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Abstract: This paper presents an optimum design of a lightweight vehicle levitation 
electromagnet, which also provides a passive guide force in a magnetic levitation system 
for contactless delivery applications. The split alignment of C-shaped electromagnets about  
C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning 
of electromagnets is better for lateral performance. This is verified by simulations and 
experiments. This paper presents a statistically optimized design with a high number of the 
design variables to reduce the weight of the electromagnet under the constraint of normal 
force using response surface methodology (RSM) and the kriging interpolation method. 2D 
and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The 
most effective design variables are extracted by a Pareto chart. The most desirable set is 
determined and the influence of each design variable on the objective function can be 
obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging 
model. This paper’s procedure is validated by a comparison between experimental and 
calculation results, which shows that the predicted performance of the electromagnet 
designed by RSM is in good agreement with the simulation results. 

Keywords: optimum design; response surface methodology (RSM); levitation control; 
kriging interpolation method; design of experiments (DOE); electromagnet 
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1. Introduction 

Electromagnetically levitated and guided systems with linear motor propulsion are commonly used in 
the field of people transport vehicles, tool machines and conveyor systems because of their silent and 
non-contact motion [1-3]. Passive guidance controls are normally used in real implementations of 
Maglev systems with linear induction motor propulsion to reduce construction costs and complexity. The 
Japanese HSST and the English BAMS (Birmingham Airport Maglev System) are well-known cost-
effective transport systems based on linear induction motor propulsion and magnetic levitation. In both 
systems, the guidance force needed to keep the vehicles on the track is obtained by the levitation 
electromagnets with the help of particular shapes of the rail and clever placement of the electromagnets 
about it. In Maglev transport systems where levitation magnets are on moving parts, the design of 
levitation electromagnet is the most important factor. It can account for a considerable part (10%) of the 
whole vehicle weight, which can largely affect weight and stability of the magnetic levitation system. 
Optimum plans for the weight reduction of the levitation electromagnet are consequently  
desirable [4-7]. In this paper, an optimal design procedure was required in order to develop a magnetic 
levitation system for a contactless delivery application shown in Figure 1. As a first step, the design 
goal was to reduce the weight of the electromagnet of the magnetic levitation system with the 
constraint of normal force, considering the initial model. At a second step, the most effective design 
variables and their levels should be determined and be arranged in an orthogonal array table.  

Figure 1. Magnetic levitation system prototype for contactless delivery application: (a) 3D 
modeling (b) prototype. 

   
(a)                                                                    (b) 

Response Surface Methodology (RSM) is generally used with two or three design variables, 
however we have seven design variables, so a mixed orthogonal array table was utilized. The reason 
for this is that a mixed orthogonal array table is an efficient way to study the effect of several design 
variables simultaneously with a number small of experiments and to plan matrix simulation trials. For 
each design variable combination the response value is determined by the 2D and 3D Finite Element 
Method (FEM). In this paper we use the reduced gradient algorithm, which can lead to the selection of 
the most desired set of variables. Figure 2 shows optimization procedure flow chart of RSM and 
kriging interpolation method. Figure 3 shows the application prototype model for applying the 
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contactless delivery application. The response is determined and we evaluate the influence of each 
design variable on the objective function. Based on this method the weight of the optimized 
electromagnet could be reduced by 11.412% and normal force improved by 7.754%, compared to the 
initially designed electromagnet.  

Figure 2. Optimization flow chart. 

 

Figure 3. Application prototype. 

 

2. Passive Guidance Control and Optimization of Electromagnet 

Let’s assume that the guidance forces are generated by closed-loop control of levitation 
electromagnets. The lateral response of the electromagnet due to the airgap control is a force 
increasing with the lateral offset X. This force is almost a linear function of the lateral offset of the 
electromagnets. Then we can imagine that the electromagnet will move laterally as a mass bound by a 



Sensors 2010, 10                            
 

 

6721

spring. As we know, a spring working on a mass is a mechanical resonant system, whose resonance 
frequency is given by: 

M
fresonance

guideK
2
1
π

=  (1)

where the M is the sum of the masses of the electromagnet and of part of the carried vehicle. We can 
easily imagine that any external action will cause a non-damped oscillating response of the lateral 
position. The value of kguide can be designed to keep the disturbance from causing an excessive 
displacement. An example of the design problem is shown in Figure 4. 

