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Abstract: This paper is concerned with networked estimation, where sensor data are
transmitted over a network of limited transmission rate. The transmission rate depends on the
sampling periods and the quantization bit lengths. To investigate how the sampling periods
and the quantization bit lengths affect the estimation performance, an equation to compute
the estimation performance is provided. An algorithm is proposed to find sampling periods
and quantization bit lengths combination, which gives good estimation performance while
satisfying the transmission rate constraint. Through the numerical example, the proposed
algorithm is verified.
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1. Introduction

Recently, networked monitoring systems are becoming increasingly popular, where sensor data are
transmitted to a monitoring station through wired or wireless networks [1, 2]. In a monitoring station,
estimation algorithms (such as a Kalman filter) are used to estimate the system states. A network between
sensor nodes and a monitoring station can induce many problems such as time delays, packet dropouts,
and limited bandwidth, where they depend on network types and scheduling methods. We note that the
network issue (for example, what kinds of scheduling methods should be used?) itself is a big research
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area [3]. Also time delays and packet dropouts [4–7] are one of most important problems in networked
estimation problems.

In this paper we focus on the case where there are many sensors and the network bandwidth is limited.
For example, suppose there are three sensors (A,B,C) and 90 bytes/s can be transmitted over a network.
How does one assign 90 bytes/s to each sensor? One method is to assign 30 bytes/s to each sensor. If
sensor A monitors fast changing value and sensor B monitors slowly changing value, it might not be
the best strategy: more data rate should be assigned to sensor A and the data rate of sensor B should be
reduced. These issues are discussed quantitatively in this paper.

Note that the data rate of each sensor depends on the sampling frequency and the quantization bit
length. For example, (100 Hz, 8 bit) case and (50 Hz, 16 bit) case have the same data rate (100 bytes/s).
Thus given the same data rate, we have many possible combinations of the sampling frequencies and the
quantization bit lengths. We first investigate how the sampling frequency and the quantization bit length
affect the estimation performance and then propose a method to choose the sampling frequency and the
quantization bit length of each sensor.

Using different sampling frequencies for different sensors is discussed in [10], where the sampling
frequencies is chosen by minimizing the Kalman filter error covariance. In [11], the sampling frequency
assignment algorithm is given, where a sampling frequency is chosen from a finite discrete set. In [12], a
similar sampling frequency assignment is considered, where location of sensors and cost of measurement
are also considered in the optimization problem. We note there are other attempts, where an event-based
transmission method [8, 9] is used instead of a periodic transmission. In this paper, we assume that
periodic sampling of sensor data.

Quantization is an extensively studied area [13]. Relating the estimation problem, a logarithm
quantizer is proposed in [14]. Although theoretically appealing, the quantizer is applied to the innovation
of a filter rather than to an output directly. The effect of quantization can be reduced by treating the
quantization error as measurement noises as in [15]. In [16] and [17], quantization bit length assignment
algorithms are proposed, where the bit length is computed by minimizing a performance index. The
performance index is not directly related to estimation performance (e.g., the filter error covariance).

Simultaneous optimization of the sampling frequency and the quantization bit length has not been
reported yet. In this paper, both parameters are selected so that the estimation performance is optimized
given the transmission rate constraint.

The paper is organized as follows. In Section 2., estimation performance P is defined, which depends
on the sampling periods and quantization bit lengths. In Section 3., a suboptimal algorithm to compute
sampling period and quantization bit length combination is proposed. Through numerical examples, the
proposed method is verified in Section 4. and conclusion is given in Section 5.

2. Problem Formulation

In this section, estimation performance is defined when the sampling frequency and the quantization
bit length of each sensor are given. How to optimize the sampling frequency and the quantization bit
length is discussed in Section 3.
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Consider a linear time-invariant system given by

ẋ(t) = Ax(t) + w(t)

y(t) = Cx(t) + v(t)
(1)

where x ∈ Rn is the state we want to estimate and y ∈ Rp is the measurement. Process noise w(t) and
measurement noise v(t), which are uncorrelated, zero mean white Gaussian random processes, satisfy:

E{w(t)w(s)′} = Qδ(t − s)

E{v(t)v(s)′} = Rδ(t − s)

E{w(t)v(s)′} = 0

where E{·} denotes the mean and Q and R are a process noise covariance and a measurement noise
covariance, respectively.

