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Abstract: The lack of trustworthy sensors makes development of Advanced Driver 
Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent 
systems by combining reliable sensors and real-time algorithms to send the proper, 
accurate messages to the drivers. In this article, an application to detect and predict the 
movement of pedestrians in order to prevent an imminent collision has been developed and 
tested under real conditions. The proposed application, first, accurately measures the 
position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision 
system and a laser scanner. Second, it correctly identifies pedestrians using intelligent 
algorithms based on polylines and pattern recognition related to leg positions (laser 
subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses 
statistical validation gates and confidence regions to track the pedestrian within the 
detection zones of the sensors and predict their position in the upcoming frames. The 
intelligent sensor application has been experimentally tested with success while tracking 
pedestrians that cross and move in zigzag fashion in front of a vehicle. 

Keywords: pedestrian detection; advanced driver assistance systems; stereo vision; laser 
technology; confidence intervals; sensor fusion 
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1. Introduction 

Trustworthy sensors are key elements regarding current road safety applications. In recent years, 
advances in information technologies have lead to more intelligent and complex applications which are 
able to deal with a large variety of situations. These new applications are known as ADAS (Advance 
Driver Assistance Systems). In order to provide reliable ADAS applications, one of the principal tasks 
involved is obstacle detection, especially for those obstacles that represent the most vulnerable road 
users: pedestrians. In terms of quantifying the accident rate depending on the type of transportation, 
pedestrians, who account for 41% of the total number of victims, represent the largest number of 
traffic accident victims in terms of deaths. It is well known that human errors are the cause of most 
traffic accidents. The two main errors are drivers’ inattention and wrong driving decisions. 
Governments are trying to reduce accidents with infrastructure improvements and educational 
campaigns, but they cannot be completely eliminated due to the human factor. That is why ADAS can 
reduce the number, danger and severity of traffic accidents. Several ADAS, which nowadays are being 
researched for Intelligent Vehicles, are based on Artificial Intelligence and Robotics technologies. 

On-board perception systems are essential to estimate the degree of safety in a given situation and 
to allow the control system to make a suitable decision. Traffic safety research, developed around the 
world, shows that it is not possible to use only one sensor to get all relevant information from the road 
environment, making data fusion from different kinds of sensors necessary. 

In this article a novel fusion method is proposed. The method combines the information provided by 
a 2D laser range finder and a stereo camera to detect pedestrians in urban environments. By combining 
both sensors, limitations inherent to each one can be overcome. Laser range sensors provide a reliable 
distance to the closest obstacles, thus giving trustable information of the surrounding, but this 
information is limited due to the low amount of data provided by the device and occlusions. With this 
lack of information, estimation of the type of obstacles found in a road environment is a tough task. On 
the other hand, data provided by computer vision systems have more information but less structured. 
This information can be very useful when trying o estimate the type of obstacle i.e., pedestrian 
detection, but less precise to give a robust localization. A fusion system can be helpful to fulfill the 
requirements of such exigent applications as vehicle safety systems. It also can assure than in 
situations when one of the sensors is not available the other one can be used to allow the application to 
work under the hardest conditions 

The objectives that are addressed are: 

1. Identification of pedestrians and tracking of their trajectories. The focus is to detect the 
objects that are in the environment, classify the pedestrians and track them modeling 
their trajectory and identify possible collisions. 

2. Installation of an intelligent system in the vehicle that tells the driver of potential 
dangers. 

The tools that are going to be used are: 

1. The sensors that allow for the acquisition of data from the environment. 
2. Statistical inference or decision making to perform a probability calculation on the 

prediction of the trajectories. 
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3. Algorithms that will match the measurements and the predictions so as to classify the 
objects and determine their exact location, and send alarms in case the object is too 
close to the vehicle. 

2. State of the Art 

Statistics show that more than a half of accidents resulting in fatal victims happened in urban 
environments, in other words, where the active safety vehicle’s systems, e.g., ABS, ESP, have lower 
influence. Because of that, ADAS for front-side collisions, pedestrian run-over or automatic 
emergency braking are attracting an increasing interest. In addition, systems aiming to protect the most 
vulnerable users of these infrastructures such as pedestrians, cyclists, etc., are difficult to develop due 
to the great variety of shapes, sizes and appearances involved [1]. 

Sensor data fusion [2] has been proposed in order to improve the performance, both in localization 
and robustness, of algorithms developed for detecting obstacles in urban environments. Making use of 
sensorial fusion techniques the perception of the environment can be improved as well as making up 
for the incompleteness of sensors which have partial faults or provide limited information. Current 
perception systems are designed based on multi-sensor design using computer vision (monocular or 
stereoscopic) in the visible spectrum and infrared and laser sensors, lidar or radar [3,4]. 

There are some constraints related to perception systems design that have to do with coverage, 
precision, uncertainty, etc. One of these problems is the limitation in spatial coverage. Usually a 
unique sensor is used to cover a reduced area; perhaps a higher coverage can be achieved doing data 
fusion from several sensors [5]. Limited temporal coverage is produced by the time needed to obtain 
and transmit a measurement by the sensor. Increasing the number of sensors used when making data 
fusion will reduce these limitations. 

Another aspect to consider is the sensorial imprecision, inherent to the nature of sensors. 
Measurements obtained by each sensor are limited by the precision of the sensor used. The higher the 
number of sensors is, the higher the level of precision that is achieved in data fusion [6]. 

