 6. The multi-D-shaped optical fiber was placed and fixed in the grips of the testing 

machine. The grips were driven by stepping the motor (the minimum displacement is 1 μm) as well as 

the screw, hence the load applied by the machine was axial. The testing machine elongated the  

multi-D-shaped optical fiber at constant rate until the grooved optical fiber ruptured. During the test, 

continuous readings of the applied load and the elongation of the multi-D-shaped optical fiber were 

taken. The load-elongation curve diagrams for the optical fibers could be obtained to measure their 

mechanical strengths. 

Figure 6. Schematic diagram of the tensile test machine. 
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Figure 7 depicts the load-elongation curve diagrams for a bare fiber and five different D-shaped 

fibers. The symbols representing the experimental data and linear least square fitting of these data are 

also plotted. Fitting curves (straight line type) for five different D-shaped fibers are close to that of the 

bare fiber without any processing. However, the multi-D-shaped optical fiber ruptured when its 

elongation was beyond 250 μm, which was only two-three of that for a bare fiber. The force constant 

of a bare fiber was determined to be 5,956 N/m, while for those of multi-D-shaped fibers force 

constants were determined to be from 1,089 N/m to 2,256 N/m. It is shown that multi-D-shaped fibers 

have sufficient mechanical strength to resist damage from handling and packaging. 
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Figure 7. The tensile testing curve diagrams for a bare optical fiber and five different  

D-shaped fibers. 

 

3. Refractive Index Measurements 

Figure 8 is an illustration of the experimental setup for refractive index sensing measurements with 

the multi-D-shaped optical fiber sensor. The fiber-optic sensing system used to measure the 

transmission power of the sensor was consisted of a function generator (model GFG-8255A, Good 

Will Instrument, Inc.), a light emission diode (LED) light source (model EHP-AX08LS-HA/SUG01-P01, 

Everlight Electronics Co., Ltd), a sensing multi-D-shaped fiber, a microfluidic chip, a photodiode 

(model 2001, New Focus, Inc.), a lock-in amplifier (model 7225R, EG&G Instrument, Inc.) and a 

computer for data acquisition.  

The interrogation of the sensor based on intensity modulation was performed by launching a LED 

light source propagating through the sensing multi-D-shaped fiber into a photodiode. The LED as an 

excitation light source was modulated by a function generator with a square wave current at a 

frequency of 1 kHz and a voltage of 3.5 V. Through a fiber collimator (model F240FC-A, Thorlab) 

light with a wavelength of 530 nm emitted from the LED was coupled into the optical fiber and was 

carried through the sensing portion of the D-shaped fiber which was immersed in different 

concentrations of sucrose solution. For measurements of transmission power, the ATR signals emitted 

from the sensing fiber was measured by a photodiode and the light signal was converted into electronic 

signal in voltage. A lock-in amplifier operating at 1 kHz chopping frequency was used to for  

phase-shift detection of the photodiode output signal and for increasing the signal to noise ratio. With 

the lock-in, low level optical signals can be detected with full-scale voltage sensitivities down to 2 nV 

and dynamic reserve exceeding 100 dB. The output from the lock-in-amplifier was recorded at a 

sampling rate of 1 Hz using a computer with a data acquisition system. For each run of transmission 

power measurement, the average transmission power can thus be obtained by evaluating a series  

of 500 data samples. In this scheme the computer associated with a photodiode and a lock-in amplifier 

carried out the light intensity demodulation and signal processing for obtaining the output signal of  

the sensor.  
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Figure 8. Schematic of the experimental setup for refractive index measurements with the 

multi-D-shaped optical fiber. The inlet and outlet ports of the microfluidic chip are used to 

infuse sucrose solution flowing through the sensing fiber.  
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The ability of the multi-D-shaped optical fibers to detect changes in the surrounding refractive 

index was studied. The control of surrounding refractive index was through the use of sucrose 

solutions with various concentrations [10]. The relationship between refractive index and 

concentration for sucrose solution in the range of 1.333 to 1.403 is shown in Figure 9. The transmitted 

ATR signal of the multi-D-shaped fiber excited by the LED light source changed linearly with an 

increase of the surrounding refractive index. Different concentrations of sucrose solution were used to 

measure the sensitivity of the multi-D-shaped fiber sensor. The fiber sensor was immersed in sucrose 

solutions and its transmission power or intensity was measured with the photodiode and lock-in-

amplifier. Because of the better linearity of the plot of transmission power or intensity versus 

refractive index, transmission power or intensity was used as the sensor response in this study. For 

precise refractive index measurement, we kept the experimental setup and sample solution at a 

constant ambient temperature (within 0.1 °C fluctuation). The sensing fiber was placed inside the 

microfluidic chip and a small fixed magnitude of tension was applied to minimize bending of the fiber. 

Therefore, the results reported here were not influenced by temperature, strain and bending effects. 

