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Abstract: High sensitivity GPS receivers have extended the use of GNSS navigation to 

environments which were previously deemed unsuitable for satellite signal reception. 

Under adverse conditions the signals become attenuated and reflected. High sensitivity 

receivers achieve signal reception by using a large number of correlators and an extended 

integration time. Processing the observation data in dynamic and rapidly changing 

conditions requires a careful and consistent treatment. Code-based autonomous solutions 

can cause major errors in the estimated position, due primarily to multipath effects. 

A custom procedure of autonomous GPS positioning has been developed, boosting the 

positioning performance through appropriate processing of code and Doppler observations. 

Besides the common positioning procedures, robust estimation methods have been used to 

minimise the effects of gross observation errors. In normal conditions, differential GNSS 

yields good results, however, under adverse conditions, it fails to improve significantly the 

receiver’s position. Therefore, a so-called conditional DGPS has been developed which 

determines the position differentially by using data from the strong signals only. These 

custom-developed procedures have been tested in different conditions in static and 

kinematic cases and the results have been compared to those processed by the receiver. 

Keywords: GNSS; GPS positioning; high sensitivity; differential GPS; adverse conditions; 

Doppler observations 
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1. Introduction  

Standard GNSS positioning was previously limited to open areas that guaranteed the unobstructed 

reception of GNSS satellites signals. With the emergence of so-called high sensitivity GPS receivers 

(HS GPS), the practical application of GNSS has expanded to include areas with poor signal reception. 

Challenging environments, such as urban canyons, forested areas and indoors are often labelled as 

―indoor‖ environments [1]. Such environments cause signal attenuation and signal reflection from 

nearby reflective surfaces, resulting in multipath errors. Signal attenuation and multipath can cause 

large errors in the position estimation. 

Upon its arrival on Earth, the GPS signal is already weak. Regular GNSS receivers are able to track 

signals attenuated by the atmosphere only. If a signal passes through a physical substance, the signal 

becomes too weak to be tracked by a regular GNSS receiver. HS GPS receivers are able to track 

exceptionally weak signals by incorporating a large number of correlators and employing an extended 

integration period. Regular GNSS receivers incorporate up to 50 correlators [2], whereas the latest  

HS GPS chips incorporate more than one million correlators, e.g., u-blox 5 and u-blox 6.The typical 

integration time for regular GNSS receivers is a few ms [1], while HS GPS receivers perform 

integration over a longer interval. Integration can be extended to several hundred ms [1].  

According to [3], the tracking performance does not entirely depend on the signal strength but also 

on the signal-to-noise ratio (SNR) and more specifically on the SNR in a 1 Hz bandwidth, i.e., the 

carrier-to-noise density ratio (C/N0).Regular GPS receivers are able to acquire and track signals with a 

C/N0 above 33–35 dBHz. The HS GPS receivers in our experiments were able to track signals with a 

C/N0 as low as 10 dBHz. 

HS GPS receivers track signals from GPS satellites on the L1 frequency. The results of the signal 

tracking are usually code pseudoranges, carrier-phase and Doppler observables. A SNR value is also 

typically available. Most of the HS GPS receivers available on the open market determine the current 

position internally and output their results via NMEA 0183 messages. Only a few of them can be setup 

to output raw observation data. 

2. Development of the Positioning Procedure 

Custom positioning procedures can be developed only by processing raw observation data. 

Therefore, only GPS receivers with raw data output were considered for the survey tests. Two u-blox 

evaluation kits with a raw data output option were used in the tests, namely the AEK-4T and EVK-5T. 

