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Abstract: Surface Electromyography (sEMG) activity of the biceps muscle was recorded 

from ten subjects performing isometric contraction until fatigue. A novel feature (1D 

spectro_std) was used to extract the feature that modeled three classes of fatigue, which 

enabled the prediction and detection of fatigue. Initial results of class separation were 

encouraging, discriminating between the three classes of fatigue, a longitudinal 

classification on Non-Fatigue and Transition-to-Fatigue shows 81.58% correct 

classification with accuracy 0.74 of correct predictions while the longitudinal classification 

on Transition-to-Fatigue and Fatigue showed lower average correct classification of 66.51% 

with a positive classification accuracy 0.73 of correct prediction. Comparison of the 1D 

spectro_std with other sEMG fatigue features on the same dataset show a significant 

improvement in classification, where results show a significant 20.58% (p < 0.01) 

improvement when using the 1D spectro_std to classify Non-Fatigue and  

Transition-to-Fatigue. In classifying Transition-to-Fatigue and Fatigue results also show a 

significant improvement over the other features giving 8.14% (p < 0.05) on average of all 

compared features. 

Keywords: sEMG feature extraction; muscle fatigue; 1D spectro; 1D spectro_std; 

Transition-to-Fatigue; peripheral fatigue 
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1. Introduction 

 

Muscle fatigue is a reduction of the ability to contract and exert force. Generally, localized muscle 

fatigue occurs after a prolonged, relatively strong muscle activity, when a muscle or a group of 

muscles are fatigued. Due to the variability of the muscle characteristics from person to person there is 

no simple function of muscle load and timing that defines a precise muscle fatigue threshold. When 

muscle fatigue is not detected soon enough, it can often inflict injuries, causing not only pain to the 

subject but often a financial burden as well, especially for professional athletes [1]. It is also important 

to detect and classify muscle fatigue for use in human-computer interaction [2]. If fatigue occurs it 

causes degradation in the sEMG pattern recognition. To overcome this issue a detection or prediction 

of sEMG muscle fatigue must take place followed by adaption to the current rate of muscle fatigue 

enabling the pattern recognition process to be more robust. Myoelectric manifestations of muscle 

fatigue are perceived as an objective mean for the analysis of muscle fatigue as it disregards subjective 

motivators, and compared to mechanical measures it provides early indicators of fatigue. These 

manifestations refer to changes in signal frequency and amplitude and in the muscle conduction 

velocity (CV), while the mechanical factors relate to a loss in the exerted force [3]. 

Studies on muscle fatigue during isometric contraction have established typical sEMG readings 

when conducted in controlled settings. Changes in sEMG amplitude and centre frequency were studied 

by Petrofsky et al. [4]. The authors found a decrease in the centre frequency of the spectrogram of all 

the muscle groups. Research in this field also shows that a development in muscle fatigue correlates to 

changes in amplitude and median frequency (MDF) [5]. Kumar et al. have discussed the effectiveness 

of using the wavelet transform to decompose the signal to measure its power to identify muscle fatigue 

on EMG signals, which can be applied in an automated process for identifying fatigue [6]. 

A variety of other parameters have been used to investigate sEMG signals. Sung et al. [7] argues 

that entropy reveals part of the sEMG signals that are not included in the power spectrum, and it can be 

a useful tool in detecting muscle fatigue in gender differences. A fractal indicator is sensitive to the 

force level in isometric contractions, and is proved to be a good measure of muscle fatigue [8,9]. 

Gang et al. used a multifractal analysis to study the sEMG signals during static contractions [10]. They 

found that the spectrum increases and hence can be an indicator of fatigue; this method had higher 

sensitivity compared to the median frequency. Recurrence quantification analysis is highly effective in 

detecting changes in the sEMG signal and in comparison to the frequency domain analysis of the 

signal in non-isometric contraction; it is almost an equivalent mean [11]. Recent research by  

Morana et al. also used recurrence quantification analysis in their study of muscle fatigue and stated 

that this method can detect the peripheral of muscle fatigue [12]. Kim et al. studied the sensitivity of 

the first autogressive model to measure fatigue in the trunk muscle and concluded that this model can 

asses fatigue in static exercises, being a sensitive measure that can detect fatigue at low force  

levels [13]. Studies by Asghari Oskoei et al. stated that a significant decline in the signals 

Instantaneous Median Frequency (IMF) is the manifestation of fatigue taking place [3]. 

