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Abstract: This paper presents an evaluation of an infrared sensor for monitoring the 

welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose 

of the study is to develop a real time system control. It is known that the arc welding pool 

temperature is related to the weld penetration depth; therefore, by monitoring the 

temperature, the arc pool temperature and penetration depth are also monitored. Various 

experiments were performed; in some of them the current was varied and the temperature 

changes were registered, in others, defects were induced throughout the path of the weld 

bead for a fixed current. These simulated defects resulted in abrupt changes in the average 

temperature values, thus providing an indication of the presence of a defect. The data has 

been registered with an acquisition card. To identify defects in the samples under infrared 

emissions, the timing series were analyzed through graphics and statistic methods. The 

selection of this technique demonstrates the potential for infrared emission as a welding 

monitoring parameter sensor. 
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1. Introduction  

Technology advancements seek to meet the demands for quality and performance through product 

improvements and cost reductions. An important area of research is the optimization of applications 
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related to welding and the resultant cost reduction. The use of non destructive tests and defect repair 

are slow processes. To avoid this, online monitoring and control of the welding process can favor the 

correction and reduction of many defects before the solidification of the melted/fused metal, reducing 

the production time and cost. 

With continuing advancements in digital and sensor technology, new methods with relatively high 

accuracy and quick response time for identification of perturbations during the welding process have 

become possible. Arc position, part placement variations, surface contaminations and joint penetration 

are key variables that must be controlled to insure satisfactory weld production [1]. 

The techniques related to welding process optimization are based on experimental methodologies. 

These techniques are strongly related to experimental tests and seek to establish relations between the 

welding parameters and welding bead geometry. The introduction of close or adaptive control to 

welding processes must be done by monitoring a variable or set of variables which can identify a 

process disturbance. For each practical implementation of an adaptive system to a welding process one 

should identify the “envelope” or the set of monitoring variables. These variables must be used as a 

reference value in the process control, making the system control start with a parameter adjustment 

(welding current, voltage, etc.) to guarantee bead characteristics close to desirable values. The welding 

parameters vary in accordance to base material, type of chosen process, plate dimensions and welding 

bead geometry, so the adjustment of the reference value of a monitored variable will depend on  

the establishment of a set of optimized parameters which provide a welding bead with  

desirable specifications. 

Researches related to adaptive systems for welding seek the improvement of welding bead geometry 

with direct (if based on monitoring sensors) or indirect monitoring techniques. The indirect monitoring 

systems are the more used, looking to link elements such as welding pool vibrations, superficial 

temperature distribution and acoustic emissions to size, geometry or welding pool depth [2]. According 

to Hong, the most used approaches in welding control are infrared monitoring, acoustic monitoring, 

welding pool vibrations and welding pool depression monitoring [3].  

Aiming to optimize human analysis during the defect identification process, many researches were 

conducted to develop alternative techniques for automatic identification of defects considering 

different classes of signals such as plasma spectrum [4], ultrasonic [5], computer vision [6], etc. 

Arc welding is intrinsically a thermal processing method. To this end, infrared sensing is a natural 

choice for weld process monitoring. Infrared sensing is a non-contact measurement of the emissions in 

the infrared portion of the electromagnetic spectrum. 

2. Infrared Monitoring 

During the welding process, the high temperature associated with the arc and appropriate 

thermophysical properties such as thermal diffusivity cause strong spatial temperature gradients in the 

region of the weld pool. Convection in the weld pool, the shape of the weld pool and the heat transfer 

in both the solid and liquid metal determine the temperature distributions in the plate and on the 

surface. For an ideal weld with stable conditions, these surface temperatures should present repeatable 

and regular patterns. Perturbations in welding penetration should be clearly identifiable from variations 

in the surface temperature distribution [7]. 
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Infrared emissions indicate the heat content of the weld. For example, deeper penetration tends to 

correlate with increased heat input (caused by higher current or slower weld speed). Greater heat input 

results in higher temperatures and increased infrared emissions [8]. The temperature may be monitored 

by a pyrometer, but depend on the kind of sensor is using, due to the slow response time of the system 

and the presence of an intense thermal signal from the welding focused area (saturation problems). 

According to Sanders, a better indicator is the infrared energy emitted by the weld, including both the 

contributions from the weld pool and plasma. 

It is necessary to carry out the temperature measurement with a sensor that doesn't introduce defects 

during the welding process. It is for this reason that non contact temperature sensors are more suitable. 

An infrared thermometer measures temperature by detecting the infrared energy emitted by all 

materials which are at temperatures above absolute zero, (0 Kelvin). 