There is a new problem when designing perception systems to be applied to Intelligent 
Transportation Systems – uncertainty – which depends on the object observed instead of the sensor. It 
is produced when some special characteristics (such as occlusions) may appear when the sensor is not 
able to measure all attributes relevant to perception or when the observation is ambiguous [7]. A 
unique sensor may be unable to reduce the uncertainty in its perception due to its limited vision of the 
object [8]. This kind of situations comes up frequently in urban environments, where pedestrians, 
streetlights, etc, constantly appear blocked by parked vehicles, stopped in the street, etc. 

Fusion methods are typically divided into two types according to the level in which fusion is 
performed: low level fusion, so called centralized fusion schemes [9], and high level fusion, so called 
decentralized schemes. Low level schemes perform fusion using a set of features extracted from both 
sensors. High level fusion performs different classifications with data provided by each sensor 
separately. A final stage combines information from all classifications. Each configuration has its own 
advantages and disadvantages [10]. 

Low level fusion combines information from both sensors creating a new set of data with more 
information, but problems related to data association arise. Low level approaches that take advantage 
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of statistical knowledge [9,11] obtain information from all sensors and combine the information using 
Bayes formula, Support Vector Machines (SVM), Neural Networks, etc. 

High level fusion schemes allow fusion in an easier and more scalable way; new sensors can be 
added more easily but with less information to do the classification. They can be differentiated in track 
based fusion and cell based fusion schemes. The first one tries to associate the different objects found 
in each sensor [12]. The second one [13] uses occupation grids, adding confidence according to the 
type of sensor that detects the obstacle, but losing the geometrical structure.  

Other works related to fusion schemes take advantage of laser scanner trustworthiness to select 
regions of interest where vision-based systems try to detect pedestrians [6,14]. In [2] detection of 
especially dangerous zones is done using laser scanner information integrated along time. In [7], 
information from different sensors creating a feature vector is used to perform an unique classification 
(called medium level schemes). 

3. The IvvI Project 

IvvI (Intelligent Vehicle based on Visual Information, Figure 1a) is a research platform for the 
implementation of systems based on computer vision and laser technology, with the goal of developing 
ADASs. The purpose of the IvvI platform is to test perception algorithms under real conditions, and 
five sensing capabilities are being researched for Lane Keeping System, Adaptive Cruise Control, 
Pedestrian Detection, Traffic Sign Recognition and Driver Drowsiness Detection. 

Figure 1. IvvI research platform. 

 

Research results are being currently implemented in a Nissan Note (Figure 1a). There is a DC/AC 
power converter connected to an auxiliary vehicle's battery. Through it, the electrical power needed for 
the computers, cameras and laser is obtained. There is a CMOS color camera for the detection of 
traffic signs and other vertical signs (Figure 1d) and another CMOS color camera inside the car to 
detect drowsiness situations. A binocular stereo vision system (Figure 1d) is used for pedestrian and 
lane detection during day driving, whereas an infrared camera placed on the wing mirror is used for 
pedestrian detection during night driving. A laser placed on the front bumper is used for pedestrian and 
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vehicle detection (Figure 1a). There are three PCs (Figure 1b) in the vehicle's boot which are used for 
processing the information captured by the sensors. 

The laser and the stereo vision system are the input sensors to the fusion based tracking algorithm, 
which is the main line of research of this article. The algorithm provides information about the 
environment to the driver. This is done through a monitor (Figure 1c), similar to a GPS device that 
many vehicles carry nowadays, where the pedestrians are graphically represented and, above all, 
through the vehicle loudspeakers that play several warning messages depending on the location of the 
pedestrian and the seriousness of the possible run over. 

4. General Description of the Algorithm 

The intelligent tracking algorithm (Figure 2) looks for the correct classification of objects as well as 
for their exact location. Its main step is the matching of the data or measurements obtained by the 
different fused sensors and the predictions on the tracked location of the pedestrian. These predictions 
are based on continuously monitoring the stability of the sensor measurements for the very near past, 
that is, for the last set of frames and for different time increments, so that changes in directions and 
speeds are accounted for. 

Figure 2. Tracking framework. 

SENSOR DATA

PEDESTRIAN 
IDENTIFICATION AND 
LOCATION BY FUSION

COMPOSITE 
MATCHING

MEASUREMENT STABILITY 
AND MOTION PREDICTION

NON-PARAMETRIC 
VALIDATION GATES/ 

CONFIDENCE REGIONS

VISION LASER

NON-PARAMETRICVALIDATIONGATES/CONFIDENCEREGIONS NON-PARAMETRICVALIDATIONGATES/CONFIDENCEREGIONS 

The individual-sensor data is to be jointly fused by the proper calibration and coordination 
algorithms. It is necessary that each and every sensor perform a measurement exactly at the same 
moment in time so that a composite fused measurement might be obtained. The fusion step has to 
account for an absence of measurements by any or all of the devices, so that the trajectories and the 
stability of the time movements are statistically tracked. Raw data is recorded at time t in multiple 
dimensions [in this case, two (xt, yt)]; then data is converted into movements that the pedestrian has 
performed in a time increment l ( t

l
t

l yΔ,xΔ ) so they are used as the basis for the predictions. 

Two sets of statistical inference procedures are to be performed. The first procedure is the analysis 
of the stability of the displacements, that is, the analysis of the consistency or the homogeneity of the 



Sensors 2010, 10 8033

current measurement with the previous movements of the same time increment. The stability 
hypothesis is usually tested using confidence intervals or validation gates in one dimension and 
simultaneous confidence regions in multiple dimensions [15,16]. 