Our group previously conducted a study aimed at classifying the three classes of fatigue  

(Non-Fatigue, Transition-to-Fatigue and Fatigue) using Genetic Programming (GP) and a primitive 

function set, where the evolved solution was able to classify the unseen sEMG signal to an average  

of 83.17% accuracy in ten different individuals [14]. In another research, we looked at the possibility 
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of differentiating the three classes of muscle fatigue (Non-Fatigue, Transition-to-Fatigue and Fatigue) 

using nine different features [15]. That study concluded with a clear discrimination between the three 

classes giving an estimate of 81.18% average change between the three classes.  

Many past studies of sEMG localized muscle fatigue have been conducted on only the extremes of 

the signal (Fatigue or Non-fatigue), discarding the transitional state. In one of our recent studies we 

developed a new feature 1D spectro that managed to detect the onset of Transition-to-Fatigue with 

correct classification of 85% enabling the prediction of fatigue [16]. In this study, however, we 

focused on developing and analyzing a novel feature that was built on 1D spectro that can correctly 

detect the onset of Transition-to-Fatigue class followed by the detection of a muscle fatigue class. 

Once that was achieved we measured the classification performance of this feature, that we named 1D 

spectro_std. This new feature is looking at all the three classes of fatigue, but is classifying only two of 

them at the time (Non-Fatigue with Transition-to-Fatigue, and Transition-to-Fatigue with Fatigue). The 

aim of developing this new feature is for its future implementation in a wearable device that can 

autonomously predict and detect muscle fatigue using only sEMG signal while requiring low 

processing power, and yet be powerful in its applications.  

 

2. Experimental Section 

 

In the first stage of this research an experimental study was conducted to record sEMG emanating 

from the biceps brachii muscle. The second stage involved labeling the sEMG signal into three classes 

by using the mechanical aspects of muscle fatigue, such as elbow angle and arm oscillation into a 

fuzzy classifier, followed by validating the output of the fuzzy classifier by a human expert. In the 

third stage we used two extracted features to generate a novel feature (1D spectro_std) that will predict 

the onset of Transition-to-Fatigue and detect the onset of fatigue. Finally we analyzed, compared and 

validated the novel feature.  

 

2.1. sEMG Recording and Pre-Processing  

 

The data were collected from ten athletic, healthy subjects (mean age 27.5 ± 3.6 yr), all  

non-smokers. The ten participants were willing to reach physical fatigue state but not a psychological 

one (self-perceived fatigue). The participants were seated on a preacher curl machine to ensure 

stability and biceps isolation.  

Steps in the test bed set up: 

 sEMG electrodes were placed on the participant’s biceps brachii lower belly avoiding the 

estimated innervation zone (biceps belly) and toward the distal tendon to acquire sEMG reading. 

This electrode location was chosen as it facilitates an autonomous fatigue prediction/detection 

with reliable/repeatable data acquisition in realistic conditions. In addition it is a simple 

procedure for placing the electrodes when used by non-experts. 

 Goniometer was placed on the side of the arm to measure the elbow angle and arm oscillation. 

 The participants had a display placed in front of them, which indicated the elbow angle. 

 The weight was handed to the participant at 90 elbow angle. 

 Participants were asked to maintain the 90 angle. 
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 Participants stopped when they reached total biceps fatigue. 

 All participants carried out the isometric exercises with 40% Maximum Voluntary  

Contraction (MVC). 