The infrared monitoring techniques for weld pool are: area scanning and point monitoring. Area 

scanning provides a bidimensional view of the surface temperature distribution profile, making 

possible a complete analysis of the heat transfer process during welding [1,7]. Considering that we are 

dealing with bidimensional images, the application of area scanning demands a better computational 

structure (hardware and software), requiring a longer processing time [9]. On the other hand, the point 

monitoring technique demands little computational structure, requiring a shorter processing time, 

which makes it more appropriate for controlling in real time [10,11]. A recent study presented the 

adaptive control of welding through the infrared monitoring of the weld pool using point sensors [12]. 

The most basic design consists of a lens to focus the infrared (IR) energy on to a detector, which 

converts the energy to an electrical signal. This configuration facilitates temperature measurement from 

a distance without contact with the object to be measured [13].  

To make a correct measurement with this class of sensors, it is necessary to focalize the area that is 

going to be measured; this is possible by knowing the focal distance of the lens. Figure 1 shows a focal 

distance for one infrared sensor. In this case, a focal distance has a length of 600 mm and a radius  

of 4 mm (waist radius). 

Figure 1. TL-S-25 Infrared Sensor focus (Calex Electronics Ltd). 

 
 

3. Failure Detection 

This study compares two algorithms for defect detection. The first one used is the conventional 

Kalman filter together with the Mahalanobis distance calculus to evaluate the presence of failures. In 
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the second, the linear regression Kalman filter–LRKF and the generalized likelihood ratio  

test [14] are used to determine the distance between the autoregressive model and the signal read.   

 

3.1. Change Detection 

This is a statistical technique that can detect abrupt changes in signals. Since welding is a stochastic 

process [15], some properties and algorithms can be applied. It consists basically on the flux of  

Figure 2. 

Figure 2. Basic change detection flux. 

                     

 

Under certain model assumptions, adaptive filters take the measured signals and transform them to a 

sequence of residuals that results in a white before the change occurs [16]. If there is no change in the 

system and the model is correct, then the residuals are a sequence of independent variables with zero 

mean and known variance. When a change occurs, it can reflect on some ariation in the mean, variance 

or both values that makes the residuals greater. The main point is to establish how great is this value to 

assume that a change had occurred. The statistical test decides whether the deviation is significant or 

not. The evaluation is usually made on four situations, change in the mean, change in the variance, 

change in correlation and change in signal correlation. In this work the evaluation was made on the 

mean and it is based on the residuals. 

The stopping rule is based on the distance measurement. Many change detection algorithms make a 

decision between two hypotheses: 
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the value is greater, an alarm is set. 

3.2. Kalman Filter 

A simple description of the infrared signal behavior as a discrete temporal series can be made in 

terms of an autoregressive model (AR) of order m. The present sample value is represented by the 

linear combination of m past samples incremented by a parameter of uncertainty. For a temperature 

registry of a component z[t], According to Pollock [17] the model AR of order m is given by  

Equation (2): 
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where ai = {a1, . . . , am} are the coefficients of model AR and ε[t] is the noise component to represent 

the inaccuracy of the signal reading during welding. It is supposed that the sequence  

ε[1 : t] = {ε [1], ..., ε [t]} is independent and identically distributed (i.i.d) Gaussian with mean  

E{ε [n]} = 0, variance E{(ε[n])2} = σ2. 

From the observation of different statistic characteristics in the noise residues and the presence of 

defect in a model AR of order m, it is possible to establish a recursive estimation system using a 

stochastic filtration technique to observe and track the temperature interval in which the gaussianity of 

the sequence is preserved. One of these tools is the Kalman filter. The state vector is given by  

Equation (3) [18]: 

][]1[][][ kwkxkAkx +−=  (3) 

where x[k] is the state vector of dimension n, A[k] is a square matrix of state transition, w[k] is a 

sequence of dimension n of Gaussian white noise of null mean. The observation model is given by 

Equation (4): 

][][][][ kvkxkHkz +=  (4) 

in which z[k] is the observation vector of dimension m, H[k] is the measuring matrix and v[k] 

represents Gaussian white noise of null mean. It is supposed that the w and v processes are  

non-correlated and also: 
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(5) 

In this system, the initial state ]0[x  is a random Gaussian variable of mean ]0[x̂  and matrix of 

covariance P[0]. ]0[x  is supposedly non-correlated to the w and v processes. The basic problem of the 

Kalman filter is to obtain an estimation ][ˆ kkx  of ][kx  from the measurement {z[1], z[2], . . . , z[k]}, in 

order to minimize a metric of mean square error. This metric is given by the trace of the a posteriori 

error covariance matrix as presented in Equation (6): 

{ }TkkxkxkkxkxEkkP ])[ˆ][])([ˆ][(][ −−=
 

(6) 

Fortunately, this estimation problem presents a recursive solution. This solution is given in two 

stages. First there is a prediction stage (between observation Equation (7, 8)), in which:  

]11[ˆ][]1[ˆ −−=− kkxkAkkx
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Then, there is the correction stage in which the actual observation is used to correct the prediction 

]1[ˆ −kxx : 
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in which: 
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is named Kalman gain. 