The second procedure is the prediction of the motion of the pedestrian or his/her location at a 
particular future time. Based on the current location and the stable movements for different time 
increments, it is possible to set confidence regions for the location at future times t+l [17]. These 
predictions are to be made for each pedestrian independently. 

The matching algorithm confronts then the fused stable measurements for different time increments 
with all the location predictions that have been made in previous moments of time. If within the 
validation gates, that is, with the occurrence of proper multiple matches, the known pedestrians are 
liable to be continuously tracked. If no match is achieved, new pedestrians may be available  
for tracking. 

After each successful classification or tracking stage, the predictions must be updated, because 
changes in directions or velocity may very likely occur. By performing moving predictions, that is, 
taking into account only measurements for past short time intervals, these changes will not negatively 
affect the predictions and ruin the tracking of the proper trajectories. 

What follows is a detailed explanation of each of the stages of the algorithm. Section 5 explains the 
laser subsystem including its detection and classification stages. Section 6 details the computer vision 
system and its pedestrian identification step. Section 7 is then used to address the intelligent tracking 
algorithm, which is tested in Section 8 with real experiments in an urban outdoor environment.  
Section 9 is finally used to present the conclusions and future work. 

5. Laser Subsystem 

The aim of the laser subsystems is to detect pedestrians based on the data received from the laser 
scanner device. The laser, a SICK LMS 291-S05, has a measurement range of 80 meters and a 
frequency up to 19 frames per second. The detection process is composed of two stages. In the first 
stage, the data is received and obstacles’ shapes are estimated. A second stage performs obstacle 
classification according to the previously estimated shape. In the present research, pedestrian 
classification is performed by searching through specific patterns related to leg positions. 

5.1. Obstacle segmentation 

The laser scanner provides a fixed amount of points that represents the distance to the obstacles for 
a given angle, from the coordinate origin situated in the bumper of the vehicle. This measurement is 
taken from a single laser that performs a 180° rotation. Thus, there is a time difference between each 
distance measured. Due to the vehicle movement and laser scanner rotation there is a variation along 
time included in the measures, therefore vehicle egomotion correction is mandatory before processing 
the data; this is done thanks to an on-board GPS-IMU system. The resulting points are joined 
according to the Euclidean distance among them (Figure 3).  

After the clustering algorithm, polylines are created, which join the points contained within 
segments. These polylines give information about shape and distance of the obstacle to the vehicle. 
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Figure 3. Environment information given by the algorithm after obstacle segmentation. 
Left: shape estimation using polylines; detected pedestrian is highlighted. Center: Real 
image captured by a camera mounted in the vehicle. Right: raw data captured by the laser 
after egomotion correction. 

 

5.2. Pedestrian classification 

Classification is performed according to obstacles’ shape [18]. A study was performed to observe 
the pedestrian pattern during the walking process. Specific patterns were searched to identify a single 
pedestrian only using the information provided by the laser radar. Observations showed the 
movements patterns described in Figure 4.  

Figure 4. Pattern given by a pedestrian, according to leg situation. This pattern may appear rotated. 

 

Observation showed that most of the patterns shared a common feature, consisting of two  
different 90 degrees angles. This pattern was checked under different conditions and movements 
including test for standing pedestrians facing the laser and lateral standing pedestrians. Regarding to 
lateral standing pedestrians test showed that the pattern given by the laser includes the two mentioned 
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angles by getting the whole shape of a leg. Taking advantage of such behavior a static model  
was created.  

The process followed to match the found pattern, including rotation, consists on a first segmentation 
according to obstacle’s size and a final matching based on polylines’ shape. Segmentation computes 
the size of the polyline and checks that the detected obstacle has a size proportional to a human being. 
An obstacle that fulfills the size requirements is marked as candidate to be a pedestrian. An additional 
stage compares it with the model. The comparison stage links every two consecutive angles (Figure 5) 
with polylines and gives a similarity percentage according to equations (6) to (8): 
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Figure 5. Model for pedestrian where the two angles of interest are detailed. 

 

A single similarity score is computed for each of the two angles separately by comparing their value 
with the ideal  [equations (6) and (7)]. Then, the total aggregated value, which is calculated by 
multiplying both single scores, measures the similarity of the measurements to the model. 

If the case arises where more than three polylines are present, the algorithm is applied to every pair 
of consecutive angles and those with the highest values are chosen as the polyline similarity value. A 
threshold is used to classify the obstacle as a pedestrian. 

6. Vision Subsystem 

The purpose of this subsystem is also to detect and classify pedestrians; the detection range is 30 
meters and a frequency up to 10 frames per second. In order to have depth information in computer 
vision it is necessary to set two cameras: in the IvvI is a stereo Bumblebee camera by Pointgrey. This 
system automatically performs the necessary rectification step [19-21]. 

Once the two images are correctly rectified, our proposed algorithm develops the dense disparity 
map and “u-v disparity” [22] to perform the analysis of the environment and the pedestrians. These 



Sensors 2010, 10 8036

tasks have got a high computational cost; therefore NVIDIA CUDA framework [23,24] is used to 
process in the GPU (Graphics Processing Unit). 

6.1. Dense disparity map 

The disparity map represents the depth W of every image point. The depth is calculated as follows: 

dBf=)u(uBf=W RL // ⋅−⋅      (9) 

where d is the disparity, f is the focal length and B is the baseline distance. (uR,vR) and (uL,vL) are the 
projection in the camera planes for the right and left cameras respectively of the point P = (U,V,W)T of 
the world. 