The AEK-4T employs the Antaris GPS chip and offers rates of up to 10 Hz for raw data, whilst the 

EVK-5T relies on the u-blox 5 Positioning Engine which supports a 2 Hz raw data update rate. Both 

receivers are able to determine and output the following data: code pseudoranges; carrier-phase 

measurements; Doppler measurements and SNR values. However, the AEK-4T receiver is able to 

output carrier-phase observables only for signals with a SNR over 30 dBHz, meaning that there is no 

carrier-phase data for the attenuated signals. On the other hand, carrier-phase measurements from the 

EVK-5T are available even for the weakest signals. Owing to the limitations of one of the receivers, 

the custom positioning solution depends on code pseudoranges and Doppler observables only. 
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Basic autonomous positioning is based on processing the code pseudoranges in the least squares 

adjustment. Four unknowns have to be determined in the process: the 3D position coordinates of the 

receiver and the receiver clock offset. A pseudorange is affected by a number of biases and possible 

errors: the satellite position; the satellite clock offsets; the ionosphere bias; the troposphere bias; 

multipath and noise. All biases have to be modelled to obtain the estimated unknowns to the highest 

possible degree of accuracy and reliability.  

Multipath is a phenomenon whereby the receiver’s antenna receives a GPS signal from different 

paths. This is caused by the reflection of the signal off reflective surfaces near the receiver. Multipath 

depends entirely on the local environment and is therefore nearly impossible to model. Theoretically, 

multipath can reach up to one half of a wavelength of a pseudorange (up to 150 m for code 

observations) and up to one quarter of a wavelength of the carrier phase (a few cm) [4]. Since Doppler 

measurements are affected by the bias rates only [5], the multipath effect on Doppler observations 

should be on the level of the carrier phase multipath effects. Multipath is undoubtedly the most 

significant bias in code pseudoranges observed in ―indoor‖ positioning. 

Atmospheric biases can be mitigated with ionosphere and troposphere models. An ionosphere bias 

can be cancelled out by applying dual frequency observations. However, HS GPS receivers are single 

frequency receivers and for such observations an ionosphere model has to be used, e.g., the Klobuchar 

model. A troposphere bias can be mitigated via a combination of a tropospheric zenith delay and a 

mapping function. More on the topic can be found in [4]. 

Some additional methods are used in classical GPS positioning procedures to attempt to enhance the 

accuracy of the results achieved. Signals with low elevation angles are affected to a greater degree with 

atmospheric refraction than signals at high elevation angles. Elevation angle weighting can be used to 

compensate for the different quality of the signals. Signals with lower SNR values are generally 

assumed to be of a lesser quality than those with high SNR values. Some authors suggest using  

SNR weighting [6]. 

If carrier-phase or Doppler observations are available, then errors in code-based observations can be 

mitigated by smoothing code-based observations. This smoothing technique is achieved using a 

so-called Hatch filter [7]. 

Outliers are common in observations that take place in multipath and attenuated environments. The 

first option is to try to eliminate outliers from the mathematical model. However, based on our 

experience, it is difficult to accurately detect and eliminate outliers in such conditions. The second 

option is to minimise the effect of gross errors on the final solution. This can be achieved by  

robust estimation. 

Least squares adjustment methods yield a correct interpretation of the results if no outliers are 

present in the solution and all the systematic errors are modelled. According to [8,9], robust estimation 

methods perform considerably better than least squares when gross errors are present in the 

mathematical model. One of the most widely used robust estimation methods is the L1-norm.The 

weight function of the L1-norm is defined as: 

i

i
v

w
1

  (1) 
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where vi is the residual of the i-th observation and wi is the weight of the i-th observation in the next 

iteration. The residual vector v is obtained during the least squares adjustment procedure and the 

residual value vi represents the difference between the input value and the adjusted value of the 

observation. The robust estimation procedure relies on the basic least squares equations with the 

additional observation weighting.  

2.1. Custom Positioning Procedure 

The custom developed procedure for GNSS positioning under adverse conditions relies on the 

modified L1-norm robust estimation. A residual value of zero results in a deletion by zero, see 

Equation (1). To avoid such a result, each observation with a residual of less than 10
−4

 m is given a 

weight of 10
4
. The modified L1-norm weight function is therefore defined as: 
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As mentioned above, Doppler measurements can be used to smooth code observations. In our 

experiments, however, this procedure has not produced promising results. Doppler values can also be 

used for so-called Doppler positioning. Positioning is realised using Doppler observations only, as 

suggested in [10], but practical realisation is particularly difficult to achieve in environments with a 

decreased number of available signals. Doppler measurements basically measure the range change 

between a receiver and a satellite between consecutive epochs. The following equation can be used to 

calculate the delta range [11]: 

  dtDDD ii   11
2

1
1  (3) 

where D1i–1 and D1i are Doppler observables in the previous and the current epochs, respectively, λ is 

the wavelength of GPS L1frequency and dt is the time interval between consecutive epochs. However, 

this method of Doppler positioning requires reference range values. These can only be achieved using 

code pseudoranges. Therefore, the initial position can only be determined by code-based observations. 