The main idea concerning the defect identification is related to the use of a statistic test that, jointly 

with stochastic filtration, verifies if the infrared samples properties are related to the estimation of the 

model AR given by the Kalman filter. If the test fails, it is supposed that the actual sample correlates 

with the presence of defect. 

The comparison between the infrared signal sample and the recursive estimation consists in the  

Chi-square probabilistic hypothesis through the Mahalanobis distance [19]. Such a distance is a natural 

measurement that indicates, in a probabilistic sense, how much of the registry of the actual sample is 

compatible with the estimated infrared signal model, estimated by the Kalman filter. 

4. Experimental Procedure 

All the experiments in this study were conducted using a gas tungsten arc welding (GTAW) bead on 

a plate. The plates used were SAE 1020 6.35 mm thick 30 cm × 20 cm in size. The surfaces of these 

edges were then prepared for welding using standard preparation techniques. Other important 

parameters for the experiments are given in Table 1.  

Welding was performed with an IMC Inversal 450 power source. The power source was configured 

to operate on remote control. To avoid the arc from changing position when the torch is performing 

conventional welding moves, a positioning table that moves the plate without moving the torch during 

the experiment was used. The positioning table was controlled by a microcontroller communicating 

with a computer using the RS-232 protocol. The computer sends to the microcontroller the welding 

speed, start and end signal. 

Table 1. Welding Conditions. 

Welding Speed (Positioning Table) 2.5 mm/s 

Shielding Gas Argon 10 L/min 

Current 90 A DC 

Electrode Negative EWTh-2, 1.6 mm  

Stand-Off 5 mm 
  

The infrared radiation was captured by an infrared sensor model TL-S-25 that gives a current sign 

between 4–20 mA which is proportional to the registered temperature (measuring  

Range 800–2,500 °C). An infrared filter was used to prevent saturating the infrared sensor with a weld 

current above 150A. Finally, the sensor current was converted to voltage using a  

current/voltage converter. 

To locate the position of the sensor correctly (arc welding and weld pool), the TL-S-25 pattern 

provides a tool for localizing the best place for the temperature measurement. This tool is a laser 
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incorporated into a sensor, which shows the focus; for this pattern the focus localization is 600 mm. 

Figure 3 shows how the sensor was positioned. 

Figure 3. Position measurement for the infrared sensor. 

 
 

For measuring the welding current and comparing it with infrared signal, a current clamp  

model i1010 from FLUKE was used. It measures currents without breaking the electric circuit using 

the Hall effect. The welding current and infrared signals are digitalized by a model PCI703S-16 (Eagle 

Technology) acquisition board. 

The power source can be controlled by a computer that generates an analog signal between −5  

and +5 volts and two digital TTL signs. If the analog signal presents a value within this region, the 

power source will supply a current between −450 and +450 A; while the TTL signs control the 

opening/closing of the protection gas and the arc on/off. 

Figure 4. Experimental scheme. Block diagram of the data-acquisition and control system. 

 

A software program was developed in LabVIEW to control the power source and to register the 

chosen parameters (current, voltage and temperature). An open control was implemented to set the 

welding parameters. The current, the voltage and the temperature signals were digitized using an 

acquisition data board (PCI703S-16). The sampling frequency was 15,000 samples per second for each 

channel. The variables observed in function of length allow a better visualization of what happened 

during the process. Using the welding speed and time process, the graph of the variables in function of 

length can easily be obtained. Experiments were carried out with a fixed current and defects throughout 

the path of the weld bead were artificially applied. The experimental setup used to perform the welds is 

shown in Figure 4. 
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5. Results and Discussion 

The Results and Discussion are divided into two sections. In the first, the weld infrared signal use is 

evaluated. Comparisons between weld current stability signal and infrared radiations are done. The 

second part demonstrates the use of the infrared signal for defect detection, according to the  

model presented.  

5.1. Infrared Emission Evaluation 

An infrared filter was used to prevent sensor saturation and it changed the sensor characteristic 

curve. As it was not relevant to know the absolute temperature value during the welding, but it was 

necessary to know the infrared emissions variations, the graphs show relative values for infrared 

emissions and weld current. 