Let Ti be the sampling period of the i-th output and thus the corresponding sampling frequency
is 1/Ti. We assume that Ti is an integer multiple of constant T : that is, Ti satisfies the
following condition:

Ti = MiT (2)

where Mi is an integer and T is the base sampling period.
Let li be the quantization bit length of the i-th output. Let ymax,i be the absolute maximum value of

the i-th output: that is,
|yk,i| ≤ ymax,i (3)

where yk,i is the i-th element of yk. The index k is used to denote the discrete time index. We assume
that the uniform quantizer is used. Let δi be the quantization level of the i-th output, which is given by

δi =
ymax,i

2li−1
(4)

Let qk be the quantization error in yk, then the following is satisfied

|qk,i| ≤
δi

2
(5)

where qk,i is the i-th element of qk.
Now we are going to model (1) in the discrete time considering the sampling period Ti and the

quantization length bit li. Assume Mi = 1 (1 ≤ i ≤ p) temporarily:

xk+1 = Φxk + wk

yk = Cxk + vk + qk

(6)

where xk , x(kT ), Φ , exp(AT ) and yk is the quantized output of y(kT ). Process noise wk and vk are
uncorrelated and satisfy

E{wkw
′
k} = Qd, E{vkv

′
k} = R (7)

where

Qd ,
∫ T

0

exp(Ar)Q exp(Ar)′ dr
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We treat the quantization error as an additional measurement noise as in (6), which is also considered
in [15]. The quantization error qk is assumed to be uncorrelated with wk and vk. If the uniform
distribution is assumed, the covariance is given by

E{qkq
′
k} = ∆ = Diag(

δ2
1

12
, · · · ,

δ2
p

12
) (8)

Now the temporary assumption (Mi = 1) is removed. The second equation of (6) is no longer true
and yk,i is available if k is an integer multiple of Mi. Let ỹk be a collection of all available yk,i at time k.
To define ỹk in a more formal way, let {rk,1, rk,2, · · · , rk,pk

} be a set of all row numbers of available yk.
Then ỹk is given by

ỹk ,


yk,rk,1

yk,rk,2

· · ·
yk,rk,pk

 (9)

Similarly ṽk and q̃k can be defined and C̃k is defined as follows:

C̃k =


Crk,1

Crk,2

· · ·
Crk,pk


where Ci is the i-th row of C. Thus the measurement equation at time k is given by

ỹk = C̃kxk + ṽk + q̃k (10)

where
E{ṽkṽ

′
k} = R̃k

E{q̃kq̃
′
k} = ∆̃k

(11)

R̃k ∈ Rpk×pk is a matrix extracted from R so that R̃k(i, j) = R(rk,i, rk,j). ∆̃k is defined in the same way.
For example, if M1 = 1 and M2 = 2, then ỹk and C̃k are given in Table 1. We can see that C̃k is

periodic with the period 2, which is the least common multiple of M1 = 1 and M2 = 2.

Table 1. ỹk and C̃k example (M1 = 1 and M2 = 2)

k 1 2 3 4

ỹk

[
yk,1

] [
yk,1

yk,2

] [
yk,1

] [
yk,1

yk,2

]

C̃k

[
C1

] [
C1

C2

] [
C1

] [
C1

C2

]

Generally C̃k is periodic with the period M , where M is the least common multiple of
{M1,M2, · · · ,Mp}.
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Using the first equation of (6) repeatedly b times, we have

xb+a = Φbxa +
b−1∑
i=0

Φb−1−iwa+i (12)