For this calculation to be valid, the two image planes must be coplanar, their optical axes must be 
parallel and their intrinsic parameters must be the same. It is therefore necessary to find the 
correspondence between points of the right and left images to determinate the disparity d (known as 
the stereo matching problem), using the following rectification: 

RLRL v=vZV=fvZ;V=fv ⇒////  (10) 

There are several possible solutions to this stereo matching problem in order to obtain the dense 
disparity map. Our algorithm follows the taxonomy presented by Scharstein and Szeliski in [25], 
where they propose that stereo algorithms are performed by the following four steps: 

A. Matching cost computation: Although there are more accurate cost functions [26], squared 
differences (SD) is preferred because it is faster and easier to implement in GPU processing. 
SD assumes equal gain in both cameras; that is why both images are pre-processed by 
Laplacian of Gaussian (LoG).  

B. Cost (support) aggregation: There are different kinds of support regions, and their choice 
influences in the resulting disparity map [27]. The algorithm implemented is based on square-
windows support regions for cost aggregation because it is better in relation to GPU 
performance and the resulting disparity map is accurate enough. 

C. Disparity computation: There are mainly two methods for disparity computation: local [25] and 
global algorithms [28]. The local method WTA (Winner-take-all) is chosen. For a posterior 
disparity refinement task, the disparity map for the left image (left disparity map) and for the 
right one (right disparity map) are constructed. To avoid redundant computations, it is possible 
to use computations from the left disparity map to construct the right disparity map. 

D. Disparity refinement: This step tries to reduce the possible errors in the disparity map, which 
are usually produced in areas where texture does not exist, in areas near depth discontinuity 
boundaries [29], or in areas where there are repeated patterns, for example, on walls of 
buildings. For instance, enough texture does not exist either in the sky or in the road for images 
of driving environments, as figure 6a shows. The errors in the disparity map are likely to 
appear in these areas, see Figures 6c and 6d. To reduce these possible errors, a cross-check is 
performed; the result is shown in Figure 6b.  
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Figure 6. (a) Left image. (b) Cross-Checking image. (c) Left disparity map image.  
(d) Right disparity map image. (e) Disparity map and its corresponding v-disparity on the 
right and u-disparity below. 

 

6.2. U-V disparity 

Once the disparity map has been generated, it is possible to obtain the “u-v disparity”. As there is a 
univocal relationship between disparity and distance, the v-disparity expresses the histogram over the 
disparity values for every image row (v coordinate), while the u-disparity does the same but for every 
column (u coordinate). In short, the u-disparity is built by accumulating the pixels of each column with 
the same (u, d) and the v-disparity by accumulating the pixels of each row which the same (v, d). An 
example is illustrated in Figure 6e. 

If it is assumed that obstacles have planar surfaces, every one appears in the u-disparity image as 
pixels whose intensity is the height of that obstacle. As the u-disparity image dimensions are the width 
of the original image and the height is the disparity range, those pixels have the same horizontal 
coordinate than the obstacle in the disparity map and the vertical coordinate is the disparity value of 
the obstacle. Regarding v-disparity, as its image dimensions are the disparity range and the height of 
the original image, the obstacles appear as vertical lines in its corresponding disparity value [30] as 
they are at the same disparity or distance. Another interesting feature is that the ground appears as an 
oblique line. This feature is very useful because the pitch, θ, and height, h, of the cameras can be 
measured for each frame [31]. This information will be used to determine accurately the obstacle 
localization in the world coordinates. 

6.3. Obstacle detection 

The main goal of this system is to determine the regions of interest (ROI), which will be later on used 
to conclude if the obstacles are pedestrians or not. In order to do that, the road profile is estimated by 
means of the v-disparity [31]. This is why planar road geometry is assumed, which is reasonable at close 
areas in front of the vehicle. There are other obstacles detection systems which use the u-v disparity, such 
as the proposed in [32,33]. Our obstacle system is divided into the following three steps: 

1) The first step is a preliminary detection over u-disparity. This task consists in thresholding the u-
disparity image to detect obstacles which have a height greater than a threshold. This way the 
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“thresholded u-disparity” is constructed at the bottom of Figure 7a. Blobs analysis is made on the 
binary image to determine the total number of obstacles and their horizontal position and width. 

2) In the disparity image, the subimages defined by the horizontal obstacle position and width, red 
squares in Figure 7a, are thresholded using the disparity ranges obtained before, Figure 7b. They 
are the obstacles in front of the vehicle. This binary image is used as a mask to obtain a disparity 
map without obstacles and a partial v-disparity is constructed, where the road profile is extracted 
as a line, corresponding to equation (11), by means of the Hough transform (see Figure 7c): 

b+dm=v ⋅  (11) 

The pixels of the obstacles are eliminated because in the event of appearing numerous 
obstacles, the profile road may be incorrect [34]. The equation (11) represents the road profile 
as a function of the v image coordinate, the disparity d and the constant b and the road slope m. 

3) Finally, a second blob analysis is performed to determine obstacles features, area and position, 
on the thresholded disparity map, Figure 7b. On the basis of this features, regions of interest are 
constructed on the visible left image for a posterior processing. 

Figure 7. (a) Disparity map and thresholded u-disparity with the thresholding areas.  
(b) Thresholded disparity map where appear the obstacles in the study region. (c) Disparity 
map for a study region without obstacles and the road profile as red line obtained by means 
of the Hough transform. 