Figure 9. Refractive index of the sucrose solution at different concentrations. 
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When the concentration and, hence, the refractive index of a sucrose solution increased in the range 

of 1.333–1.403,
 
the transmitted light intensity of the fiber sensor exhibited a linear increase in the 

output power. Figure 10 shows the time course of sensor response as a slowly increasing sequence of 

concentrations of sucrose was injected into the sensing microfluidic chip. After the final injection of 

sucrose solution, the sensing microfluidic chip was injected with water. It can be seen that the sucrose 

solution could be eluted completely and quickly, and the sensor response was back to the original intensity 

level. The sensor response was reversible because such injection and elution processes were repeatable. 

Figure 10. Plot of temporal response of the fiber sensor with respect to injection of an 

increasing sequence of concentrations or refractive indices of sucrose.  

 
 

A linear regression method was employed to analyze the relationship between sensor response and 

refractive index changes. This method calculated the best-fitting linear equation (straight line) for the 

observed data using the least squares approach. The slope of the linear fit to the measured sensor 

response at various surrounding refractive index changes was determined as the refractive index 

sensitivity of the investigated fiber sensor. Figure 11 shows a linear fit (correlation coefficient  
R = 0.9987) to the plot of sensor response as a function of the refractive index for a sensing fiber with 

five D-shaped zones. Table 1 lists standard deviations of sensor response at various concentrations, 

which were quite stable during the testing. Results for a sensing fiber with five D-shaped zones show 

that the refractive index sensitivity of the fiber sensor is 0.142 V/refractive index unit (RIU), which 

leads to a refractive index resolution (sensor resolution = 3σ/m, σ = standard deviation of sensor 

response in measuring the blank sample, m = slope) of 3.13 × 10−4 RIU in index. We have collected 

and analyzed the data by varying the number of D-shaped zones in the sensing fiber. Figure 12 shows 

a plot of sensor resolution versus the number of D-shaped zones. When the number of D-shaped zones 

was changed from three to seven, we found that the sensor resolution increased with the number of  

D-shaped zones and decreased after showing a maximum value at five D-shaped zones. Studies 

presented here demonstrate that these multi-D-shaped fiber sensors can provide a resolution  

of 1.27 × 10−3–3.13 × 10−4 for refractive indices in the range of 1.333 to 1.403. 
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Compared with other existing index sensing schemes, such sensor performance is more promising 

and favorable. For example, Abbe refractometers have a resolution of 1 × 10−4–2 × 10−5 for  

indices 1.33 to 1.58 and are relatively bulky and expensive. Sensors based on FBG evanescent wave 

couplings yield an index resolution of only around 1 × 10−3 and require a more complex optical layout.  

Long-period fiber grating (LPFG) sensors based on resonant wavelength shifts provide an index 

resolution of 1 × 10−3–2 × 10−4 [11,12] and require some expensive and high precision instruments 

such as laser source and optical spectrum analyzer. Our fiber sensor is low-cost and compact, has 

comparable or better resolution, and can be used remotely. The results reported here demonstrate 

that the multi-D-shaped fibers are attractive for chemical, biological, and biochemical sensing with 

aqueous solutions. 

Figure 11. Plot of sensor response versus refractive index of the sucrose solution for a 

sensing fiber with five D-shaped zones. 

 
 

Table 1. Standard deviation of sensor response at different refractive indexes for a sensing 

fiber with five D-shaped zones. 

Refractive index, 
(RIU) 

Slope, 
m (V/RIU) 

Standard deviation, 
σ (V) 

1.333 

0.142 

61015.7   

1.343 51022.2   

1.353 51056.2   

1.363 51045.1   

1.373 6103.9   

1.383 6101.5   

1.393 51071.1   

1.403 51076.1   
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Figure 12. Plot of sensor response versus the number of D-shaped zones. 

 

4. Conclusions 

Studies presented here successfully demonstrate the feasibility of fabricating a class of high 

sensitive refractive-index sensor based on the multi-D-shaped optical fiber written by femtosecond 

laser pulses. The multi-D-shaped fibers were fabricated using multimode standard communications 

step-index optical fiber with a core diameter of 62.5 μm and with an outer cladding diameter of 

125 μm. The realization of the sensor is through the measurement of transmitted light intensity of the 

sensing fiber. When exposing the D-shaped fiber to sucrose solutions of increasing refractive index, 

the sensor response increases linearly. By transmission power interrogation, we demonstrate that the  

multi-D-shaped fiber sensors can provide a limiting resolution of 1.27 × 10−3–3.13 × 10−4 RIU for 

refractive indices in the range of 1.333 to 1.403. Such a highly sensitive fiber-optic refractive index 

sensor is suitable for use as a chemical or biological sensor. The advantage of this type of sensor is 

relatively simple of construction, compact, low cost, and ease of use. Moreover, the sensor has the 

potential capability for on-site, in vivo, and remote sensing, and has the potential use for disposable 

sensors.  
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