The aim of the first experiment was to compare the informations given by the infrared and current 

sensors. The Figure 5 shows the current and infrared normalized signals produced during the 

experiment without the presence of defects. Given that the welding machine works as a current source, 

the current signal that was read is practically invariant in time. The information provided by the current 

clamp contrasts with the infrared sensor information that shows an important variation in its signal 

even with a constant current. The mean value of the infrared signal or DC (direct current) level of the 

signal is related to weld penetration depth, while AC (alternating current) portions of the output can be 

correlated with surface irregularities and part misalignment or contamination. Thus, the information 

given by the infrared sensor provides more information than the current weld, allowing infrared sensor 

use to evaluate the quality of the weld and also the detection of some defects.     

Figure 5. Normalized signals comparison. (a) Infrared signal. (b) Weld current. 

 
 

It is necessary to verify if the infrared signal corresponds to the weld current variations, in order to 

relate the infrared radiation intensity with weld penetration depth.  

Figure 6 shows an experiment in which the current was altered along the process. These variations 

aim to show the temperature dependency to the current alterations, given that the current variations can 

produce defects during the welding. It is observed that the current increase corresponds to a 

proportional increase in the value registered by the sensor. As expected, the same is observed when the 

current value is reduced. 
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Figure 6. Temperature behavior with currents varied.  

 
 

To correlate the infrared signal and the weld penetration depth, the piece was submitted to a 

metallographic test. Table 2 compares the penetration depth between them. Greater values of the 

infrared signal correspond to a greater penetration depth. 

Table 2. Relation between infrared signal and weld penetration depth under different currents. 

Current (A) 90 155 180 130 

Infrared read (V) 3.31 4.01 4.27 3.68 

Image 

    

5.2. Defect Detection 

Figures 7, 8 and 9 show experiments in which some defects were incorporated into the path of the 

weld bead, with the purpose of observing the temperature behavior. The temperature presents 

variations in the nearness of the defects and envelopes them. The first two experiments consisted of 

metallic inclusion and in the third one water was sprayed. 1 metal 2 water described 

Figure 7 shows the result of an experiment in which defects were introduced by dispersing iron 

pieces along the length 7, 60, 100, 149 mm. The Figure shows the signal read by the sensor; we also 

see there the filtered signal according to LRKF. We can observe the values produced by the algorithm 

of change detection, which together with the Stopping rule provides defects detection. It is observed 

that all the defects reached the minimum value of the stopping rule, but some other regions where the 

presence of defects was detected are also observed. Along the length at 46 mm, a change on the width 

of the bead is observed, demonstrating that there was an involuntary change in some of the power 

source parameters that caused the anomaly. 
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Figure 7. Plate with iron defects. 

 

 

Figures 8 and 9 show an experiment in which the defects were introduced through the presence of 

water during the welding process. Figure 8 shows an analysis done with the generalized likelihood ratio 

test, and Figure 9 shows an analysis done according to the Mahalanobis distance. In Figure 8 we 

observe four clearly detected defects, it is observed that the last two defects remained on the limit of 

the Stopping Rule and two more anomalies were detected around 108 and 110 mm. In just one of them 

(108 mm) a variation in the form of a bead is observed. 

Figure 8. Plate with water defects and change detection analysis. 

 
 

Figure 9 shows an analysis according to the Mahalanobis distance. It is observed that the distance to 

the region where there is no presence of defects (constant temperature) is located below the threshold 

proposed by the statistic test. During the presence of the defect, the residue between the real sample 
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Z[k] and the sample estimated by the AR coefficient increases at such a rate that the distance Z[k] 

surpasses the established threshold where the defect presence is verified. We should also note that this 

test could not detect the anomalies presented around 105 mm. 

 

Figure 9. Current Plate with water defects and Mahalanobis distance. 

 

6. Conclusions 

The exploration of infrared sensoring as an indicator for defect detection during the GTAW process 

was discussed in this paper. The relationship between the infrared signal and the weld penetration 

depth was shown. Infrared weld pool monitoring in the GTAW process provides information about 

penetration depth. It also shows that infrared signal variations in DC are related to weld penetration 

depth, while AC portions of the output can be correlated with surface irregularities. 

Together with a change detection algorithm, the system monitors the residual of the regression 

algorithm, looking for changes in the mean. The proposed method maintains a regression model where 

residuals are filtered by a Kalman filter. A Mahalanobis distance algorithm monitors significant 

changes in the output of the Kalman filter. The Kalman filter has a good performance in detecting real 

changes from noisy data. The simplicity of the proposed algorithm permits its implementation in 

systems for monitoring, detection and localization of events in real time. 
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