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Abstract: A fiber grating sensor capable of distinguishing between temperature and strain, 
using a reference and a dual-wavelength fiber Bragg grating, is presented. Error analysis 
and measurement uncertainty for this sensor are studied theoretically and experimentally. 
The measured root mean squared errors for temperature T and strain ε were estimated to  
be 0.13 °C and 6 με, respectively. The maximum errors for temperature and strain were 
calculated as 0.00155 T + 2.90 × 10−6 ε  and 3.59 × 10−5 ε + 0.01887 T, respectively. Using  
the estimation of expanded uncertainty at 95% confidence level with a coverage factor of  
k = 2.205, temperature and strain measurement uncertainties were evaluated as 2.60 °C  
and 32.05 με, respectively. For the first time, to our knowledge, we have demonstrated the 
feasibility of estimating the measurement uncertainty for simultaneous strain-temperature 
sensing with such a fiber grating sensor. 

Keywords: fiber Bragg grating, sensor, strain, temperature, error analysis, measurement 
uncertainty 
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1. Introduction 

The advantages of fiber optic sensors include light weight, small size, immunity to electromagnetic 
interference (EMI), large bandwidth, environmental ruggedness and electrical and optical multiplexing 
capability. Thus, fiber optic sensors are ideal for the applications in potential smart structures and 
materials. Fiber Bragg gratings (FBGs) have many wide applications, ranging from  
tele-communications to optical fiber sensors. Though Bragg grating sensors (BGSs) have offered a 
variety of potential advantages over their conventional counterparts, their widespread practical use has 
been plagued by their inability to effectively discriminate between temperature and strain fields. A 
number of attempts to overcome this limitation have been demonstrated [1-7]. Among them, one 
popular approach is to use a separate reference grating as a temperature sensor. Another popular 
approach is the dual-wavelength technique which involves writing two superimposed Bragg gratings, 
resulting in different responses to temperature and strain at the same location. Therefore, the 
combination of the respective merits of both reference grating and dual-wavelength grating techniques 
is expected to offer excellent strain and temperature performance. Chehura et al. have used a technique 
which exploits the core-cladding mode coupling of a tilted fibre Bragg grating (TFBG). The strength 
of this method lays in the use of only a single TFBG, and the wavelength and matrix induced errors for 
temperature and strain measurements are 1 oC and 11 με, respectively [8]. Ma et al. have presented an 
error analysis of temperature-compensated white-light interferometric fiber-optic strain sensor. The 
theoretical and experimental analysis demonstrates its potential for practical applications. For  
example, 4 m sensing and 6 m compensating fibers using Fibercore HB800 fiber can enhance the strain 
resolution to 2.5 με and reduce the temperature compensating error to ±7 με [9]. However, the 
principle of this sensor is not based on the concept of fiber grating. Xie et al. have analyzed the 
relationship between temperature sensitivity and plating thickness of nickel-clad FBG in theory and 
verified by experiment. The rectangular distribution is used to calculate the standard uncertainty, us, 
and the expanded uncertainty of temperature is obtained: U = kus = 0.28 pm oC−1, where k = 2 at a level 
of confidence of 95% [10]. In this paper, we present an evaluation of error analysis and measurement 
uncertainty for a reference dual-wavelength grating sensor system. The theoretical strain and 
temperature dependent errors, both wavelength and matrix induced errors, for the grating pair were 
examined. The measurement uncertainty for simultaneous temperature and strain measurements using 
a reference dual wavelength grating method was studied by an estimation of standard uncertainty, 
combined standard uncertainty, and expanded uncertainty. To our knowledge, this is the first time that 
the measurement uncertainty for simultaneous strain-temperature sensing was demonstrated for fiber 
grating sensors. 