This would ideally be determined in an environment with little or no multipath or attenuation. 

Differential GPS (DGPS) can also be used in such environments if the reference station data is 

available. DGPS increases the accuracy of the initial positions and consequentially all the following 

positions if determined relatively by Doppler positioning.  

The custom procedure for the positioning of the following epochs (after the initial epoch) 

determines the receiver clock offset and the position unknowns separately. The receiver clock offset is 

determined by Doppler observables only. The use of code-based observations in estimating the 

receiver clock offset can cause anomalies which often occur when the number of tracked satellites 

changes between epochs. After the receiver clock offset has been determined, the position unknowns 

are determined using code and Doppler observations. Doppler observations are included in the model 

as shown in Equation (3). Both types of observation are equally weighted. 
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One additional feature of the procedure is the recalculation of the ranges after each epoch. The 

ranges between the receiver and the satellites are calculated using the adjusted current position. These 

ranges then become input data for the following epoch instead of the pseudoranges.  

2.2. DGPS and Conditional DGPS 

DGPS is a positioning technique whereby the position of the rover is determined using code 

pseudorange corrections, calculated by the reference receiver. The achieved position accuracy is refined 

to a scale of 1 metre, whereas the accuracy of an autonomous position is around 10 metres [12]. DGPS 

assumes good operational conditions in the proximity of both receivers. DGPS does not function well 

under adverse conditions, because the noise and multipath are amplified in the differencing process [12]. 

Figure 1. Flowchart of the custom positioning procedures. 

 

 

Since DGPS does not perform well under adverse conditions where signal reception is poor,  

so-called conditional DGPS (cDGPS) has been developed, in which only strong signals are used to 

secure the positioning. Strong signals are defined as those with a SNR value above 35 dBHz, which is 

usually the limit value for the signal tracking of regular GNSS receivers [3].The cDGPS is performed 

in each epoch with 6 or more strong signals which are also tracked by the reference receiver. If the 

cDGPS cannot be performed, the positions are determined by the custom autonomous positioning 

procedure. Another useful feature of the cDGPS is its ability to calculate residuals for ―no cDGPS‖ 

epochs. At the epoch the conditional DGPS is viable again, the position is determined by the cDGPS 

and by the custom procedure. The difference between both positions is time-related distributed back to 
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―no cDGPS‖ epochs. This feature has no bearing on real-time surveys. Nevertheless, it is useful for a 

post-analysis of the calculated positions. It should be noted that the cDGPS can only be performed 

when reference station data is available. Figure 1 displays the basic data flow of the custom developed 

autonomous and cDGPS positioning procedures. 

3. Experiments, Results and Discussion 

The experiments were carried out on-site at the Faculty of Civil and Geodetic Engineering in 

Ljubljana, Slovenia. The tests were performed under different conditions and at different times in static 

and kinematic modes. Reference points and kinematic survey outlines are shown in Figure 2 (A). The 

reference point positions were determined by precise GNSS and total station measurements. An 

extending roof turret above the rooftop of the building (partially visible in Figure 2 (A) and 

represented by the dark shape in Figure 2 (B)) was used to simulate adverse conditions, where the 

signals become attenuated and reflected.  

Figure 2. (A) Reference points: (a) normal conditions; (b) adverse conditions; (c) indoors. 

(B) Kinematic survey outlines on an orthophoto image: (d) mixed conditions; (e) mixed 

conditions; (f) adverse conditions. 

 

(A) 

 

(B) 
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The horizontal coordinates of the surveyed points are expressed as N and E in a projection plane, 

while the vertical component is expressed as the height above ellipsoid h. The observables used in the 

positioning procedure are labelled as in RINEX files: C1 code pseudoranges and D1 Doppler values. 

