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Abstract: The CombiMatrix microarray with 12,544 electrodes supports in situ 

electrochemical synthesis of user-defined DNA probes. As an alternative, we immobilized 

commercially synthesized DNA probes on individual electrodes coated with 

electropolymerized polypyrrole (Ppy). Hybridization was measured using a biotinylated target 

oligonucleotide and either Cy5-streptavidin and fluorescence detection or horseradish 

peroxidase-streptavidin and enzyme-enhanced electrochemical detection. Detection 

efficiencies were optimized by varying the deposition of the Ppy, the terminal groups on the 

DNA probes, and other factors that impacted fluorescence quenching and electrical 

conductivity. Optimized results were compared against those obtained using a microarray 

with the same DNA sequences synthesized in situ. Immobilized probes produced higher 

fluorescence signals, possibly by providing a greater stand off between the Cy5 on the target 

oligonucleotide and the quenching effects of the Ppy and the platinum electrode. 
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1. Introduction  

CombiMatrix microarrays were initially developed as highly multiplexed platforms for 

electrochemistry. The original complementary metal oxide (CMOS) microarray had 1,000 platinum 

(Pt) electrodes (1K microarray), and it was used to develop the in situ electrochemical synthesis of 

different DNA probes on individual electrodes [1]. Hybridization to these probes was detected using  

enzyme-enhanced electrochemical detection (ECD) [2]. The second generation microarray  

with 12,544 electrodes was mounted in a ceramic slide that was designed so that the chip could be read 

on a commercial fluorescent microarray reader. The 12K CustomArray® microarray is commercially 

available as a custom gene chip that has been used for a variety of genomic assays  

(e.g., genotyping, gene expression, SNP analysis, etc.). CombiMatrix also developed the ElectraSense® 

microarray and microarray reader based on ECD. In comparative studies, ECD provides comparable 

results to fluorescence detection [3,4]. The latest version of the ElectraSense microarray reader is a 

palm-sized instrument that interfaces with a personal computer through a USB connection, which 

provides a data link and power to the reader.  

The microarray offers unique capabilities for applications where the electrochemical synthesis or 

deposition of different molecules on electrodes and different methods of detection are required.  

Tesfu et al. [5] and Stuart el al. [6] used the 1K microarray to synthesize coumarin or to demonstrate a 

site-selective hetero-Michael reaction on individual electrodes. Successful execution of these 

chemistries was determined using fluorescence detection and cyclic voltammetry (CV).  

Cheng et al. [7] reported on using the array with fluorescence detection and time-of-flight secondary 

ion mass spectrometry to demonstrated molecular synthesis using Wacker oxidations.  

We recently reported on using electropolymerization to deposit polypyrrole (Ppy) and adsorb 

antibodies (Ab) on individual electrodes of the 12 K microarray [8]. This approach was used to 

develop a very sensitive sandwich immunoassay for staphylococcal enterotoxin B (SEB) using ECD or 

fluorescence detection. Wojciechowski [9] demonstrated that this array could be used to detect 

inactivated Yersinia pestis and SEB in a multiplex assay.  

In this communication, we report on using the microarray with electropolymerized Ppy to 

immobilize different DNA oligonucleotides on individual electrodes. Immobilizing DNA to electrode 

surfaces using Ppy was originally reported by Minehan et al. [10]. Since that finding, numerous studies 

have been done using this and other electroactive polymers as described in recent reviews [11-17]. 

Most of the studies reported on using label less detection (e.g., CV and electrochemical impedance 

spectroscopy) for measuring DNA hybridization. More relevant to our findings are those reported by 

investigators at CIS Bio international and CEA [18-22]. This group developed a CMOS microarray 

with 128 addressable electrodes, and they co-polymerized pyrrole with pyrrole-conjugated DNA 

probes to create a multiplexed gene chip for the fluorescence detection of hybridization. Unique to this 

communication, we have measured hybridization using ECD and fluorescence detection on the same 
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platform. Detection efficiencies were optimized by varying the deposition of the Ppy, the terminal 

groups on the DNA probes, and other factors that impacted on fluorescence quenching and electrical 

conductivity. Optimized results were compared against those obtained using a microarray with the 

same DNA sequences synthesized in situ. Immobilized probes produced higher fluorescence signals, 

possibly by providing a greater stand off between the Cy5 on the target oligonucleotide and the 

quenching effects of the Ppy and the platinum electrode. 