(a)    (b)     (c) 

6.4. Obstacles localization 

The obstacles’ localization in world coordinates (U, V) can be obtained, and it is a function of the 
image coordinates (u, v) of the contact point between the obstacles and the ground. In order to do that, 
equations (13) is obtained from equations (9) (11) and (12), where the parameter Cu corresponds to u 
coordinate of the optical center and θ is the pitch of the stereo rig. In this way, the obstacles 
localization is computed with more resolution than if the disparity values are used exclusively. 

(u Cu)VU =
f

−  (12) 

cos

cos )

fBmW = ( )
v b
(u Cu)B m (U =

v b

θ

θ
−
− ⋅ ⋅

−

 (13) 
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6.5. Obstacle classification 

The classification divides the obstacles into two groups: pedestrians and non-pedestrians. The result 
of the classification algorithm is a confidence score for the fact that the obstacle is a pedestrian; it is 
compared with a threshold and if it is greater, the obstacle is classified as a pedestrian. This 
classification is based on the similarity between the vertical projection of the silhouette and the 
histogram of a normal distribution. Figure 8 illustrates two examples of the vertical projection of a 
pedestrian silhouette from two different viewpoints, where both vertical projections are similar to the 
histogram of the normal distribution. The vertical projection for each obstacle is computed by means 
of the ROIs in the thresholded disparity map, which are results of the obstacles detection algorithms.  

In order to characterize the vertical projection, the standard deviation, σ, is computed as if the 
vertical projection was the histogram of a normal distribution. In order not to make the standard 
deviation be a function of the obstacle dimension or independent on the obstacle localization, the 
standard deviation is divided by the width of the ROI getting σw. This standard deviation will be used 
to compute the score.  

Several vertical projections of pedestrian have been processed to obtain their standard deviations; 
these standard deviations follow a normal distribution N(μσw,σσw). In order to compute the score for an 
obstacle, its standard deviation is used to obtain the value of the probability density function, where the 
maximum score 100% is produced if the standard deviation is equal to μσw and gets worse when the 
standard deviation is different from μσw (Figure 9). 

Figure 8. Two examples of pedestrians, their silhouette and their vertical projection. 

 

Figure 9. Process scheme to obtain a pedestrian score. (a) Pedestrian image and his 
silhouette. (b) The vertical projection of the pedestrian silhouette. (c) Normal distribution 
of the standard deviations and the score for the σ corresponding with the vertical projection 
of the pedestrian silhouette.  
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7. Measurement Stability and Motion Prediction 

Once the sensors and their corresponding algorithms have taken measurements individually and 
processed them in order to identify and classify objects as pedestrians, it is necessary to provide the 
intelligent system with tools that track the pedestrians and alert the driver to possible imminent 
collisions. In this section statistical models are developed to robustly infer the possible routes based on 
the current position as well as near past locations. 

7.1. Background on errors in multiple statistical inference 

Inference is the part of statistics that relates sample information with probability theory in order to 
estimate or predict the value of one or several unknown parameters or compare two hypotheses about 
their value. The hypotheses are called null (which is the one statistically proven to be true or false 
according to a pre-specified confidence level γ) and alternative (which is chosen whenever the null  
is rejected). 

In individual hypothesis testing about a single parameter φ, an observed value x is compared against 
a threshold value that result of the application of the confidence level γ, and a decision is taken by 
deciding to reject or not reject (accept) the null hypothesis. 

Table 1. Test-related decision-making problem. 

  Decision made 
  Accept null Reject null 

Null hypothesis 
True CORRECT DECISION ω - False positive or relevance 
False β - False negative or standard CORRECT DECISION 

It is well known, however, that two errors can occur when a decision of this kind is made about the 
value of one parameter: the null hypothesis is rejected when it should have been accepted (false 
positive or false detection, significance level = ω =1 − γ) or accepted when it should have been 
rejected (false negative or false standard, probability = β, testing power = 1− β). Table 1 depicts this 
decision-making problem. 

In multiple testing (Table 2), the number of tests is large (M), as many as parameters, and the 
process should distinguish between null hypotheses which are really true (O) and those which are 
really false (A). 

Table 2. Decision-making problem in multiple testing’s. 

 ACCEPTED H0,m REJECTED H0,m TOTAL 
TRUE NULLS P F – False detections O 
FALSE NULLS N – False acceptance T A 
TOTAL W R M 

If ω is used in each individual test, the probability of “false positive” errors increases considerably: 
the probability of accepting only and all null hypotheses when they are true is only (1−ω)O. Global 
confidence is reduced, and is therefore not 1−ω but 1−Ω, where Ω is the global level of significance, 
much higher (worse) than the theoretically desired ω. On the other hand, when a large number of null 
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hypotheses are rejected by this procedure, the error of failing to discover relevant alternative 
hypotheses is practically zero. In other words, as the relevant hypotheses are overestimated, practically 
all non-rejected null hypotheses are really standard. This approach therefore favours the determination 
of all significant and some other hypotheses (false positives, which could be numerous) as relevant, in 
exchange for having no false negatives. 

Therefore, in order to make a correct decision for an aggregate level of significance Ω, and prevent 
too many false positives from occurring, the form in which individual testing is performed has to be 
adjusted. Individual tests have traditionally been maintained, although the level ω has been adjusted. 
Usually, ω is adjusted and controlled in two different ways. 