The test bed set up for one of the conducted trials is shown in the picture below: 

 

 
 

The myoelectric signal was recorded using two channels, Double Differential (DD) electrodes 

(Biometrics Ltd.), with A/D conversion at 2,000 samples/s. The sEMG signals acquired from the 

experiment were only filtered with a dual pass Butterworth filter, with the fifth order passband being 

between 1 and 500 Hz. The Goniometer readings were also recorded simultaneously. The reading of 

the Goniometer was then correlated with the sEMG signal to ensure that fatigue resides within the 

sEMG. The Goniometer provided a reliable mechanical indication on the development of fatigue. 

Classical biceps muscle fatigue for the clinically healthy individuals usually manifest itself by small 

oscillation or vibrations followed by a difficulty in maintain a task [14-16], in our case the 90 elbow 

angle. For each of the ten participants three trials were carried out, providing 30 trials in total. There was 

a resting period of one week between each of the three trials ensuring full recovery of the biceps brachii. 
 

2.2. sEMG Segment Labeling 

 

In labeling the sEMG only the kinematic aspects, such as a drop in the elbow angle and oscillation 

(i.e., standard deviation of the elbow angle), were considered, as they are the most reliable indicators in 

healthy individuals when assessing muscle fatigue. The use of the kinetic variables defines the 

boundaries (Non-Fatigue, Transition-to-Fatigue and Fatigue) of the sEMG signal, providing the basis 

for training the sEMG classifier. In our case the Goniometer signal contains (elbow angle and 

oscillation) the physical manifestation of fatigue (Non-Fatigue, Transition-to-Fatigue and Fatigue).  
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In this study we used both a fuzzy classifier to automate the labeling and a human expert to verify 

the outcome of the fuzzy classifier. The two main criteria in labeling the sEMG signal are described 

below using fuzzy logic terms. The fuzzy logic had two inputs: 

 Figure 1 indicates the fuzzy set input for the elbow angle provided by the Goniometer  

(0 to 180 degrees): Angles above 89 indicates Non-Fatigue, angles below below 86.5 indicates 

Fatigue and any angle between 86.5 to 89 boundaries are considered Transition-to-Fatigue. 

The figure also has a superimposed illustration of a single Goniometer trial signal giving an 

example of how the fuzzy classifier is finding the boundaries to enable the labeling of the  

sEMG signal.  

Figure 1. The fuzzy set input for the angular position of the elbow.  

 
 

 Figure 2 indicates the fuzzy set input for the arm oscillations, which was also provided by the 

Goniometer: An increase in the standard deviation of the Goniometer signals (calculation of the 

standard deviation was implemented using four second non-overlapping window of the 

Goniometer signal then resample to match the original signal size) indicates either low angular 

oscillation or high angular oscillation. Further examination of Figure 2, with the superimposed 

standard deviation signal of the of the Goniometer signals, reveals that at around 110 seconds (in 

this particular signal), which resides at 0.6 standard deviations, indicates transition from  

Non-Fatigue to Transition-to-Fatigue state [14,15]. 
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Figure 2. The fuzzy set input for the angular oscillation.  

 
 

In the experiments, the subjects were instructed to try to maintain a Goniometer angle of 90 until 

complete fatigue was reached.  

For the fuzzy classifiers used in this study, only a single label was chosen as the final output.  

Table 1 below defines the rule base; the rule with the greatest firing strength was selected.  

The above fuzzy classifier inputs, when used in conjunction, were found to assist in finding the 

boundaries of the classes. Both inputs were used to define a 6 rule type-1 fuzzy classifier; using both 

triangular and trapezoidal antecedents and product inference.  

Table 1. Rule base for signal labeling. 