Figure 4. Lateral position model for electromagnets under constant levitation control:  
(a) passive guidance model; (b) simulation result for a 100 N disturbance. 

(a) (b) 

A total mass of 100 kg is assumed to be levitated with a constant gap. The sum of lateral position 
stiffness of the levitation magnets is set at 10,000 N/m, 50,000 N/m and 100,000 N/m, respectively. 
The lateral disturbance forces are assumed to be a constant value of 100 N for about 1 second. The 
simulation result shows that if the lateral position stiffness remains higher than 50,000 N/m, the lateral 
position deviation is smaller than 5 mm under constant 100 N disturbance.  

In the experiment, a total mass of 200 kg including four levitation electromagnets is levitated under 
small deviation of electromagnet placement conditions, as shown in Figure 5. That is, a mass of 50 kg 
is levitated by one electromagnet. In the experiment, levitation magnets are controlled to maintain a 
constant gap length of 5 mm. A position disturbance of 3.2 mm is applied at first and then removed. 
The lateral response of the experiment is shown in Figure 5(b). We can infer that if two electromagnets 
are positioned with small deviation from the original rail position, the guidance forces generated each 
electromagnet can be larger, but the resultant force becomes smaller because of the differential 
actuation scheme, so the position stiffness become smaller, the natural frequency becomes smaller and 
the lateral deviation becomes larger as the deviation of magnets becomes larger. Therefore, no-split 
positioning of electromagnets is better for lateral performance. 
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Figure 5. Lateral position response of magnetically sprung mass under position 
disturbance: (a) experimental model; (b) lateral position response (experiment); (c) lateral 
position stiffness response (simulation); (d) lateral force response (simulation). 

               
   

(a) (b) 

 

(c) (d) 

3. Optimum Theory 

3.1. Response Surface Methodology 

The RSM method can be readily adapted to develop an analytical model for a complex problem. 
With this analytical model, an objective function with constraints can be easily created and evaluated, 
and computation time can be saved. A polynomial approximation model is commonly used for a 
second-order fitted response (u) and can be written as follows: 

ε+β+β+β+β= ∑∑∑
===

k

lj
jiij

k

ij
jjj

k

lj
jjj xxxxu 2

0  (2)

β : regression coefficients, x : design variables 
ε : random error, k : number of design variables 

The least squares method is used to estimate unknown coefficients. Matrix notations of the fitted 
coefficients and the fitted response model should be as shown in equation (3): 

uXXX ′′=β −1)(ˆ , β= ˆˆ Xu  (3)



Sensors 2010, 10                            
 

 

6723

where β̂  is a vector of the unknown coefficients which are usually estimated to minimize the sum of 
the squares of the error term. It should be evaluated at the data points. RSM can be applied in 
connection with FEM and the response actually represents FEM result. 

3.2. Kriging Interpolation Method 

Kriging is a method of interpolation named after a South African mining engineer D. G. Krige, who 
developed the technique while trying to increase accuracy in predicting ore reserves. In the kriging 
model, the global approximation model for a response y(x) is represented as: 

y(x)=β+v(x) (4)

where x is the design variable vector, β is a constant, and v(x) is the realization of a stochastic process. 
In Equation (4), v(x) has the mean zero, variance σ2, and non-zero covariance. The weight of 
electromagnet totalWeight  is replaced by y(x) to make a surrogate approximation model. Let 

∧

)(xy  be an 
approximation model. Hereafter, ^ means the estimator. When the mean squared error between y(x) 
and 

∧

)(xy  is minimized, 
∧

)(xy  becomes: 

)()()( 1 qyRxrx
∧

−
∧∧

β−+β= Ty  (5)

where r is the correlation vector, R is the correlation matrix, y is the observed data and q is the unit 
vector. The definitions of R and r are well explained in Refs [8,9].  