The first is known as the Bonferroni correction [16]. The level of significance of each test is 
individually reduced from ω to ω/M, so the p-values must be much lower for a null hypothesis to be 
individually rejected. As the number of significantly relevant tests is reduced, the number of false 
positives also diminishes. The number of false negatives, however, or the number of null hypotheses 
which should have been rejected, increases considerably. The correction, therefore, by attempting to 
avoid “false positives”, gives rise to too many “false negative” errors. 

The same occurs with the Sidak adjustment [35], in which ω is reduced to: 
M/1)1(1 Ω−−=ω , (14) 

maintaining the global level of significance Ω. If M is high and Ω is low, ω will be very close to zero 
and it will be difficult to reject (by very small p-values) any individual null hypotheses, and no false 
null hypotheses will be rejected. These two traditional corrections, then, favour the determination of all 
non-significant or standard and some significant (false negatives) hypotheses as relevant. 

7.2. Background on robust confidence intervals on correlated parameters 

Robust multivariate hypothesis testing involves the simultaneous comparison of sample values with 
thresholds. One possible way to set the thresholds is to use confidence intervals, whose main purpose 
is the estimation of the value of one or several unknown parameter. Confidence intervals come in the 
form of confidence limits or prediction thresholds. If a new sample value lies within the confidence 
limits, the value is said to be homogeneous with the previous values, accepting the null hypothesis of 
belonging to the same underlying distribution. Otherwise, the value is said to belong to a different 
distribution, rejecting the null and accepting the alternative. 

Confidence intervals (CI) on a single unknown parameter are a means to set thresholds on its values 
and have the form ϕ∈[ϕ-,ϕ+] or CIϕ or alternatively ϕ∈ [ϕ*-k1 (V(ϕ*))1/2,ϕ*+k2 (V(ϕ*)1/2)], where φ* is 
the point estimator of the parameter and V(φ*) the variance of the estimator. 

The estimation problem relates therefore to the proper identification of the distribution of the 
control statistic and the associated probability calculation based on the confidence level that results in 
the ki values. If the distribution is not known, an upper threshold on the value of the ki might be 

however readily calculated using Chebishev’s inequality, k = k1 = k2 = 1
ω

, with the corresponding 

non-parametric confidence interval on one parameter being ϕ∈ [ϕ*− 1
ω

(V(ϕ*))1/2, ϕ* + 1
ω

 

(V(ϕ*))1/2]. 
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However, in most real situations, there are more than one variable or parameter involved in the 
decision making or inference process. In other words, confidence intervals are to be set for several 
parameters, which are usually correlated. 

The first possibility is to set individual and independent confidence intervals for each and every 
variable, but adjusting the confidence percentage to account for the multivariate situation according to 
Bonferroni’s or Sidak’s corrections, as well as the setting bounds using Chebishev’s inequality. The 
corresponding confidence region comes in the form of a rectangle in two dimensions, a prism is three 
dimensions and a polyhedron in more dimensions [36]. 

However, it has been shown that if the variables are correlated, the false negative rate is very high, 
since the response area covered by the combination of individual CI’s is much larger than what it 
should be. The corresponding area should come in the form of an ellipse in two dimensions and an 
ellipsoid in higher dimensions. Figure 10 explains the problem in two dimensions. 

Figure 10. Confidence regions in two dimensions. 

CI - 2

CI - 1  

The equation of the ellipsoid, or the ellipse in two dimensions, in terms of the Mahalanobis 
standardized distances of each point to the center of the ellipse, E, is as follows [36]: 
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where the constant D is the multivariate equivalent to the value k in one dimension, that is, the 
maximum distance measured in standard deviations from the center of the confidence region to the 
fringe of the ellipse. D is approximated as D = k * 7/1.5 [37]. 

7.3. Application to the tracking of pedestrians 

Multivariate statistical models are ready to be particularized in this article to the movement of 
pedestrians. The data is measured at each time t individually from the sensors: (xs,t,i; ys,t,i) where s = 1, 
…, S sensors and s = f for the fused values with as many measurements as objects i = 1, … I  
are detected. 

The values in absolute units are also transformed into movements or displacements Δlxs,t,i and 
Δlys,t,i, where l = 1,…L accounts for the time interval used to calculate the displacements: 

Δlxs,t,I = xs,t,I − xs,t-l,I  ∀ s, i, l 

Δlys,t,i = ys,t,I − ys,t-l,I  ∀ s, i, l 
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The first set of models relate to the control of the stability of the displacements. For each object i, 
the last C values are used to calculate the averages on the moves it,s,

l xΔ , 
it,s,

l yΔ ∀ s, i, l, as well as the 
standard deviations it,s,

l sxΔ , 
it,s,

l syΔ ∀ s, i, l and the correlation among dimensions it,s,
l RΔ . 

The confidence intervals might readily be calculated using Chebishev’s inequality and Sidak’s 
corrections: 

it,s,

l xΔ ∈[
it,s,

l

it,s,

l +xΔ,xΔ − ]= it,s,
l

)(it,s,
l sxΔ

Ω)(
±xΔ ∗1/M-1-1

1   ∀ s, i, l 

it,s,

l yΔ ∈[
it,s,

l

it,s,

l +yΔ,yΔ − ] = it,s,
l

)(it,s,
l syΔ

Ω)(
±yΔ ∗1/M-1-1

1   ∀ s, i, l 
(16) 

Similarly, the confidence regions or ellipsoids ( )
it,s,

l

it,s,

l yΔ;xΔ , Ellipses,t,i, are: 
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The second set of models are used to determine where the object is going to be at t + l, by just 
adding the average observed move to the current position: 
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The total number of prediction models, M, is M = (S + 1) * I * L * 3. 