2. Experimental Section 

2.1. Reagents 

Biotinylated oligonucleotide and DNA probes were purchased from Integrated DNA Technologies 

(Coralville, IA). The sequence of the labeled DNA target is 5’-biotin TGC-TTC-TGT-ACG-TTG-

TAC-CCA, the sequence for the complementary DNA probe is 5’-TGG-GTA-CAA-CGT-ACA-GAA-

GCA, the sequence of the non complementary DNA probe is 5’-CAA-TAG-CTC-CTG-CTA-CAA-

ATG-C. Probes were labeled at their 5’-ends with an amine, a disulfide, or a 20 T-linker with an 

amine. Prior to immobilization on the Ppy, the disulfide DNA was diluted in phosphate buffered saline 

(PBS) to 0.40 mg/mL and mixed with an equal volume of Immobilized TCEP Disulfide Reducing Gel 

in PBS (Thermo Fisher Scientific, Rockford, IL). The mixture was shaken at 25 °C for 1 h. Following 

low speed centrifugation, the supernatant was recovered; and the gel was washed once with PBS, 

which was pooled with the original supernatant to yield a final DNA concentration of 0.20 mg/mL. 

The thiol-terminated DNA was used immediately to prevent reformation of disulfide bonds. The 

protein blocking solution (PBSC) and pyrrole were prepared as described previously [8]. 

Propanolamine, cysteine, and thioglycolic acid (Sigma-Aldrich, St. Louis, MO) blocking solutions 

were prepared by suspending each in PBS (pH 7.4) to a concentration of 1.0 M. 

2.2. Methods 

Immobilization of DNA Probes on Individual Electrodes. Two methods were used for immobilizing 

DNA probes on individual electrodes. The first method involved in situ synthesis using the 

CombiMatrix commercial process [1]. The second method involved deposition of Ppy and DNA 

probes using the same procedure described previously for Ab immobilization [8]. In short, a chip map 

was created for the PotentioSense and MX300 instruments by designating through the software which 

electrodes were to be addressed, the current to be applied, and the time of application. The map created 

four replicated areas on the array that corresponded to the four chambers of a plastic hyb cap 

(ElectraSense Hybridization Cap, 4 × 2 K, CombiMatrix Corp., Mukilteo, WA). Within each area, 2 × 2 

blocks of electrodes were connected through CMOS transistor switches on the array so that they 

received the same current for the same period of time. To prevent non-specific binding, the array was 

treated with PBSC for 5 min, washed three times with PBS containing 0.1% Tween 20 (PBST), three 

times with PBS, and three times with 0.1 M dibasic sodium sulfate prior to adding pyrrole for 

electrodeposition. After Ppy deposition, the array was washed twice with PBS; and the DNA 

oligonucleotide, diluted in PBS, was added for 15 min at 25 °C. The array was washed three times with 

PBSC and blocked with the same for 2–5 min. For deposition of a second oligonucleotide, the array 
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was washed thrice with PBST, with PBS and with sodium sulfate prior to Ppy deposition as described 

above. After probe deposition, the microarray was blocked with PBSC for 1 h, and stored at 4 °C. To 

inhibit thiol-DNA immobilization, Ppy was deposited as described, and the array was washed twice 

with PBS and incubated for 15 min at 25 °C in the dark with a blocking solution. The array was 

washed three times with PBS, and the thiol-DNA was deposited in the prescribed manner. 

Microarray Hybridization. Hybridizations were done manually so that results from experiments 

using ECD and fluorescence detection were processed in the same manner. The microarray was fitted 

with a four-chamber hyb cap and washed with PBSC before adding a dilution of biotinylated DNA 

target in 2XPBST or 2XPBST alone (control). Following a 1 h incubation at 50 °C, the chambers were 

washed three times with 2XPBST, the four-chambered hyb cap was removed and replaced with a 

single-chambered hyb cap, and the array was washed three more times. The array was incubated  

with 5XPBSC (BioFX, Owings Mills, MD) for 20 min at 25 °C and washed three times with 2XPBST. 