2. Sensor Description and Operation Principle  

2.1. Simultaneous Temperature and Strain Measurement 

Though BGSs have offered potentially numerous advantages over their conventional electrical and 
mechanical counterparts, their widespread use has been limited by their inability to discriminate 
effectively between temperature and strain fields, and this poses serious problems for sensors system 
designed to monitor quasi-strain signals, as temperature variations along the fiber link will induce 
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indistinguishable thermal-apparent strain signals. It is apparent that measurement of one wavelength 
shift from a single grating will not determine those two variables simultaneously. A number of 
methods that separate temperature- and strain-induced wavelength shift and overcome this limitation 
have been proposed and demonstrated, including the use of reference grating [1], the use of dual 
wavelength gratings [2], and the use of two sensors associated with different strain and temperature 
responses [3-7,11]. In brief, the determination of those two variables or the elimination of  
cross-sensitivity may be achieved by operating at two wavelengths or two different  
perturbation-induced optical modes, which have different responses to temperature and strain. The 
simplest scheme is to facilitate two sensors in which one is isolated from either of the unwanted 
external perturbations. One approach called reference grating is to use separate reference gratings as 
temperature sensors along the fiber path, i.e., gratings that are in thermal contact with the local 
structure but shield from strain changes. Another approach is to use the dual wavelength technique 
involving writing two superimposed Bragg gratings [2], in which the responses to temperature 
(κ1Τ,κ2Τ) and strain (κ1ε,κ2ε) at the same location on the structure are different. Dual-wavelength 
technique requires two broadband sources to address each sensor and suitable wavelength 
demodulation system (WDS) at the output. The change in the Bragg center wavelengths  Δλi of the two 
gratings from the changes in temperature (ΔTi) and strain (Δεi) is given by the following  
matrix expression  

                1,2i i i iT iT iεΔλ = κ Δε + κ Δ =                                (1)  

where /i iεκ = ∂λ ∂ε  is the strain coefficient of material related to the Poisson ratio, photoelastic constant 
and effective refractive index, and /iT iTκ = ∂λ ∂  is the temperature coefficient related to the thermal 

expansion and thermo-optic coefficients. The above matrix can be inverted to give temperature and 
strain provided that the ratio of temperature responses of the two gratings is different from that of their 
strain responses. Xu et al. [2] have used this method to measure the responses of two BGS’s written  
at 848 and 1,298 nm, and reported that the responses are 6.5% higher for strain and 9.8% less for 
temperature for wavelength at 1300 nm compared with 850 nm. This approach has shown the 
capability to measure strain and temperature simultaneously with errors of ±10 με and ±5 oC, 
respectively. Kannellopoulos et al. [3] have demonstrated simultaneous temperature and strain 
measurement using a FBG and a long-period rocking filter operating at the 800 nm wavelength band 
and reported errors of ±165 με and ±1.5 oC. Other similar types of Bragg gratings, such as a  
long-period grating and FBG’s in the 1,300 nm band, demonstrated by Patrick et al. [4], can be used to 
determine strain and temperature of ±9 με and ±1.5 oC, respectively. However, several potential 
problems such as relative large bandwidth and long physical length of long-period grating, have 
limited the accuracy and number of sensors that could be used in a wavelength division multiplexing 
(WDM) system. If spatial resolutions can be improved to a certain degree, this technique could provide 
a practical means for measuring strain/temperature in arrays of distributed sensor systems. 

2.2. Sensor Configuration 

We have developed a simple and low-cost optical fiber sensor for this purpose [12]. Table 1 
summarizes the experimental and theoretical errors of individual strain and temperature measurement. 
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Figure 1 shows the configuration of the sensor and the detection system, in which the proposed sensor 
was connected to the output port of a fiber coupler. The fiber sensor was consisted of a bare grating 
pair (λ1  and   λ2,) and a packaged reference grating (λ3). The bare grating pair was constructed by 
fusion splicing two fiber Bragg gratings in cascade with different Bragg wavelengths. The spliced 
portion of the grating pair was glued into a quartz tube in order to prevent the relatively brittle spliced 
or fused portion from being damaged or broken. To protect the reference grating from mechanical 
deformation and damage, a method of packaging the bare fiber Bragg grating with a stainless steel 
tube was applied. In the packaging process, the reference grating was first bonded to a quartz substrate 
with an adhesive and the substrate with the reference grating was inserted into a stainless steel tube, 
and the both ends of the stainless tube was then glued and sealed with elastic epoxy glue. In this sensor 
structure, the free end of the fiber was secured with adhesive tape to avoid any unwanted movement or 
twisting. The three fiber Bragg gratings at wavelengths of  λ1,  λ2,  λ3 were interrogated using a 
broadband ASE source and an optical spectrum analyzer (OSA). A fiber coupler was used for coupling 
the reflected light signals of the sensor to the OSA. The reference grating was used to measure only the 
temperature effect. The shift in Bragg wavelength λ3 from temperature changes is given by 

3 3T TΔλ = κ Δ                                                          (2) 

Precise measurement of wavelength shift Δλ3 can be used to determine uniquely the local temperature 
provided that the temperature coefficient κ 3T is well known. The grating pair was fabricated by 
splicing two fiber Bragg gratings with wavelengths,  λ1 and  λ2, respectively. The wavelength shifts Δλi 
from temperature (ΔTi) and strain (Δεi) changes were calculated using Equation (1). This equation may 
be inverted and temperature and strain from measurements of the two wavelength shifts can be solved 
as: 