It is known that a periodic system can be transformed into a time-invariant system [18, 19]. From (12)
with a = kM and b = M , we have

x(k+1)M = ΦMxkM +
M−1∑
i=0

ΦM−1−iwMk+i (13)

Also from (12) with a = kM − j and b = j, we have

xkM = ΦjxkM−j +

j−1∑
i=0

Φj−1−iwkM−j+i (14)

Multiplying Φ−j , we obtain a backward equation:

xkM−j = Φ−jxkM −
j−1∑
i=0

Φ−1−iwkM−j+i (15)

Let x̄k, w̄k ȳk, v̄k and q̄k be defined by
x̄k , xkM

w̄k ,


wkM

wkM+1

...
wkM+M−1

 , ȳk ,


ỹ(k−1)M+1

ỹ(k−1)M+2

...
ỹkM



v̄k ,


ṽ(k−1)M+1

ṽ(k−1)M+2

...
ṽkM

 , q̄k ,


q̃(k−1)M+1

q̃(k−1)M+2

...
q̃kM


Combining (13), (15) and (10), we have the following time invariant system:

x̄k+1 = Āx̄k + B̄w̄k

ȳk = C̄x̄k + v̄k + q̄k + D̄w̄k−1

(16)

where
Ā = ΦM

B̄ ,
[

ΦM−1 ΦM−2 · · · I
]

C̄ ,


C̃1Φ

−M+1

C̃2Φ
−M+2

...
C̃M−1Φ

−1

C̃M


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D̄ ,


0 C̃1Φ

−1 C̃1Φ
−2 · · · C̃1Φ

−M+1

0 0 C̃2Φ
−1 · · · C̃2Φ

−M+2

...
...

... . . . ...
0 0 0 · · · C̃M−1Φ

−1

0 0 0 · · · 0


We will apply a Kalman filter to (16). Note that

E{w̄kw̄
′
k} = Q̄ (17)

where
Q̄ = Diag(Qd, Qd, · · · , Qd, Qd)

E{(v̄k + q̄k + D̄w̄k−1)(v̄k + q̄k + D̄w̄k−1)
′} = R̄ (18)

where
R̄ = Diag(R̃1, · · · , R̃M) + ∆̄ + D̄Q̄D̄′

∆̄ = Diag(∆̃1, · · · , ∆̃M).

E{B̄w̄k−1(v̄
′
k + q̄′k + (D̄w̄k−1)

′)} = M̄ = B̄Q̄D̄′ (19)

It is standard to apply a Kalman filter to (16) using (17), (18) and (19): the measurement update and
the time update equations are given as follows [20]:

• measurement update

Kk = (P−
k C̄ ′ + M̄)

(
C̄P−

k C̄ ′ + R̄ + C̄M̄

+ M̄ ′C̄ ′)−1

Pk = P−
k − Kk(C̄P−

k C̄ ′ + R̄ + C̄M̄ + M̄ ′C̄ ′)K ′
k

• time update
P−

k+1 = ĀPkĀ
′ + B̄Q̄B̄′

We will use P as an estimation performance, where P is the steady-state value of P−
k :

P , lim
k→∞

P−
k

In the steady state, we have P−
k+1 = P−

k = P . Inserting this into the Kalman filter equation, we have the
following Riccati equation:

P = ĀP Ā′ − (ĀP C̄ ′ + ĀM̄)(
C̄P C̄ ′ + R̄ + C̄M̄ + M̄ ′C̄ ′)−1

(ĀP C̄ ′ + ĀM̄)′

+B̄Q̄B̄′
(20)

If the sampling period Ti and the quantization bit length li are given, the corresponding estimation
performance can be computed from (20).
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3. Ti and li Optimization

In this section, a method to select the sampling period Ti and the quantization bit li are proposed. The
main trade-off is between the transmission rate and the estimation performance.

The optimization problem can be formulated as follows:

minTi,li λ′ Diag P

subject to
∑p

i=1
li
Ti

≤ Smax

(21)

where λ ∈ Rn is a weighting vector. Note that the transmission rate S is given by

S ,
p∑

i=1

li
Ti

(22)

and Smax is the transmission rate constraint. The transmission rate S is defined as the sum of each sensor
data rate without considering packet overhead. When we apply the algorithm to a specific network, the
transmission rate S should be modified to take the packet overhead into account.