Rules IF 

Input 1 (Elbow Angle) 

Input 2 (Angular 

oscillation) 

THEN 

Output 

1 Non-Fatigue Low Non-Fatigue 

2 Non-Fatigue High Transition-to-Fatigue 

3 Transition-to-Fatigue Low Transition-to-Fatigue 

4 Transition-to-Fatigue High Transition-to-Fatigue 

5 Fatigue Low Fatigue 

6 Fatigue High Fatigue 

 

2.3. Feature Extraction  

 

This study is looking at three classes of sEMG (Non-Fatigue, and Transition-to-Fatigue and 

Fatigue), which relate to the status of the muscle and will produce distinct features. The features were 

extracted by using other features that have been used in previous studies to extract fatigue content in 

EMG [17]. The feature extraction methods described in the following subsections are the building 

blocks for constructing the novel sEMG feature developed in this study. It is important to note that the 

sEMG signal was split into one-second intervals during the feature extraction processes. 
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2.3.1. Instantaneous Median Frequency 

 

The spectral frequency can be redefined to contain time dependence of the signals frequency 

content [18], and time dependence can be referred to as the instantaneous frequency. The instantaneous 

median frequency was introduced by Roy et al. who depicted the following formula where t is time, P 

is Power spectrum density function, w is the window size and d is the depth of the signal [19]. 

׬ ܲሺݐ, ݓሻ݀ݓ ൌ ׬ ܲሺݐ, ݓሻ݀ݓ
ஶ
ூெ஽ிሺ௧ሻ

ூெ஽ிሺ௧ሻ
଴                                        (1) 

 

2.3.2. Total Band Power of sEMG 

 

The total band power of the sEMG was estimated using Welch’s method. This method was used in 

several sEMG fatigue analysis and proved to be useful in quantifying the power of the EMG signals [20].  

 

2.3.3. Novel Feature (1D spectro_std) 

 

As mentioned above, the 1D spectro_std was developed in this study to assist in the prediction and 

detection of muscle fatigue and was built on a previous study that predicted the onset of  

Transition-to-Fatigue class using the feature 1D Spectro [16]. In that study the instantaneous median 

frequency and the total band power are unified. The novel feature in this research was produced by 

using the standard deviation of the unified signal which we named 1D spectro_std. The name of this 

feature was inspired by the spectrogram. The spectrogram shows the spectral density over time usually 

using a two- dimensional image, while the 1D spectro reduces the dimensionality to one. This is 

accomplished when the two feature signals are unified (total band power and instantaneous median 

frequency) by subtraction. Due to the simplicity and powerful analysis capabilities, the 1D spectro_std 

can be easily embedded in a mobile wearable muscle fatigue system while retaining exceptional 

classification performance. Figure 3 shows a graphical representation of how the updated 1D spectro 

forms the 1D spectro_std. The latter is used in this study to detect the onset of Transition-to-Fatigue and the  

onset of Fatigue. 

The 1D spectro_std is light on the resources, however it is still reliable in real-time prediction and 

detection of fatigue. It was established in this research that once the onset of Transition-to-Fatigue has 

taken place the output of the 1D spectro_std value will increase, creating large spikes within the signal. 

This is contrary to when fatigue onset is reached, where the 1D spectro_std values will start to drop 

drastically, as shown in Figure 4. This phenomenon directly correlates to the fuzzy classifier that was 

used to label the signal which was based on the mechanical aspects using the Goniometer (drop in 

elbow angle and arm oscillations). Figure 4 illustrates these findings when extracting the 1D 

spectro_std from the sEMG for one of the trials that contain Non-Fatigue, Transition-to-Fatigue and 

Fatigue segments. (See Figure 1, Figure 2 showing the Goniometer feedback while Figure 4 shows the 

outcome of the feature extracted from the sEMG.)  
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Figure 3. An illustration on constructing the 1D spectro_std feature. 

 

Figure 4. Illustration of the three classes of fatigue for one of the trials. 

 
 

2.4. Validation/Classification 

 

In order to compare and validate the new features with other features, a linear discriminant analysis 

(LDA) was used. The following linear transformation describes the classification where the LDA maps 

the data (feature vector) x: 

ݕ ൌ ݔ்ܹ ൅  ଴      (2)ݓ

where W and w0 are determined by maximizing the ratio of between-class variance to within-class 

variance to guarantee maximal separability [21].  