( )
2 1 1

2 1 21 2 2 1

1
T TT T

T ε ε

ε ε

κ −κ ΔλΔ ⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟ −κ κ ΔλΔε κ κ − κ κ⎝ ⎠ ⎝ ⎠⎝ ⎠

             (3) 

It can be seen that the errors measured in temperature and strain are determined primarily by the 
resolution effect of optical spectrum analyzer and the errors in estimation of temperature and strain 
coefficients (see Table 1, κ1ε = 0.914 pm/με; κ2ε = 0.918 pm/με; κ1T = 10.4 pm/oC; κ2T = 12.1 pm/oC). 

Although the use of a fast and high resolution grating interrogation system is feasible, to build such a 
sensor system is costly. A simple and cost-effective method for improving the performance is to use 
the reference grating as an independent temperature sensor. The reference grating can be used to 
reduce unnecessary errors induced from the grating pair and to improve the accuracy of the 
temperature measurement. Figures 2 and 3 show the strain and temperature performance of an 
individual fiber Bragg grating sensor. Figures 4 and 5 show the results of simultaneous strain and 
temperature measurements for this reference dual-wavelength sensor. The measured root mean square 
(RMS) errors for temperature and strain were estimated to be 0.13 oC and 6 με, respectively. 
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Table 1. Experimental and theoretical errors of individual strain and temperature measurement. 

FBG sensor property Dual grating Reference grating 
λ1

1 (1,548 nm) λ2
1 (1,554 nm) λ3 (1,551 nm) 

Strain coefficient (pm/με) 0.914 ± 0.003 0.918 ± 0.003 N/A2 
Temperature coefficient (pm/oC) 10.4 ± 0.10 12.1 ± 0.10 12.1 ± 0.08 
Theoretical strain error (με) 5.36 4.93 N/A 
Experimental strain error (με) 7.86 12.35 N/A 
Theoretical temperature error (oC) 0.17 0.17 0.17 
Experimental temperature error (oC) 0.65 0.44 0.48 
Note: 1 Strain and temperature coefficients for calculation of measurement uncertainty were as follows:  

κ1ε = 0.914 pm/με; κ1ε = 0.918 pm/με; κ1T = 10.4 pm/oC; κ2T = 12.1 pm/oC 
2 Not applicable 

 
Figure 1. A reference dual wavelength grating system. 
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Figure 2. Strain performance of grating sensor. Inset: output spectrum for the fiber Bragg 
grating sensors with an applied strain at 0 με (black color) and 900 με (magenta  
color), respectively. 
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Figure 3. Temperature performance of grating sensor. Inset: output spectrum for the fiber 
Bragg grating sensors with an applied temperature at 35 oC (black color) and 85 oC  (magenta 
color), respectively. 
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Figure 4. 3D Scatter plot of strain errors with applied temperature and applied strain. 
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Figure 5. 3D scatter plot of temperature errors with applied temperature and applied strain.  
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3. Error Analysis of Fiber Grating Sensor  

According to the error analysis technique presented by Jin et al. [13], the theoretical strain and 
temperature dependent errors for the grating pair were examined. In the first case, we neglected the 
errors of the measured coefficients and attributed all errors to measurement errors of  λ1 and λ2. The 
maximum errors in temperature T and strain ε is formulated as:  

2 11 2ε εκ δλ + κ δλ
δΤ ≤

Δ
                                                             (4) 

2 11 2T Tκ κδλ + δλ
δε ≤

Δ
                                                              (5) 

where Δ = κ1Tκ2ε − κ2Tκ1ε .  The maximum measurement errors of  δΤ and δε were calculated as 0.13 oC 
and 1.6 με, respectively. For the second case, assuming that the measurement errors in λ1 and λ2 may 
be neglected (δλ1 = δλ2 = 0) and the maximum errors are in all the coefficients, the maximum relative 
errors for  δT/T and δε/ε is expressed as:  

( )
Δ

+κκ+κκ+κκ
≈

Τ
Τδ εεεεΤΤεΤεΤ δδδδ Τε2121221121

max                                        (6) 

( )
Δ

+κκ+κκ+κκ
≈

ε
δε ΤΤΤΤεεΤεΤε δδδδ εΤ2121221121

max                                           (7)  

Thus, the maximum relative errors for δT/T and δε/ε  were calculated as 0.0016 + 2.90 × 10−6 ε/T, 
and 3.59 × 10−5 + 0.0188 T/ε, respectively. In Figure 6, we plotted the experimental relative error δε/ε 
as a function of strain at room temperature (25 oC) along with a theoretical curve at 25 oC. It can be 
seen that the theoretical curve and the experimental data of the relative strain errors agreed well except 
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for some measured data below 200 με, indicating that the error in wavelength measurement is  
not negligible.  