For fluorescence detection, microarrays were incubated for 30 min with Cy5-streptavidin (GE 

Healthcare, Amersham Biosciences, Piscataway, NJ diluted to 1.0 µg/mL in 2XPBST. Arrays were 

washed five times in PBSC, twice in PBS, and scanned on a GenePix 4000B (Axon Instruments, 

Molecular Devices, Sunnyvale, CA). For ECD, microarrays were incubated for 30 min with  

Poly-80-HRP Streptavidin (Fitzgerald Industries International, Acton, MA) diluted 1:1,000 in PBST. 

Arrays were washed four times with PBSC, once with PBS, and twice with pH 4 Conductivity Buffer 

Substrate (BioFX). TMB Conductivity 1 Component HRP Microwell Substrate (BioFX) was added to 

the array, and it was scanned immediately with an ElectraSense microarray reader (CombiMatrix 

Corp.). Data were quantified using Microarray Imager or ElectraSense software (CombiMatrix Corp.) 

for fluorescent scans or ECD respectively. 

3. Results and Discussion 

In our earlier study on fixing Ab to Ppy and detecting antigen binding, we observed that Ppy 

deposition conditions (current and time) influenced assay results; and the conditions that favored 

optimum ECD were different than those that favored optimum fluorescence detection [8]. For studying 

DNA immobilization on Ppy, we used the same assay protocols and studied the same variables with 

changes made to optimize detection of DNA hybridization. Figure 1A illustrates the results from 

fluorescence detection of DNA hybridization to a complementary, unmodified DNA probe (i.e.,  

no 5’ terminal modification) fixed onto the surface of the Ppy. Considering the maximum amount of 

target oligonucleotide (200 pM) used in the assay, the hybridization signals were low with the 

optimum signals on Ppy deposited at 260 nA for 1 s. 

A number of investigators have relied on entrapment to immobilize unmodified DNA to Ppy; 

however, more have modified the DNA, the Ppy, or both to create a covalent attachment between one 

end of the DNA (usually the 5’-end) and the Ppy. This provides a secure and oriented fixation of the 

DNA to the Ppy that is often illustrated as a lawn of vertical strands standing perpendicular to the  

Ppy [14]. Figure 1B illustrates the results from target hybridization to a complementary probe with  

a 5’-terminal amine. Compared with the unmodified DNA, the aminated DNA probe produced almost 

eight times the signal. A greater than ten-fold increase was obtained when a complementary  
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thiol-DNA probe was used (Figure 1C). The negative control using a thiolated non complementary 

probe (Figure 1D) produced a negligible background hybridization signal. 

Figure 1. (A) Fluorescence detection of target oligonucleotide binding to a complementary 

probe immobilized on Ppy deposited using constant current from 10 to 520 nA for 1.0 s. 

Different concentrations (0, 2, 20 or 200 pM) of target oligonucleotide were incubated in 

individual chambers of a four-chamber hyb cap, and binding was detected using Cy5-SA. 

(B) Same as (1A), but a 5’-aminated complementary probe was immobilized on the Ppy. 

(C) Same as (1A) but a 5’-thiolated complementary probe was immobilized on the Ppy.  

(D) Same as (1A) but a 5’-thiolated non-complementary probe was immobilized on the Ppy. 

 
 

This experiment was repeated using ECD, and Figures 2A-D illustrate the results. As observed 

using fluorescence detection, aminated and thiolated probes produced much higher hybridization 

signals (2-2.5 times) than unmodified DNA. However, for ECD, maximum hybridization signals were 

observed using Ppy deposited at 30 nA; and very high ECD signals were obtained using one tenth the 

concentration of labeled target. 
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Figure 2. (A) Electrochemical detection of target oligonucleotide binding to a 

complementary DNA probe immobilized on Ppy deposited using constant current  

from 10 to 260 nA for 1.0 s. Different concentrations (0.0, 0.2, 2.0 or 20.0 pM) of target 

oligonucleotide were incubated in individual chambers of a four-chamber hyb cap, and 

binding was detected using HRP-SA. (B) Same as (2A), but a 5’-aminated complementary 

probe was immobilized onto the Ppy. (C) Same as (2A) but a 5’-thiolated complementary 

probe was immobilized on the Ppy. (D) Same as (2A) but a 5’-thiolated  

non-complementary probe was immobilized on the Ppy. 