All tests were carried out and processed in a 1 Hz kinematic mode. 

Several autonomous solutions were determined from each survey: C1 (code-based positioning);  

D1 (Doppler positioning); C1&D1 (common processing of code and Doppler observations); custom 

C1&D1 (as described in Section 2.1.); NMEA (positions, determined by the receiver, extracted from 

NMEA messages). The elevation angle weighting and SNR weighting were also tested. DGPS 

solutions are labelled DGPS, whereas the conditional DGPS is represented by the label cDGPS. The 

symbols I and T represent the use of ionosphere and troposphere models respectively.  

3.1. DGPS Under Adverse Conditions 

The first task was to assess DGPS under different conditions. As expected, DGPS performs well 

under normal conditions. The results of a 10-minute static survey in environment (a) are shown in 

Figure 3. The DGPS positions are compared to the basic positioning mode using code pseudoranges 

only. The graphs illustrate discrepancies in the solutions from the reference values. Basic statistics of 

both solutions are listed in Table 1. 

Figure 3. Performance of DGPS under normal conditions: (i) DGPS positioning;  

(ii) code-based autonomous positioning. 
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Table 1. Statisticsof autonomous and DGPS solutions under normal conditions. 

   C1    DGPS   

  N E h  N E h  

 min (m) −4.4 −0.2 7.9  −1.9 −1.6 −3.7  

 max (m) 14.2 4.5 43.0  1.5 1.3 3.2  

 mean (m) 5.4 2.7 26.1  −0.3 −0.1 −0.2  

 st.dev. (m) 5.6 1.1 10.5  0.7 0.6 1.4  

 

Under adverse conditions, the results are markedly different. Figure 4 illustrates the results of 

DGPS and basic positioning in environment (b). The results of DGPS are similar to or worse than 

those achieved by basic positioning. Basic statistics of both solutions are shown in Table 2. 

Figure 4. Performance of DGPS under adverse conditions: (i) DGPS positioning;  

(ii) code-based autonomous positioning. 

 

Table 2. Statistics of autonomous and DGPS solutions under adverse conditions. 

   C1    DGPS   

  N E h  N E h  

 min (m) −1.0 −5.7 −138.2  −9.5 −9.5 −179.2  

 max (m) 41.5 46.1 82.5  47.0 41.4 49.7  

 mean (m) 16.8 10.8 −11.9  10.5 7.5 −45.2  

 st.dev. (m) 8.9 9.3 37.3  9.4 8.7 43.4  

 

  



Sensors 2010, 10            

 

 

8340 

3.2. Indoor Positioning 

All signals are attenuated and multipath becomes a permanent feature inside objects. This causes 

large errors in positions which were estimated using code-based positioning. As seen in Figure 5, the 

discrepancies in reference position exceed 100 m in a single component in environment (c).The best 

solution is also illustrated by way of comparison. The best solution is the custom procedure using C1 

and D1 with the application of the Klobuchar ionosphere model and the troposphere model, consisting 

of the Hopfield zenith delay estimation and the Niell mapping function. Basic statistics of both 

solutions are listed in Table 3. 

Figure 5. The best and worst indoor solutions: (i) autonomous C1 positioning; (ii) custom 

positioning procedure with C1&D1, plus ionosphere and troposphere models. 

 

Table 3. Statistics of the worst and best indoor solutions. 

   C1    custom   

  N E h  N E h  

 min (m) −175.8 −29.3 −124.0  −14.5 −5.4 12.9  

 max (m) 49.1 55.5 206.2  29.0 21.4 32.4  

 mean (m) −34.0 17.0 36.4  3.5 9.3 22.7  

 st.dev. (m) 53.2 13.3 84.8  10.5 6.0 4.8  

3.3. Kinematic Surveys Under Adverse Conditions 

The positioning procedures and the equipment were both tested in different kinematic surveys and 

under different conditions. Their outlines are depicted in Figure 2 (B). Environment (d) was a mixed 

condition environment. The start and the end of the survey represented relatively normal conditions, 
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however, in the middle, the survey stops underneath the overhanging roof turret for  

approximately 30 seconds. The whole survey takes 60 seconds. Some of the results of the developed 

solutions are shown in Figure 6. The black line represents the approximate trajectory and the blue 

outline depicts part of the overhanging roof. The first and the last determined positions are marked 

with larger dots. The positions are shown in the projection plane. Plotted units are in metres.  