Note that Ti = MiT and P depends on M , which is the least common multiple of M1, · · ·, Mp. To
make M constant, Mi is assumed to satisfy

Mi = 2mi (mi is an integer)
mi,min ≤ mi ≤ mi,max

(23)

With this assumption, the least common multiple M of all possible combinations of Mi = 2mi is
given by

M = 2maxi{mi,max}

We assume li satisfies
li,min ≤ li ≤ li,max (24)

If the number of combinations is small, P can be computed for all possible combinations. For a case
that the number is too large, we propose a suboptimal algorithm. The proposed algorithm is based on
the following lemma.

Lemma 1 Let P (m1, l1, · · · ,mi, li, · · · ,mp, lp) be the solution to (20). With the assumption (23), the
following is satisfied.

P (m1, l1, · · · ,mi − 1, li, · · · ,mp, lp) ≤ P (m1, l1, · · · ,mi, li, · · · , mp, lp) (25)

P (m1, l1, · · · ,mi, li + 1, · · · , mp, lp) ≤ P (m1, l1, · · · ,mi, li, · · · ,mp, lp) (26)

P (m1, l1, · · · ,mi − 1, li + 1, · · · ,mp, lp) ≤ P (m1, l1, · · · ,mi, li, · · · ,mp, lp) (27)

Proof: We will prove with a simple case with m1 = 0 m2 = 0, T = 1, M = 2, and p = 2: note that
T1 = 2m1T = T and T2 = 2m2T = T . C̄ for m1 = 0 and m2 = 0 is given by

C̄m1=0,m2=0 =


[

C1

C2

]
[

C1

C2

]

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The subscript (m1 = 0,m2 = 0) is used to emphasize that m1 = 0 and m2 = 0. Also let R̄m1=0,m2=0 be
R̄ defined in (18) and P (0, l1, 0, l2) be a solution to (20) when m1 = 0 and m2 = 0.

Now consider a case with m1 = 0 and m2 = 1 Instead of computing P (0, l1, 1, l2) using (20) with
C̄m1=0,m2=1, we can compute P (0, l1, 1, l2) using (20) with m1 = 0 and m2 = 0 except that R̄m1=0,m2=0

is replaced by R̄modified, which is defined by

R̄modified = R̄(m1=0,m2=0) + Diag(0,∞, 0, 0).

Note that adding ∞ to the (2, 2) element of R̄m1=0,m2=0 is equivalent to ignoring the second output of
yk when k is an integer multiple of 2. Thus P (0, l1, 1, l2) computed in this way is the estimation error
covariance when m1 = 0 and m2 = 1. Since R̄modified ≥ R̄, we have from the monotonicity of the
Riccati equation (see Corollary 5.2 in [21])

P (0, l1, 0, l2) ≤ P (0, l1, 1, l2)

The general case for (25) can be proved similarly.
Proving the second inequality is more straightforward from the monotonicity of the Riccati

equation [21] and from the fact

R̄(m1,l1,···,mi,li+1,···,mp,lp) ≤ R̄(m1,l1,···,mi,li,···,mp,lp)

The third inequality (27) is just a combination of (25) and (26):

P (m1, l1, · · · , mi − 1, li + 1, · · · ,mp, lp) ≤ P (m1, l1, · · · ,mi, li + 1, · · · ,mp, lp)

≤ P (m1, l1, · · · ,mi, li, · · · ,mp, lp)

To explain Lemma 1, we consider a simple example with the following parameters:

p = 2

m1,min = m2,min = 0, m1,max = m2,max = 4

l1,min = l2,min = 9, l1,max = l2,max = 16

(28)