The classification is described below (In this study only two classes were used at a time, e.g.,  

Non-Fatigue vs. Transition-to-Fatigue and Transition-to-Fatigue vs. Fatigue):  
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 ܺ א ൜
݊݋ܰ െ ݕ ݂݅                            ,݁ݑ݃݅ݐܽܨ ൐ 0,
݊݋݅ݐ݅ݏ݊ܽݎܶ  െ ݋ܶ െ ݕ ݂݅    ,݁ݑ݃݅ݐܽܨ ൏ 0.               

       (3) 

 ܺ א ൜
݊݋݅ݐ݅ݏ݊ܽݎܶ െ ݋ܶ െ ,݁ݑ݃݅ݐܽܨ ݕ ݂݅ ൐ 0,
ݕ ݂݅                                        ,݁ݑ݃݅ݐܽܨ  ൏ 0. 

In this study we have compared the novel feature 1D spectro_std classification performance with 

four other features, two of which (instantaneous median frequency and total band power) are described 

in Section 2.3. The latter two are described in the subsections below. 

The classification performance of the novel feature 1D spectro_std was tested using longitudinal 

classification. When measuring the classification performance of all the compared features using the 

same dataset, the standard deviation was computed for each of the features with a window of three 

second to enable a similar criteria to the 1D spectro_std, hence results of these compared features can 

be correctly compared to the 1D spectro_std. 

 

2.4.1. New Spectral Index (FI2-FI5) 

 

Dimitrov et al. suggested that a special parameter would give a much higher sensitivity for both 

dynamic and isometric contractions. The parameter used the fast Fourier transform to calculate ratios 

between different spectral moments measured over the power spectral density [22]. 

ࢄ࢓࢙࢔ࡵࡲ ൌ
׬ ࢌࢊ.ሻࢌሺࡿࡼష૚ࢌ
૛ࢌ
૚ࢌ

׬ ࢌࢊ.ሻࢌሺࡿࡼࢄࢌ
૛ࢌ
૚ࢌ

      (4) 

where X is the moment and PS(f) is the EMG power spectrum calculated using 

Fourier transform and f1 = 8 Hz and f2 = 500 Hz. 

Only the FI2 spectral index was included in this study and compared in the final result as it gave the 

highest classification measure out of the other spectral indices (FI3-FI5). 
 

2.4.2. Wavelet Decomposition 

 

In wavelet transforms (WT) there is a range of standard ‘mother’ wavelet functions to be used as 

basis for the decomposition of a signal, e.g., Symmlet, Coiflet, Haar, Morlet, Daubechies and Mexican 

Hat [6]. Some of the mother wavelets are more suited for a specific application and signal type, 

although there is no definite rule for the selection of a wavelet basis function. To select the appropriate 

wavelet the properties of the wavelet function and the characteristic of the signal needs to be analyzed 

and matched. However, some of the wavelets have somewhat established guidelines, e.g., Db4 is said 

to be suited for signals using feature extractions and linear approximation with more than four 

samples, while Db6 is used for a signal approximated by a quadratic function over the support of six; 

coiflet6 is better suited for data compression results [23]. Kumar et al. stated in their research that 

wavelets can be used to find fatigue content [6]. 

We have decomposed all our subjects sEMG signals at scale 12 (scale 12 produced the best correct 

classification performance) with DB2, DB3, DB4, Haar, Sym4 and Sym5 wavelets, then labeled them 

with same procedure mentioned in Section 2.2. We found that the DB3 wavelet produced the best 
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classification performance out of the other wavelets and hence was used in this study to compare with 

the 1D spectro_std. 

 

2.4.3. Confusion Matrix 

 

To measure the true performance of the classification we used a confusion matrix based on a 

classification system that contains information about actual and prediction classifications. The table 

below shows the entries in the confusion matrix as defined by Kohavi and Provost [24]. 

Table 2. Confusion matrix. 