Once again, code-only positioning yields major position errors—see plot (i). The results are 

considerably better using the custom positioning procedure, when either the initial position is known (ii) 

or the ionosphere and the troposphere models are used (iii). As a comparison, the internal position is 

also shown—see plot (iv). The positions remain close to one another, although the cluster of points 

ought to be under the overhanging roof. 

Figure 6. Solutions in a mixed-condition environment (d): (i) autonomous C1 positioning; 

(ii) custom positioning procedure with C1&D1, initial position presumed known;  

(iii) custom positioning procedure with C1&D1, plus ionosphere and troposphere models; 

(iv) internal positioning of the receiver. Units are in meters.  

 



Sensors 2010, 10            

 

 

8342 

The results of the cDGPS of the same survey are shown in Figure 7.Whenever possible, the cDGPS 

was performed (green dots).When this was not possible, the custom autonomous positioning was used 

(red dots).The recalculation of the ―no cDGPS‖ positions was also applied (blue dots). 

Figure 7. Conditional DGPS in environment (d): (●) cDGPS positions; (●) custom 

positioning procedure with C1&D1; (●) recalculated positions.Units are in meters. 

 

 

Figure 8 displays some of the characteristic solutions of environment (e). Most of the survey takes 

place under adverse conditions beneath the roof gutter. The survey path is denoted by the dashed line.  

The blue outline depicts the overhanging roof. 

The first plot (i) demonstrates why the Doppler-only solution is not the best option. Whilst the 

Doppler positioning performs particularly well under normal conditions this is not the case under 

adverse conditions. The path scale appears to be slightly reduced. Plot (ii) illustrates the results of 

Doppler smoothing of code observations using the Hatch filter. The procedure causes major deviations 

from the actual path. In this particular case, the best solution is the custom procedure of C1 and D1 

with the additional application of the elevation angle weighting and the SNR weighting. Again, the 

results of the internal processing are also shown as a comparison.  
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Figure 8. Solutions in a mixed-condition environment (e): (i) autonomous Doppler 

positioning with custom procedure; (ii) Doppler smoothing of code observations with the 

Hatch filter; (iii) custom positioning procedure with C1&D1, plus elevation angle 

weighting and SNR weighting; (iv) internal positioning of the receiver. Units are in meters. 

 

 

The results of the cDGPS of the same survey are shown in Figure 9.The cDGPS is active at the start 

and at the end of the survey as well as during5 epochs in between (see green dots).This solution 

represents the best of all outcomes, especially when the recalculated positions are considered (blue 

dots instead of red dots). 

Environment (f) presents consistently adverse conditions for the reception of GPS signals.  

Some characteristic solutions are presented in Figure 10. The dashed line represents the path travelled, 

while the blue outline depicts part of the roof overhang. The survey included two 60 second rounds. 

Once again, the custom positioning procedure offers the best results. If the atmosphere models are 

applied, the positions shift by approximately 4 metres to the south, although the heights are 

considerably closer to the real values. The difference in the height component is more than 30 metres. 

If the elevation angle weighting is applied, the positions shift almost 20 metres to the north. The 

cDGPS cannot be performed since only 1 epoch fulfils the required conditions for cDGPS. 
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Figure 9. Conditional DGPS inenvironment (e): (●) cDGPS positions; (●) custom 

positioning procedure with C1&D1; (●) recalculated positions. Units are in meters. 

 

Figure 10. Solutions under adverse conditions (f): (i) autonomous code positioning;  

(ii) custom positioning procedure with C1&D1; (iii) custom positioning procedure with 

C1&D1, plus ionosphere and troposphere models; (iv) internal positioning of the receiver. 