There are 5 × 8 × 5 × 8 = 1, 600 possible combinations (see Figure 1).
Using the result in Lemma 1, we know that P is the smallest when
(m1, l1,m2, l2) = (0, 16, 0, 16) and the largest when (m1, l1,m2, l2) = (4, 9, 4, 9). On the other
hand, the transmission rate S is the largest when (m1, l1, m2, l2) = (0, 16, 0, 16) and the smallest when
(m1, l1,m2, l2) = (4, 9, 4, 9). Note that mi − 1 and li + 1 in Lemma 1 corresponds to the upper and right
combination of (mi, li), respectively. Thus as we move the combination from the left-bottom corner
toward the right-top corner, λ′P becomes smaller while the transmission rate increases.

In the proposed algorithm, we start from the left-bottom corner combination and move the
combination toward the right-top corner combination while the transmission constrained is satisfied.
The proposed algorithm is stated in pseudo-codes.
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Figure 1. P (estimation error covariance) and S (transmission rate) relationship according
to combinations.
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0 0
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(mi, li) = (mi,max, li,min), i = 1, · · · , p
compute λ′P and S

(P denotes P (m1, l1, · · · ,mp, lp) and S is from (22))

while ( S < Smax )

L = { }
for i = 1:p

if ( mi > mi,min )

L = L ∪ {(m1, l1, · · · ,mi − 1, li, · · · ,mp, lp)}

if ( li < li,max )

L = L ∪ {(m1, l1, · · · ,mi, li + 1, · · · ,mp, lp)}
end

for every element of L, compute G̃j

G̃j =
λ′P − λ′P̃j

S̃j − S

where P̃j = P for the j-th element of L

and S̃j = S for the j-th element of L

(mi,old, li,old) = (mi, li), i = 1, · · · , p
Find the maximum of Gj and choose the

corresponding combination as (mi, li)

compute λ′P and S

end

Choose the combination (mi,old, li,old)

Note that G̃j represents the estimation performance improvement per transmission rate increase. For
each given (mi, li), we choose (mi − 1, li) and (mi, li + 1) for the next combination candidates. There
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are at most 2p combinations. Among the combinations, we find a combination of which G̃j is the largest.
This process is continued until the current transmission rate exceeds Smax.

The number of combinations tested in the proposed algorithm is small compared with
the brute force search. For example, the proposed algorithm starts with the top-right-most
combination (m1, l1,m2, l2) = (0, 16, 0, 16) and moves toward bottom-left-most combination
(m1, l1,m2, l2) = (4, 9, 4, 9) at each step until S ≤ Smax is no longer satisfied. Unfortunately,
there is no guarantee that the solution found by the proposed method is near the optimal solution. In
Section 4., it is shown, however, through a numerical example that the gap between the suboptimal and
optimal solution is not large.

We note that the optimization algorithm is applied once when the networked system is designed. Once
the sampling period Ti and quantization length li are determined, they are programmed in each sensor
node. Thus no additional computation is needed in the sensor node.

4. Numerical Example

In this section, the proposed method is verified for the one dimensional attitude estimation problem.
The state is defined by

x(t) =

 θ

θ̇

θ̈


where θ is the attitude we want to estimate. An accelerometer-based inclinometer and a gyroscope are
used as sensors. The system model is given by

A =

 0 1 0

0 0 1

0 0 0

 , C =

[
1 0 0

0 1 0

]

Q =

 0 0 0

0 0 0

0 0 0.2

 , R =

[
0.0056 0

0 0.003

]

The values given in (28), ymax,1 = 3.1416, ymax,2 = 2.6180 and T = 1 are used.
The optimization problem (21) with Smax = 500 and λ = [ 1 0 0 ]′ is considered. λ is a natural

choice since we want to estimate θ.
First the optimization problem is solved by a brute force search: all possible combinations are

examined. The optimal solution is given by

(m1, l1,m2, l2) = (2, 10, 2, 10)

and S and λP at the combination are

S = 500, λP = 0.00259.