 
 

These results raised two issues—the importance of terminal groups on DNA for binding to Ppy and 

the relationship between conductivity and fluorescence quenching. With respect to the first,  

Minehan et al. [23] and Gambhir et al. [24] reported that the binding of DNA to Ppy is consistent with 

electrostatic adsorption between the fixed negatively charged phosphates forming the backbone of the 

DNA and the mobile positively charged defect structures of the Ppy, which favor hydrogen bonding 

between the phosphates and Ppy ring nitrogen atoms. However, De Giglio et al. [25] demonstrated that 

cysteine binds to Ppy electropolymerized on platinum or titanium electrodes. They presented evidence 
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from X-ray photoelectron spectroscopy that cysteine forms a covalent bond through its sulfur atom by 

nucleophilic attack on the positive sites of the pyrrole ring. More recently, Zhou et al. [26] reported on 

immobilizing 5’cys-terminated DNA probes to electropolymerized polyaniline via a nucleophilic 

substitution reaction and measuring hybridization using CV. To determine whether or not the binding 

of the thiolated DNA probes is mediated through the mechanism described by De Giglio et al., 

microarrays with electropolymerized Ppy were incubated for 15 min at room temperature with either 

PBS, or 1.0 M propanolamine, 1.0 M cysteine, or 1.0 M thioglycolic acid in PBS, after  

which 5’-thiolated complementary DNA was deposited as usual. Hybridization was measured  

using 200 pM or 20 pM DNA target and fluorescence detection or ECD respectively. Figure 3 shows 

that cysteine and thioglycolic acid reduced both fluorescence and ECD signals with the latter 

demonstrating excellent effectiveness in both assays. Pretreatment of the Ppy with propanolamine had 

mixed effects on the assay by increasing the signal as measured by ECD while decreasing the signal as 

measured by fluorescence. This suggests that propanolamine affected some quality of the Ppy (e.g., 

conductivity) that may not be related to blocking oligonucleotide binding. 

Figure 3. Inhibition of hybridization signals by Ppy pretreatment with 1.0 M 

propanolamine, cysteine, or thioglycolic acid prior to immobilization of thiolated DNA.  

(A) Effect on ECD measured on electrodes with Ppy polymerized at 40 nA following 

hybridization with 20 pM 5’-biotinylated complementary oligonucleotide. (B) Effect on 

fluorescence detection, measured on electrodes with Ppy polymerized at 260 nA and 

hybridized with 200 pM of complementary oligonucleotides. 

 
 

With respect to the apparent inverse relationship between Ppy conductivity and fluorescence 

quenching, we did not observe the latter in developing an immunoassay on the array [8]. However, 

Ramanvicius et al. [27] used Ppy fluorescence quenching to develop an immunoassay against bovine 

leukemia virus protein gp51. They attributed the quenching to the proximity of the Cy5 to the 

delocalized π- π electrons in the Ppy backbone, as described by Song et al. [28]. Livache et al. [19] did 

not describe fluorescence quenching by Ppy in their development of a DNA chip that used 

phycoerythrin as the fluorescent marker; however, they did note that fluorescence increased with 

increasing Ppy thickness and with a T-linker of increasing length between the pyrrole and the 

oligonucleotide 5’ end. The Ppy thickness used by these investigators was 20 nm, which was produced 

by dipping the electrode in 20 mM pyrrole with 1 µM pyrrole-conjugate oligonucleotide and  
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electro-copolymerizing them using CV until a charge of 250 nC was reached. This charge value is 

close to the optimum range we observed using constant current for Ppy electropolymerization on  

our 43 µ Pt electrodes (260 nA for 1 s). 

To determine if extending the probe further from the surface of the Ppy would change the 

fluorescence signal, we added a 20 T-linker between the 5’-end and the terminal amine (aminated  

T-linker). Figure 4 illustrates that the probe with the aminated T-linker showed a 33% increase in 

fluorescence hybridization signals compared to signals obtained using the aminated DNA probe 

without the linker. 

Figure 4. (A) Fluorescence detection of target oligonucleotide binding to a complementary 

aminated DNA probe immobilized on Ppy deposited using constant current from 10  

to 520 nA for 1.0 s. Different concentrations (0, 2, 20, or 200 pM) of 5’-biotinylated target 

oligonucleotide were incubated in individual chambers of a four-chamber hyb cap, and 

binding was detected using Cy5-SA. (B) Same as (3A), but a complementary DNA probe 

with a 5’-aminated T-linker was immobilized on the Ppy. (C) Same as (3A), but a non-

complementary DNA probe with an aminated T-linker was immobilized on the Ppy. 