 Predicted − Predicted + 

Actual − a b 

Actual + c d 

 

where,  

a is considered a number of seconds of correct predictions when the occurrence is negative 

b is considered a number of seconds of incorrect predictions when the occurrence is positive 

c is considered a number of seconds of incorrect predictions when the occurrence is negative 

d is considered a number of seconds of correct predictions while the occurrence is positive 

 

For this two-class matrix, as in our study, several functions were used to get the outputs. To 

calculate the True Positive rate (TP), which is the proportion of positive cases identified correctly, the 

following equation was used: 

ܶܲ ൌ ௗ

௖ାௗ
       (5) 

When a number of negative cases were incorrectly identified as positive, we get the False Positive 

rate (FP): 

ܲܨ ൌ ௕

௔ା௕
       (6) 

To find the True Negative rate (TN), where the proportion of negatives cases that were classified 

correctly, we used:    

ܶܰ ൌ ௔

௔ା௕
       (7) 

The False Negative rate (FN) is defined as the number of positives cases incorrectly classified as 

negative, calculated by the equation:  

ܰܨ ൌ ௖

௖ାௗ
       (8) 

With the following equation Precision (P) is calculated, which is a number of correct predictions 

while the prediction is positive: 

ܲ ൌ ௗ

௕ାௗ
       (9) 
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2.5. Measure of Class Separation within the Novel Feature Using Davies Bouldin Index (DBI) 

 

Further analysis of the novel feature was carried out to measure how it affects the standard 

deviation of the signal. Davies Bouldin Index (DBI) was used to quantify the standard deviation.  

The purpose of DBI is to decide cluster quality; it is a measure of the nearness of the clusters’ 

members to their centroids and the distance between clusters’ centroids [25]. It is preferable that the 

DBI decreases. The closer the index is to zero, the better is the separation of the classes.  

DBI can be expressed as follows: CCLi is the centroid of the CLi
th cluster and dn

CLi the nth
 data member 

that belongs to the CLi
th

 cluster. In addition, the Euclidian distance between dn
CLi d and CCLi is expressed 

by the function be dis(dCLi , CCLi). Furthermore, K is the total number of clusters. Finally, standard 

deviation is denoted as std(). Thus, 

ܫܤܦ ൌ
∑ ௌ௧ௗሾௗ௜௦൫஼಴ಽ೔,ௗ಴ಽ೔

బ ൯,…,ௗ௜௦൫஼಴ಽ೔,ௗ಴ಽ೔
೙ ൯ሿೖ

೔సభ

ௗ௜௦൫஼಴ಽబ,஼಴ಽభ,,…,஼಴ಽ೔,൯
     (10) 

 

3. Results and Discussion 

 

Figure 5(a) shows the initial results of the DBI for Non-Fatigue and Transition-to-Fatigue. It can be 

seen that when we use more than one second the separation improves, thus improving the classification 

in later stages. It was chosen in this study to use a three second segment of standard deviation to 

improve performance while keeping the system sensitive when used in realistic scenarios. 

Figure 5. (a) Measuring class separation using DBI within 1 to 5 second segments  

of standard deviation for Non-Fatigue and Transition-to-Fatigue. (b) Measuring class 

separation using DBI within 1 to 5 second segments of standard deviation for  

Transition-to-Fatigue and Fatigue. (c) Comparison of Non-Fatigue to Transition-to-Fatigue 

DBI and Transition-to-Fatigue to Fatigue of the DBI when using three seconds segments. 

 

 

 

 

(a) 
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Figure 5. Cont. 