Secondly the proposed suboptimal algorithm is used, where the solution is given by

(m1, l1,m2, l2) = (2, 9, 2, 9)
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and S and λP at the combination are

S = 450, λP = 0.00260.

The proposed method was able to find a nearly optimal solution with less computation time. In the brute
force search, 479 combinations are tested while 21 combinations are tested in the proposed algorithm.

To test whether the proposed λP is a good indicator of the estimation performance, the data is
generated with Matlab and tested with a Kalman filter. The estimation performance is evaluated with
the following:

Pexperiment =
1

N

N∑
k,1

θ2
error,k

where N is the number of data and θerror,k = θ − θ̂. Note that θ̂ is computed by
[

1 0 0
]
x̂k. We

computed Pexperiment for all possible combinations and the minimizing combination is given by

(m1, l1,m2, l2) = (2, 9, 2, 10)

and S and Pexperiment at the combination is

S = 475, Pexperiment = 0.00159

It can be seen that the optimal solution predicted by λP nearly coincides with the real optimal
solution. To see how similar λP and Pexperiment are, λP and Pexperiment are plotted for different
(m1, l1,m2, l2) combinations. Since the parameter space is four dimensional, it is not easy to visualize
the result. Thus we fix (m1, l1) = (2, 9) and plot λP and Pexperiment for (m2, l2) combinations in
Figures 2 and 3. The data marked with “o” satisfies S ≤ Smax and the data marked with “*” does not
satisfy S ≤ Smax.

Figure 2. λP plot with (m1, l1) = (2, 9) (o: S ≤ Smax, *: S > Smax)
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Figure 3. Pexperiment plot with (m1, l1) = (2, 9) (o: S ≤ Smax, *: S > Smax)
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It can be seen that the trend of λP is almost similar to that of Pexperiment. Thus λP can be used to
predict the estimation performance given the sampling periods and the quantization bit lengths.

The transmission rate S is given in Figure 4. To see the trade-off between S and the estimation
performance, S and λP are given for three (m1, l1,m2, l2) combinations in Table 2. We can see
that when S decreases (that is, if we transmit less data), λP tends to increase (that is, the estimation
performance degrades).

Finally, to test the efficiency of the proposed algorithm, we applied the proposed algorithm to 100
random models, where A is randomly generated and the same C as in the previous simulation is used. In
the brute force method, 479 combinations are tested as in the previous simulation since the same setting
is used. In the proposed algorithm, the number of combinations tested is between 13 and 21. That is, the
number of combinations tested in the worst case is 21. Thus we can see the convergence rate is relatively
fast. To see the accuracy of the proposed algorithm, the following value is computed:

Accuracy = λ
100 × (Pproposed − Poptimal)

Poptimal

where Poptimal is computed using the brute force method. In the 100 trials, the worst case accuracy
was 7.26% while the average value is 1.73%. Thus we believe the proposed method can find near
optimal value while avoiding the large computation.

Table 2. S and λP comparison

m1 l1 m2 l2 S λP

0 16 0 16 3200 0.000080
2 12 2 12 600 0.000165
4 9 4 9 112.5 0.001282
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Figure 4. S plot with (m1, l1) = (2, 9)
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5. Conclusions

In this paper, attitude estimation over a network with a transmission rate constraint is considered.
The transmission rate depends on the sampling periods and the quantization bit lengths. Basically the
problem is trade-off between the estimation performance and the transmission rate, where the parameters
are the sampling period and the quantization bit length.

First, how the sampling period and the quantization bit length affect the estimation performance is
investigated. To do this, we introduced an augmented system and defined the estimation performance P .
Secondly, the trade-off problem is formulated as an optimization problem and a suboptimal algorithm
is provided. Through numerical examples, we showed that the defined estimation performance matches
the real estimation performance in the sense that graphs of P and the real estimation performance are
similar. We also showed the proposed algorithm could find a reasonably good solution.

While defining P , we made assumption (23), which makes the derivation of P easier but not essential.
Removing that assumption and obtaining a general result is a future work. Also to test an algorithm using
a real network is a future work.
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