Figure 6. Measured and calculated relative strain error as a function of strain. In error 
analysis, the measurement errors in wavelength were neglected. 
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Figure 7. Measured and calculated relative strain error as a function of strain. In error 
analysis, all measurement errors are taken into account. 
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Secondly, considering all the measurement errors involved in determining the coefficients and the 

precision of wavelength measurement, the maximum relative errors for  δT/T and δε/ε is given by  

1 2 1 2 1 2

max 1 2 1 2

2T T

T T

ε ε ε ε

ε ε

κ κ + κ κ + ε Τ κ κδΤ
≈ γ

Τ κ κ − κ κ
                               (8) 

1 2 1 2 1 2

max 1 2 1 2

2T T T T

T T

Tε ε

ε ε

κ κ + κ κ + ε κ κδε
≈ γ

ε κ κ − κ κ
                               (9) 
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where γ is the maximum error in the entire matrix. With Equations (8) and (9), the maximum relative 
error or  δT/T and δε/ε are estimated as 0.00175 + 1.42 × 10−4 ε/T, and 1.75 × 10−3 + 0.021 Τ/ε, 
respectively. As shown in Figure 7, the experimental error of /δε ε  as a function of strain was plotted 
together with the different maximum error predictions at 25 oC. It is shown that all the measured data 
in Figure 7 departed away from the theoretical curve by a factor of 1.8~6.2. Since the theoretical curve 
represents the maximum relative errors, the results show that all of the measured data of the relative 
strain errors were well controlled within the theoretical calculations at a reasonable range, in which the 
differences of relative strain errors between experiment and theory were around 0.03~0.09.  

However, in Reference [13], equations (6) to (9) were used only for normalizing maximum error, 
δTmax or δεmax, to be relative maximum error (δT/T or δε/ε, unit less). The value of relative maximum 
error (percentage) is not always between 0 and 100. It is not recommended to use the relative 
maximum error when the temperature or strain is zero since relative maximum error becomes singular 
in this situation. Actually, for our laboratory testing data, the controlled temperature and strain ranges 
were 25~113 oC and 100~1,600 με, respectively. There was no singular problem for our testing results. 
Therefore, using maximum errors instead of relative maximum errors could be a better way to 
characterize measured quantity. The maximum errors for temperature and strain are expressed by  

( )
Δ

+κκ+κκ+κκ
≈δ

εεεεΤΤεΤεΤ δδδδ ε2121221121

max

)(
T

T     (10) 

( )
Δ

+κκ+κκ+κκ
≈δε

ΤΤΤΤεεΤεΤε δδδδ T2121221121

max

)( ε                                                (11) 

With equations (8) and (9), the maximum errors, |δT|max and |δε|max, were estimated  
as 0.00155 T + 2.90 × 10−6 ε  and 3.59 × 10−5 ε+ 0.01887 T, respectively. 

4. Measurement Uncertainty of Fiber Grating Sensor  

The measurement uncertainty for temperature and strain simultaneous measurements using dual 
wavelength grating method was studied as estimation of standard uncertainty, combined standard 
uncertainty, and expanded uncertainty [14,15]. The source of uncertainty includes the skills of 
operators, effects of broadband ASE light source stability, fabrication and preparation of fiber grating 
samples and the resolution of optical spectrum analyzer. Assuming the operators are well-trained, 
broadband light source has been calibrated and is in stable condition, and the fabrication of fiber 
grating sensor meets the allowable tolerances as specified in standards or methods. 

4.1. Estimation of Standard Uncertainty 

The models for temperature and strain difference were shown in Equation (3) and let functions f and 
g represent the temperature and strain differences:  

f = ΔT = [κ2ε (Δλ1) − κ1ε (Δλ2)]/[ κ1Tκ2ε − κ2Tκ1ε]                   (12) 

g = Δε  = [−κ2T (Δλ1) + κ1T (Δλ2)]/[ κ1Tκ2ε − κ2Tκ1ε ]           (13) 
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Since the measurement resolution of wavelength shift using the ANDO AQ6331 OSA  
was ±0.05 nm, the uncertainty on the FBGs measurement was as large as 3 pm [16]. For the standard 
uncertainty of wavelength shift at a confidence level of not less than 95%; assuming normal 
distribution with coverage factor k = 2 and degree of freedom, νΔλ1 = infinity, and νΔλ2 = infinity, 
therefore; 

Standard uncertainty, uΔλ1 = 3 pm/2 = 1.5 pm; 
Standard uncertainty, uΔλ2 = 3 pm/2 = 1.5 pm; 

4.2. Estimation of Combined Standard Uncertainty 

Based on Table 1, the strain and temperature coefficients were used to evaluate the uncertainty 
values for both fiber gratings, λ1 and λ2, respectively.  