 

 
 

Figure 5(b) displays the initial results of class separation using the DBI for Transition-to-Fatigue 

and Fatigue within 1 to 5 seconds of standard deviation segments. The three seconds segment 

improves the separation and was thus used in this study. Figure 5(c) shows only the  

three-second segments comparison between the classes (Non-Fatigue and Transition-to-Fatigue with  

Transition-to-Fatigue and Fatigue). It can be seen in Figure 5(c) that the separation of Non-Fatigue and 

Transition-to-Fatigue classes has on average a lower value when compared to the separation of 

Transition-to-Fatigue and Fatigue classes. Table 3 shows the classification performance of the 1D 

spectro_std against other features with the same datasets when classifying Non-Fatigue and  

Transition-to-Fatigue; giving an average of 81.58% correct classification, which outperformed the 

other four features. When compared to the feature that produced the highest classification, i.e., wavelet 

decomposition DB3, 1D spectro_std shows an improvement of 13.49% (p < 0.01) in its correctness of 

classification. Moreover, 1D spectro_std shows a significant improvement when compared to all the 

averaged features giving 20.58% improvement (p < 0.01) in correctness of classification over all the 

other four compared features. These results can be compared to Table 5, which displays the correct 

classification performance of Transition-to-Fatigue and Fatigue. These results indicate that with an 

average performance of 66.59%, 1D spectro_std has a 5.64% improvement over the other feature that 

generated the highest percent of classification i.e. new spectral index (FI2). On average 1D spectro_std 

(b) 

(c) 
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makes an improvement of 8.14% (p < 0.05) over the other four features for classifying  

Transition-to-Fatigue and Fatigue.  

Table 3. Percent correct classification for Non-Fatigue and Transition-to-Fatigue for the 

various features within subjects. 

Subject 

1D 

spectro_std  

% 

Instant. 

Median 

Freq. 

% 

Total 

Band 

Power 

% 

New 

Spectral 

Index (FI2)

% 

Wavelet 

(DB3) 

% 

1 82.1 53.2 73.31 62.95 74.43 

2 86.27 50.32 62.4 51.75 61.33 

3 82.55 54.71 59.49 55.55 62.61 

4 75.69 49.79 55.94 63.02 54.82 

5 84 55.77 67.53 53.35 75.93 

6 86.84 51.52 59.14 57.38 71.46 

7 75.88 60.36 57.67 63.11 74.39 

8 80.71 51.4 72.22 60.46 72.24 

9 88.93 55.47 64.88 65.09 61.36 

10 72.86 55.71 62.94 52.44 72.33 

AVG 81.58 53.83 63.55 58.51 68.09 

STDEV 5.32 3.23 5.95 5.03 7.34 

Table 4. Confusion matrix of 1D spectro_std for the classification of Non-Fatigue (NF) 

and Transition-to-Fatigue (TF) averaged across the full set of subjects.  

Average of all 

subjects in 

second 

Predicted NF Predicted TF 

Actual NF 16 1 

Actual TF 8 11 

True + 0.58 False + 0.05 

True − 0.95 False − 0.42 

Precision 0.93 Accuracy 0.74 

 

Tables 4 and 6 illustrate the confusion matrix results in seconds showing the true performance 

measure when using 1D spectro_std to classify the three classes (Non-Fatigue, Transition-to-Fatigue 

and Fatigue) averaged across the full set of subjects. By looking at Table 4, which is complementing 

Table 3 (Non-Fatigue and Transition-to-Fatigue) it can be seen that the accuracy of classification on 

the proportion of total number correct classification prediction is 0.74 where 1 is highest. This is a 

clear indication of validity of the results obtained in Table 3. It can also be seen from Table 4 that the 

rates of true positive and true negative reflect the results of the accuracy measure. Table 6 shows the 

confusion matrix for classifying Transition-to-Fatigue and Fatigue, complementing Table 5. Results 

exhibit an interesting behavior as the average of Table 5 was 66.59% correct classification. Table 6 

shows somewhat positive results when looking at the true performance. When studying the accuracy in 

Table 6 it can be seen that it is very similar to the results obtained in Table 4, meanwhile the precision 
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is showing a much lower value indicating that predicted true cases was lower than in Table 4. It can be 

also noted that in both confusion matrix Tables 4 and 6 the false negative is where the reduction in 

classification occurs and this can be explained by the nature of the signal.  

Table 5. Percent correct classification for Transition-to-Fatigue and Fatigue for the various 

features within subjects. 