7.4. Composite matching and classification 

The last stage in this multivariate assessment is the location of the pedestrians. After the discussion 
in the previous sections, the information available at each time t is: 

• The measurements from the sensors. 
• The confidence bounds or validation gates for the prediction of moves for each object and lag, 

for each sensor and dimension as well as for the fused data, and in combined confidence 
regions 
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• The validation gates for the prediction of location for each object and lag, for each sensor and 
dimension as well as for the fused data, and in combined confidence regions. The algorithm 
then must confront the raw data, the lagged data and the fused data with the validation gates 
and prediction regions so as to assign the measurements to an existing or new object. There 
exist several possible results: 

• All the validation gates and confidence regions are positively met for one of the existing 
objects. The measurement is assigned to that object, which continues to be a pedestrian or 
another object, fixed or not. 

• None of the validation gates or confidence regions are met. A new object is created and 
starts to be tracked. 

• If either the gates for the stability of moves or the position gates are met, due to a no-read 
or a sudden change in direction or velocity, the measurement is assigned to same object 
which continues to be tracked. 

8. Experimental Results 

The following experiments have been carried with the IvvI vehicle outdoors in order to evaluate the 
robustness and reliability of the proposed detection and tracking algorithm. Figure 11 shows the 
capability of the perception system to detect multiple objects and identify them as pedestrians. The 
figure shows four pedestrians crossing in front of the vehicle, two in each direction. The vision image 
shows boxes around the identified pedestrians. The laser frame shows possible pedestrians surrounded 
by boxes after processing the raw data. 

The data obtained out of the sensorial system has been used to test the performance of the fusion 
algorithm under different real conditions: crossings of pedestrians while moving in zigzag and changes 
of speeds. 

Figure 11. Pedestrian detection by the IvvI vehicle. 

 

8.1. Pedestrians crossing and changing directions 

The IvvI vehicle is first set on the road to test the proposed intelligent fusion-based tracking system 
outdoors, where pedestrians wander following both linear and non-linear paths. 
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8.1.1. Definition of the experiment 

Two pedestrians move for 29.2 seconds (292 frames) in front of the vehicle following the paths 
included in Figure 12. The trajectories are highlighted by the crossing of the two pedestrians and a 
single pedestrian changing direction in a zig-zag fashion. 

Figure 12. Paths followed by pedestrians. 

 

8.1.2. Parameterization of the tracking algorithm 

The parameter S, the number of sensors, is set to S = 2, as a camera and a laser are used to obtain 
data from the environment. The parameter I, the count of objects, is set to I = 2, as two are the 
pedestrians being tracked. The parameter L, the number of time intervals, is set to L = 3 to allow for a 
quick execution of the algorithm. The parameter M, or the number of simultaneous tests that are 
performed at each t is M = (S + 1) * I * L * 3 = 54. The parameter C, or the number of past data used 
to calculate the trajectories and the moves, is set to C = 10, since that is the value corresponding to the 
number of maximum frame rate of the camera. The parameter Ω, or the overall significance level, is 
set to 5%.  

Therefore: k = )()( )(
=

)( 1/541/M 0.05-1-1
1

-1-1
1
Ω  

= 32.45 ≅ 33 

D = k * 7/1.5 = 119.89 ≅ 120. 

8.1.3. Analysis of the crossing 

The cross happens in between frame number 70 to 90, or 2 second. The information provided by the 
two sensor systems, as well as the result of the tracking algorithm are included in Figure 13. 
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Figure 13. (a) Sequence of the crossing resulting from the vision subsystem. (b) Sequence 
of the crossing resulting from the laser subsystem. (c) Sequence of the crossing resulting 
from the tracking algorithm. 

 
(a) 

 
(b) 

 

(c) 



Sensors 2010, 10 8047

The tracking images show the ellipses corresponding to a time interval of 1 frame. At the time of 
the crossing, the algorithm is only able to classify one pedestrian. The result is a larger prediction 
region that covers both pedestrians. It also allows for the tracking of both as depicted in the figures 
corresponding to frames 95 and 100. 

8.1.4. Analysis of the Zigzag movement 

The pedestrian changes directions between frames 205 and 270 for more than 6 seconds  
(Figure 14). The changes are properly picked but with the penalty of carrying larger ellipses, due to the 
increase in the value of the calculated standard deviations. 

Figure 14. (a) Images sequence of a pedestrian with zigzag trajectory resulting of the 
vision subsystem. (b) Images sequence of a pedestrian with zigzag trajectory resulting of 
the laser subsystem. 

 
(a) 

 
(b) 
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Figure 14. Cont. 

 

(c) 

8.1.5. Reliability results 

Table 3 shows the absolute frequency distribution of measurements by each of the sensors  
(V = vision, L = laser, F = fusion) for each of the two pedestrians as well as the false positives. The 
first pedestrian should be detected in all of the 292 frames, whereas the second one only for the  
first 192 frames. The camera shows an additional still object for 288 of the 292 frames and the laser 
shows also the presence of another still object. By fusing the sensors, the 2 pedestrians are clearly 
picked in 257 frames, with the other 35 frames picking just one of the two. The number of false 
positives reaches 3, since in one frame 5 objects are picked other than the two still objects. 

Table 3. Distribution of detections per frame. 