Sensitivity coefficient for Δ T due to λ1: 

Cf,Δλ1 = [∂f/∂ Δλ1] = κ2ε/[κ1Tκ2ε − κ2Tκ1ε] = 0.6070626 oC/pm; 

Sensitivity coefficient for Δ T due to λ2: 

Cf,Δλ2  = [∂f/∂ Δλ1] = κ1ε/[κ1Tκ2ε − κ2Tκ1ε] = −0.6044174 oC/pm; 

Sensitivity coefficient for Δε due to λ1: 

Cg,Δλ1  = [∂g/∂ Δλ1] = κ2T/[κ1Tκ2ε − κ2Tκ1ε] = −8.001587 με/pm; 

Sensitivity coefficient for Δε due to λ2: 

Cg,Δλ2  = [∂g/∂ Δλ1] = κ1T/[κ1Tκ2ε − κ2Tκ1ε] = 6.8773972 με/pm; 

Since the temperature is compensated, it is reasonable to assume there are non-correlated 
uncertainty components. The combined uncertainty is obtained from the uncertainties of the single 
components without taking into account possible covariances. The combined uncertainties for 
temperature and strain are the square root of equations (14) and (15), respectively:  

Ucombined
2(ΔT) = uf = ( )i

n

i i

xu
x
f 2

1

2

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂                             (14) 

Ucombined
2(Δε) = ug = ( )i

n

i i

xu
x
g 2

1

2

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂                             (15) 

where the combined uncertainty is calculated for non-correlated uncertainty components based on the 
first order Taylor approximation. 

Thus the combined standard uncertainty for temperature difference as: 

[uf]2 = (Cf,Δλ1 )2(uΔλ1)2 + (Cf,Δλ2 )2(uΔλ2)2 = 1.651 oC2; 
uf  = 1.285 oC 

The combined standard uncertainty for strain difference as: 

[ug]2 = Cg,Δλ1 )2(uΔλ1)2 + (Cg,Δλ2 )2(uΔλ2)2 = 250.479 με2; 
ug = 15.827 με 
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4.3. Estimation of Expanded Uncertainty 

Effective degree of freedom for Δ T, 

νeff,f = [uf]4/Σ{[(Cf,Δλι )(uΔλι)]4/νi} = infinity; 

Effective degree of freedom for Δε, 

νeff,g = [ug]4/Σ{[(Cg,Δλι )(uΔλι)]4/νi} = infinity; 

Thus for coverage factor k = 2.025 at 95% level confidence (from Student-t distribution); 

Uf = UΔ T = k uf = 2.205 * (1.285) ≅ 2.602 oC  

Ug = UΔ ε = k ug = 2.205 * (15.827) ≅ 32.049 με 

Therefore, values of temperature and strain measurement uncertainty were determined to  
be 2.602 oC and 32.049 με, respectively. The estimation of expanded uncertainty provides at 95% 
confidence level with a coverage factor of k = 2.205, but excluding the effects of light source stability 
and fabrication and preparation of fiber grating samples. 

5. Conclusions  

We present a simple and low-cost reference dual-wavelength grating sensor system that could offer 
the potential of simultaneous measurement of strain and temperature for infrastructures. Experimental 
results show that measurement errors of 6 με and 0.13 oC for strain and temperature could be achieved, 
respectively. We have performed and characterized the error analysis and measurement uncertainty for 
this strain-temperature sensing system. The maximum errors for temperature T and strain ε  were 
calculated as 0.00155 T + 2.90 × 10−6 ε  and 3.59 × 10−5 ε+ 0.01887 T, respectively. Based on the 
analysis of estimation of expanded uncertainty at 95% confidence level with a coverage factor of  
k = 2.205, values of temperature and strain measurement uncertainty were evaluated as 2.60 oC  
and 32.05 με, respectively. Using fiber grating sensors, for the first time the measurement uncertainty 
for simultaneous strain-temperature sensing could successfully be analyzed. 
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