 
 

In the course of these studies, we stripped the microarrays for reuse by incubating them in PBS  

at 95 °C for 1 h. Figure 5A-C illustrates the fluorescence signals obtained after stripping the 

microarray that was used for studies reported in Figure 4 and rehybridizing it with 5’-biotinylated 

oligonucleotide. Stripping, removed all fluorescence, and it could not be reconstituted by labeling with 
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Cy5-SA alone (data not shown). However, upon rehybridization and labeling, the fluorescence signals 

were 50 to 70% higher than in the original hybridization. To ensure that this enhancement was not 

related to hybridization and stripping, we heated a microarray with immobilized probes to 95 °C for 1 

h prior to hybridization and obtained comparable results (data not shown). Moreover, stripping or 

preheating the microarrays had negligible effect on hybridization to the non-complementary DNA 

probes (Figure 5C). 

Figure 5. Fluorescence detection of rehybridization by target oligonucleotide to probes on 

the microarray used in Figure 3 following stripping at 95 °C for 1 h. Different 

concentrations (0, 2, 20, or 200 pM) of biotinylated target oligonucleotide were incubated 

in individual chambers of a four-chamber hyb cap, and binding was detected using Cy5-

SA. (A) Complementary 5’-aminated DNA probe immobilized on Ppy deposited using 

constant current from 10 to 520 nA for 1.0 s. (B) Same as (4A), but a complementary DNA 

probe with an 5’-aminated T-linker was immobilized on the Ppy. (C) Same as (4A), but a 

non-complementary DNA probe with a 5’-aminated T-linker was immobilized on the Ppy. 

 
 

These studies were repeated using ECD and Figure 6 shows that adding an aminated T linker to the 

DNA probe increased hybridization signals by 22%; however, heating the microarray prior to 

hybridization reduced the ECD signal to background levels. The opposite effects of heating on 

fluorescence detection and ECD suggest that heating may be changing the nature of the Ppy as 

opposed to altering the DNA probes. Neoh et al. [29] and Ando et al. [30] reported that elevated 

temperatures (100–200 ºC) reduced the conductivity of Ppy through a number of possible mechanisms. 
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Reduced conductivity would reduce ECD signals while improving fluorescence signals by reducing 

quenching—a function of conductivity [28].  

Figure 6. Effects on ECD of adding a 5’-aminated 20 T-linker to DNA probes and 

preheating the immobilized probes prior to hybridization. Polypyrrole was deposited  

at 30 nA, and 20 pM of biotinylated oligonucleotide was hybridized on the array. A second 

microarray was incubated in 2XPBST for 1 h at 95 °C and washed once in PBS prior  

to hybridization. 

 
 

Because oligonucleotides can be synthesized on the microarray, we produced an array that 

contained probes with and without 20-T linkers and in the same configuration as the Ppy arrays.  

Figure 7 compares results from a synthesized microarray against one prepared using Ppy that was 

pretreated with heat to obtain maximum hybridization signals. The highest hybridization signals were 

obtained using the complementary probe with aminated T-linker on Ppy, followed by the aminated 

DNA probe on Ppy and the synthesized DNA probe with a 20T-linker. The lowest hybridization 

signals were obtained with the synthesized DNA probe. While these differences may be due to a 

number of factors, the data suggest an interesting correlation between the intensities of the 

fluorescence signals and distances between the Cy5 and the quenching surface (Ppy or Pt). As 

illustrated in Figure 8, in situ DNA synthesis occurs 3’ to 5’, which means that an oligonucleotide 

labeled on its 5’-end will hybridize with the Cy5 next to the Pt electrode. Adding a 20 T-linker will 

move the Cy5 away from the membrane by 20 bases. The aminated DNA is tethered to the Ppy by  

its 5’-end, and the target oligonucleotide hybridizes with the Cy5 in the opposite orientation and 21 

bases away from the Ppy—about the same distance as synthesized DNA with a 20 T-linker. The 

aminated T-linker DNA adds another 20 bases on the 5’-end, which puts the Cy5 the furthest away  