 MEASUREMENTS 
TOTAL 292 292 292 192 192 192 292 292 292 

 PEDESTRIAN 1 PEDESTRIAN 2 OTHER 
 V L F V L F V L F 

D
E

T
E

C
T

IO
N

S 

0 66 131 34 31 148 27 0 36 0 
1 226 161 125 161 44 125 288 172 35 
2   133   40 4 68 171 
3        15 69 
4        1 16 
5         1 

The hit rate per pedestrian (Table 4) is above 86% for the fused data. The hit rate is calculated as 
the percentage of reads over the count of frames in which the pedestrians were correctly situated in 
front of the vehicle.  

If C consecutive reads were not available, then it is not possible to calculate neither an average of 
the data nor a filtered value, and thus, the hit rate diminishes.  
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Table 4. Hit rates per pedestrian. 

 HIT RATE (%) 
 PEDESTRIAN 1 PEDESTRIAN 2 

VISION 77.40 % 85.64 % 
LASER 56.51 % 23.40 % 
FUSION 88.36 % 87.77 % 

Table 5 includes the null acceptance ratio or the percentage of time in which the new value falls 
within the all the validation gates and confidence regions, both individually and jointly for the stability 
of the movements and the tracking of the trajectories. 

Table 5. Hit rate per model. 

STABILITY 95.83 % 95.03 % 
TRACKING 93.51 % 86.16 % 

AT LEAST ONE 98.46 % 96.18 % 
BOTH 90.98 % 85.28 % 

The percentage is over 85% and should increase in uncontrolled environments whenever the 
variability of the measures is higher. In controlled environments, the pedestrian knows that it is being 
tracked and acts consistently so that the calculated standard deviation is smaller than it is when 
variability is speed and direction is more likely to occur. In fact, the hit rate is higher for the first 
pedestrian who at one point follows a zigzag pattern. 

8.2. Changes in speeds of both pedestrian and vehicle 

An additional experiment is performed to assess the performance of the algorithm when the 
pedestrian is changing speeds while the vehicle is moving (Figures 15a and 15b).  

Figure 15. (a) Visualization from the vehicle. (b) Zenithal map of the situation.  
(c) Sequence of the crossing resulting from the tracking algorithm.  

 
  (a)    (b)     (c) 
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The vehicle starts detecting the pedestrian about 18 meters before the zebra crossing (Figure 15c). 
The vehicle keeps on approaching the pedestrian up until a distance of 8 meters, as shown by the 
portion the graph that has a negative slope. Then, both the pedestrian and the vehicle stop. When the 
pedestrian sees that the vehicle has come to a full stop, he starts walking again at a higher pace. The 
vehicle does not start moving until the pedestrian has completely crossed the road, about three metres 
to the right of the vehicle; the graphs during these frames shows no slope. The vehicle starts its 
movement again, with the graph presenting a negative slope. The graph shows as well the prediction 
ellipses every 50 frames. 

9. Conclusions and Future Work 

Sensors are ubiquitous in today’s world, although it is necessary to give them with autonomy to 
process the information they get from the environment. Our research aims at developing intelligent 
sensors in a demanding field like Intelligent Transportation Systems. More specifically this article 
addresses the problem of the identifying and classifying objects and pedestrian so as to help drivers to 
avoid accidents.  

Developments in both hardware and software are necessary to create robust and intelligent 
application in Advanced Driver Assistance Systems. The sensorial fusion of a laser and a computer 
vision system as well as a classification algorithm has proven successful for the tracking of pedestrians 
that cross and wander in zigzag in front of the vehicle. 

Original algorithms have been developed for classification and tracking. A new approach to 
pedestrian detections based on a laser and variable models has been presented, giving an estimation of 
how close they are to the ideal pattern for a pedestrian. Regarding the stereo-vision subsystems two 
original contributions are worth mentioning. First, the implementation of the disparity map 
construction with the cross-checking and the u-v disparity using CUDA in order to obtain a real time 
system. Second, a novel and fast procedure for pedestrian identification using the silhouette of the 
stereo image has been presented. The success of the matching procedure is based on the application of 
non parametric multivariate statistics to the localization problem while tracking pedestrians. More 
specifically, the Sidak correction has been applied to calculate the proper multivariate significance 
level, the Chebishev inequality has been used to account for non-normality and confidence regions 
have been calculated to determine the positioning of the pedestrians in the upcoming frames. Two 
other contributions have made for the robustness of the algorithm. The use of movements and not raw 
measurements has allowed for the proper control and dimensioning of the confidence regions. The 
check for stability of the measurements prior to the calculation of the predictions has also increased the 
hit ratio while recognizing and classifying pedestrians. All experiments have been performed in real 
environments using the IvvI research platform, where all the algorithms have been implemented  
and tested. 

Improvements should be made on the perception as well as the tracking systems to improve the hit 
rate. The classification of the obstacles detected by the stereo system can have more features into 
account. Once the obstacles have been detected and their size and distanced to vehicle found, methods 
that use several image features like [38] can be applied and still work in real-time. Experiments with 
more pedestrians are also currently being carried out. Future works will be focused on other kind of 
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obstacle detections such as cyclist or motorists. Visual information has already been used in some 
works to detect them. Laser Scanner detection algorithm is being developed for these obstacles by 
adding new information to the models such as movement, width, etc. Now, the system warns the driver 
if there is a crossing of trajectories, but in [39] several decision mechanisms have been implemented 
that evaluate behavioral alternatives based on sensory information and internal prediction. This way 
the system would decided when the best behavior is a warning message to the driver or taking control 
of the vehicle to avoid a pedestrian or to minimized the severity of the injures.  
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