The unknown correlation parameters of θ1, θ2,…,θn defined in R are calculated from the 
formulation according to: 

2
])([ 2 Rlnlnn

maximize s +σ
−

∧

 (6)

where θi (i = 1,2,…,n) > 0. In this study, a GRG (generalized reduced gradient) algorithm built in the 
Excel program was utilized to determine the optimum parameters. 

4. Optimum Design 

4.1. Metamodel and Design Variable 

Optimization formulation: 

Minimize: Weighttotal(dv1, …, dv7) (7)

Subject to      Fnormal (dv1, …, dv7) ≥ 611.689 (8)

Figure 6 shows the prototype electromagnet of the reference model which is analyzed. The 
comparison of the static force obtained from FEM simulation and experimental test is shown in Figure 
7. From the results, the use of FEM is validated, as it can be observed, since the comparison of normal 
force by simulation and experiment test shown in Figure 7 displays good agreement. Selection of the 
design variables is very important setup in optimization procedure. 
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Figure 6. Prototype of the electromagnet. 

 

Figure 7. Comparison of FEM and experiment (reference model). 

 

Seven dimensions are selected as the design variables as shown in Figure 8, which shows the flux 
density vector in electromagnet of 2D and 3D FEM. The magnetization characteristics of the S20C, 
SM490A material is as shown in Figure 9. Table 1 shows the design variables and levels.  

Table 1. Design variable and level. 

Design variable Level dv1 dv2 dv3 dv4 dv5 dv6 dv7 
-1 16 45 16 40 7 16 144 
0 20 50 20 45 11 20 180 
1 24 55 24 50 15 24 216 

Figure 8. Design variables and flux pattern (2D and 3D FEM). 
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Figure 9. Magnetization curve of the core material used. 

 

4.2. Response Surface Methodology 

Table 2 shows the table of mixed orthogonal array and simulation results by 2D FEM. The mixed 
orthogonal array table is determined by considering the number of the design variables and each level 
of them. After getting experimental data by FEM, the function to draw a response surface is extracted. 
In order to determine equations of the response surface for each response value (weight, normal force), 
several experimental designs have been developed to establish the approximate equation using the 
smallest number of experiments. The purpose of this paper is to minimize the objective function 
(Weighttotal) with constraints of normal force (Fnormal). The two fitted second order polynomial of 
objective functions for the seven design variables are as follows: 
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(9)

The adjusted coefficients of the multiple determination R2
adj for normal force and weight are  

weighttotal (99%) and Fnormal (100%). Normal force and weight of experiment result according to 
change of the design variables are shown in Table 2. As many parameters are defined as design 
variables, a large simulation time is required due to the large number of required experiments. 
Therefore, it is necessary to establish the significant parameters to investigate the influence on the 
design result. The Pareto chart of normal force and weight shows the magnitude and importance of an 
effect. This chart displays the absolute value of the effects. The geometries of electromagnet can be 
defined by seven parameters, as shown in Table 1 and Figure 8. The most effective design variables of 
normal force and weight are dv7, dv1 according to the Pareto chart in Figure 10.  
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Table 2. Table of mixed orthogonal array L18(21× 37). 

Exp. dv1 dv2 dv3 dv4 dv5 dv6 dv7 Normal force (N) Weight (kg) 
1 16 45 16 40 7 16 144 382.10 8.706 
2 16 50 20 45 11 20 180 473.67 12.153 
3 16 55 24 50 15 24 216 564.15 16.366 
4 20 45 16 45 11 24 216 682.56 15.433 
5 20 50 20 50 15 16 144 450.22 10.979 
6 20 55 24 40 7 20 180 570.56 13.699 
7 24 45 20 40 15 20 216 795.40 16.803 
8 24 50 24 45 7 24 144 531.60 12.66 
9 24 55 16 50 11 16 180 651.24 14.064 