Units are in meters. 
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3.4. Summary of Results 

A wide range of experiments under different conditions were carried out. Several solutions were 

obtained for each test survey, although only some of the solutions for each case have been presented. 

Other solutions and cases not presented here demonstrated the same tendencies. 

In general, basic positioning using code pseudoranges only tend to cause major position errors 

beyond 100 m under adverse conditions. The application of Doppler observations in addition to  

code-based observations and proper processing procedure can drastically improve the accuracy of the 

results achieved. The Doppler-only solution is clearly deficient, as can be seen in Figure 8. The 

smoothing of code-based observations with Doppler observations using the Hatch filter does not 

perform effectively under such conditions either, as Figure 8 illustrates. Although the use of the 

elevation angle weighting and the SNR weighting has the potential to improve the quality of the results 

(see Figure 8), the use of additional weighting proved risky, since it can also produce poor results.  

The best overall solution and also the sturdiest positioning technique is the custom procedure using 

both types of observables, code and Doppler. As can be seen from Figures 7 to 11, the quality of the 

calculated positions is considerably higher in comparison to the basic positioning. The accuracy of the 

positions falls within a reasonable value range, i.e., 10–20 metres, even under particularly adverse 

conditions. It should be noted that the positioning mode is still autonomous. The results achieved proved 

to be better than the results of the internally derived positions from the receiver (see Figures 6, 8 and 10). 

The ionosphere and the troposphere both affect the propagation of all signals, irrespective of the 

conditions experienced by the receiver. Therefore, the ionosphere and the troposphere models should 

be used in any case to enhance the accuracy of the results. Proof of this is indicated by the case  

studies presented. 

The conditional DGPS is applicable in a mixed-condition environment of a kinematic survey. If the 

conditions for the reception of the signals are particularly bad, then the cDGPS cannot be used. 

Conditional DGPS can be used however under conditions which experience periods of minor attenuation 

and multipath level. Results of the cDGPS in two cases can be seen in Figure7 and Figure 9.The results 

are noticeably improved following recalculation of the positions. 

4. Conclusions 

High sensitivity GPS extends the use of GNSS positioning to environments where signals are 

attenuated and reflected. HS GPS enables positioning even indoors, although only to a certain degree. 

GPS positioning inside objects is usually limited to top floors and the proximity of outer walls.  

Code-based autonomous positioning can often result in major errors of the estimated position. 

Therefore, observations under adverse conditions should be treated with caution. Owing to the 

limitations of the equipment available, the custom developed positioning is based on single frequency 

code pseudoranges and Doppler observations. The procedure relies on the modified L1-norm robust 

estimation to mitigate the influence of gross observation errors. The receiver clock offset and the 

position unknowns are determined separately. The clock offset is estimated using Doppler observations 

only, whereas the position is determined using both code and Doppler observables. An additional 

feature is the recalculation of the satellite ranges after each epoch. Geometric ranges are used instead 
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of pseudoranges in the subsequent epoch. The initial position, however, has to be determined by  

code-only positioning since only relative velocities between the receiver and the satellites can be 

derived from Doppler observations. Therefore, in order to consider Doppler observables for 

positioning, reference ranges are required. The accuracy of the positions of the subsequent epochs 

depends upon the accuracy of the initial position. For this reason, it is essential that the initial position 

should be determined in an environment where conditions are favourable. The best initial position 

would ideally be determined by DGPS or by the cDGPS. 

Additional models and weightings can be applied to the positioning procedure. The elevation angle 

weighting and the SNR weighting can, in some cases, result in a better solution, although they can also 

cause gross position errors. On the other hand, the ionosphere and the troposphere models should be 

used in any case and under any conditions. The custom positioning procedure using code and Doppler 

observations with applied atmosphere models offers the best results for autonomous positioning under 

adverse conditions. The accuracy achieved is close to the accuracy level obtained under  

normal conditions. 

Under adverse conditions DGPS cannot be used because the quality of the results deteriorates. On 

the other hand, conditional DGPS maybe applicable if enough strong signals are available. In should 

be noted that DGPS in general can only be performed if the data from a reference receiver is available. 

The use of conditional DGPS raises the quality of the calculated positions considerably. 
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