(41 bases) from the Ppy. However, this model is predicated on a uniform lawn of DNA standing 

perpendicular to the surface. Other factors may also have a bearing on these results, e.g., differences in 

the surface densities of the DNA probes, steric hindrance of hybridization [8] and/or labeling, and 

possibly DNA electroconductivity [31]. 
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Figure 7. Concentration of target versus signal intensity plot for two microarrays 

containing complementary and non complementary DNA probes either synthesized (Syn) 

in situ or immobilized on polypyrrole (Ppy). The data illustrate results using a synthesized 

complementary DNA probe (Syn DNA), a synthesized complementary DNA probe with  

a 3’ 20 T-linker (Syn T DNA), a complementary 5’ aminated DNA probe on Ppy (Ppy 

Amine DNA), and a complementary DNA probe with a 5’ aminated T-linker (Ppy Amine 

T DNA). Microarrays were hybridized with 0, 2, or 20 pM of biotinylated oligonucleotide. 

 

Figure 8. Illustration of the relationship between the Cy5 dye on the target oligonucleotide 

and the Pt or Ppy surface on the electrode for the DNA capture probes either synthesized in 

situ or immobilized using Ppy respectively. 
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4. Conclusions 

The results presented herein substantiate and contribute to the observations reported in a variety of 

publications regarding the use of Ppy as an electroactive membrane for the deposition of biological 

molecules on electrodes. Unique to this report, however, is the use of fluorescence detection and ECD 

on the same experimental platform and an empirical approach for identifying factors that influence the 

performance of each. Fluorescence detection relies on the measurement of emitted photons resulting 

from the stimulation of a fluorescent molecule by a high energy light source (e.g., laser). Detection of 

the emitted light at each electrode (feature) on the array requires an instrument with a stable  

optical system, detector, and software to create a microarray image. Enzyme-enhanced electrochemical 

detection uses a redox molecule and substrates to produce electrons that are measured through the 

electrode, the CMOS circuitry of the array and computer software. Compared with a fluorescent 

microarray scanner, ECD detectors are much simpler, smaller, more robust, and less expensive. 

However, fluorescent scanners are widely used because they can accommodate different  

microarray platforms.  

Others have used the 12K microarray to compare ECD with fluorescence detection of hybridization 

using in situ synthesized DNA probes [3,4], and they have determined that both methods of detection 

work equally well However, when DNA probes are adsorbed onto electropolymerized Ppy on this 

array, significant differences are apparent. For ECD, optimum hybridization signals were obtained 

when a thin layer of Ppy was applied (30 nA for 1 s), whereas for fluorescence detection a thicker 

layer gave higher hybridization signals (260 nA for 1 s). These optimum conditions for Ppy deposition 

and DNA hybridization detection are the same as we observed previously for detecting Ab/Ag binding 

using ECD and fluorescence detection respectively [8]. While Ab deposition did not require chemical 

modification to the capture molecule, terminating the DNA probe with an amine or thiol group 

improved both methods of detection, possibly by promoting the formation of covalent bonds between 

the DNA probe and nucleophilic centers in the Ppy. Nevertheless, ECD was ten times more sensitive 

than fluorescence detection, which appears to be the result of fluorescence quenching by the Ppy. 

Fluorescent signals were improved by extending the capture probe using a T-linker and by heating the 

array to 95 °C for 1 h prior to hybridization. Heating improved the fluorescence signal and reduced the 

ECD signal, indicating that it was affecting the Ppy rather than the immobilized DNA probes, possibly 

by reducing the conductivity of the former. Pretreatment of Ppy with propanolamine had the opposite 

effect—the ECD signal improved while the fluorescence signal decreased. Comparing the 

hybridization signals using probes that were synthesized situ versus those immobilized on Ppy, we 

observed higher fluorescence signals from the latter. While differences appear to be related to the 

proximity of the fluorescent dye to the quenching effect of the Pt electrode or the Ppy, there are other 

factors that could influence these results as well. The versatility of the 12K microarray to support 

different methods for depositing capture elements (DNA and Ab) and different methods for detecting 

target binding creates opportunities for developing multiplex assays that use orthogonal methods to 

identifying desired target molecules including but not limited to protein, peptides, organisms, and 

nucleic acid biomarkers. 
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