Subject 

1D 

spectro_std 

% 

Instant. 

Median 

Freq. 

% 

Total 

 Band 

Power 

% 

New Spectral 

Index (FI2) 

% 

Wavelet 

(DB3) 

% 

1 53.75 53.35 54.01 58.53 58.33 

2 80.86 57.5 45.41 58.82 61.62 

3 79.13 54.17 54.56 54.37 73.25 

4 35.62 59.8 57.84 53.92 50.88 

5 70.09 48.4 59.29 64.15 67.19 

6 57.88 56.94 50.69 79.17 59.42 

7 85.88 55.44 60.55 68.77 68.08 

8 69.89 51.24 53.9 64.82 52.77 

9 64.06 65.66 61.74 60.63 57.16 

10 68.75 58.33 66.41 46.28 54.27 

AVG 66.59 56.08 56.44 60.95 60.30 

STDEV 14.78 4.8 6.01 9.05 7.26 

 

Table 6. Confusion matrix of 1D spectro_std for classification of Transition-to-Fatigue and 

Fatigue (NF = Non-Fatigue and TF = Transition-to-Fatigue) averaged across the full set  

of subjects. 

Average of all 

subjects in second 

Predicted 

NF 

Predicted 

TF 

Actual NF 13 2 

Actual TF 3 4 

True + 0.62 False + 0.14 

True − 0.86 False − 0.38 

Precision 0.65 Accuracy 0.73 

 

The results in this study proved that the novel 1D spectro_std feature gives higher classification 

accuracy when compared to other features commonly used in sEMG muscle fatigue classification. This 

shows that the 1D spectro_std feature is an exceptional fatigue index that can be used in future research 

on sEMG signals to predict muscle fatigue by correctly classifying the Transition-to-Fatigue class.  

The development of the new feature 1D spectro_std opens new doors for researchers to explore the 

idea of combining two or more features creating a composite feature that can increase the sensitivity in 

extracting muscle fatigue features, hence improving classification accuracy. Another positive point in 

our approach is that we did not discard any segments of the signal in the analysis process, contrary to 

most previous research that emphasize the peripheral of the signal [6]. The benefit of using the total 
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length sEMG signal, is that it can empower any application that uses sEMG for its functionality while 

accounting and adapting for muscle fatigue. This is due to the nature of sEMG; in particular when 

peripheral fatigue sets in, the dynamics of the sEMG changes degrading the pattern recognition 

capabilities [2]. Recent research that investigates the peripherals of localized muscle fatigue [12,21] 

conforms to our findings. However, not much research has been conducted apart from our past 

research [14,15] to automate the process of predicting muscle fatigue by identifying and quantifying 

the Transition-to Fatigue (peripheral fatigue).  

 

4. Conclusions 

 

In this study we developed a novel feature, 1D spectro_std, with the intention to model localized 

muscle fatigue that can be used to predict fatigue by accurately detecting the Transition-to-Fatigue 

class and also detecting the Fatigue class. Results for detecting Transition-to-Fatigue gives an 

encouraging 81.58% correct classification with accuracy 0.74 of correct predictions. A comparison 

was made with other features classification capabilities on the same dataset to see where the 1D 

spectro_std stands. Results on this comparison show a significant improvement over the averaged 

classification of all four compared features to 20.58% (p < 0.01). Also in this study, by using the new 

feature 1D spectro_std, we managed to detect the onset of fatigue with an average correct classification 

of 66.59% with a positive classification accuracy 0.73 of correct predictions, and the comparison with 

the other four features showed a smaller but significant improvement of 8.14% (p < 0.05) for 

Transition-to-Fatigue and Fatigue on average over all four tested features.  

The achievements reached by the 1D spectro_std to predict muscle fatigue by recognition of the 

Transition-to-Fatigue class opens the door for research to explore the generation of new composite 

features that would improve classification accuracy. We are currently exploring the technique of  

multi-feature fusion with very encouraging results, which we look forward to publishing shortly. 
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