10 16 45 24 50 11 20 144 379.41 10.277 
11 16 50 16 40 15 24 180 473.76 12.094 
12 16 55 20 45 7 16 216 568.30 13.874 
13 20 45 20 50 7 24 180 570.38 13.637 
14 20 50 24 40 11 16 216 682.15 15.453 
15 20 55 16 45 15 20 144 450.16 10.946 
16 24 45 24 45 15 16 180 659.92 14.604 
17 24 50 16 50 7 20 216 789.93 16.646 
18 24 55 20 40 11 24 144 528.87 12.400 

Figure 10. Pareto chart of the standardized effects (alpha=0.05) (a) Normal force response 
(b) Total weight response. 

(a) (b) 
The reference line corresponds to alpha = 0.05; 95% confidence interval. 

The values of ineffective design variables are determined by RSM. Figure 11 shows response 
optimization to find optimal solution according to response curves. The slope of the response function 
in Figure 11 shows the sensitivity of design variable. According to the response optimization the most 
sensitive design variables of normal force and weight are dv7, dv1. 
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Figure 11. Response optimization. 

 

4.3. Kriging Interpolation Method 

The purpose of this paper is to minimize the objective function (Weighttotal) with the constraint of 
normal force (Fnormal). The kriging interpolation method, the optimum parameters of θ1, …, θ7 are 
determined by solving Equation (6). Then, the estimator β  is calculated. In Tables 3 and 4, the optimal 
point is searched to find the point of less than 11.412% of the weight and greater than 7.754% of the 
normal force of the initially designed electromagnet in the magnetic levitation system. The optimum 
estimators are shown as Table 4. The optimum solution is the same in the RSM and kriging 
interpolation method. The reason is that the optimum solution is near the boundary value. However, 
response values, Weighttotal and Fnormal by RSM and kriging method, respectively, are different. The 
simulation result of the predicted optimum set is shown Table 5, displaying good agreement. 

Table 3. Optimum level and size.  

 Design variable 
Model dv1 dv2 dv3 dv4 dv5 dv6 dv7 

Initial 20 50 20 40 15 20 180 
Optimum (RSM) 23.877 45 16 40 7 16 166.844 
Optimum (Kriging) 23.877 45 16 40 7 16 166.844 

Table 4. Optimum β and correlation parameters for kriging models (Ns=100). 

Response 
Correlation parameter (corresponding design variable) 

θ1 (dv1) θ2 (dv2) θ3 (dv3) θ4 (dv4) θ5 (dv5) θ6 (dv6) θ7 (dv7) β 
Weighttotal  3.026e-3 2.304e-4 0.909e-3 0.201e-3 6.318e-5 1.195e-3 1.289e-2 16.0023 

Fnormal 1.319e-2 1.382e-5 3.437e-6 1.172e-5 7.819e-6 2.320e-6 4.087e-2 587.009 
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Table 5. Comparison of initial and optimum model. 

Model Weight (kg) Normal force (N) 
Initial 2D FEM 13.319 578.5 

 3D FEM 13.319 573.48 
 Error(2D vs. 3D) % 0 0.86 

Optimum RSM (predicted) 12.300 637 
 Kriging method (predicted) 12.107 611.68 
 FEM (verification) 11.799 611.70 
 Error (RSM vs. FEM) % -4.073 -3.972 
 Error (Kriging vs. FEM) % -2.610 0.003 

Variation between initial and optimum FEM % -11.412 7.754 

5. Conclusions 

This paper deals with optimum design of a lightweight levitation electromagnet on a vehicle, which 
also provides passive guide force, in a magnetic levitation system for contactless delivery applications. 
The optimum design procedure is introduced to design of electromagnet in the magnetic levitation 
system to reduce its weight and to improve the normal force of the initially designed electromagnet in 
the magnetic levitation system using several design variables. The most effective design variables are 
extracted by Pareto chart. The most desired set is determined by RSM and the kriging interpolation 
method and the influence of each design variables on the objective function can be obtained. This can 
efficiently increase the precision of the optimization and reduce the number of experiments in the 
optimization design using the proposed methodologies. 
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