
Sensors 2010, 10, 8663-8682; doi:10.3390/s100908663

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Automated Construction of Node Software Using Attributes in a

Ubiquitous Sensor Network Environment

Woojin Lee
1
, Juil Kim

2
 and JangMook Kang

3,
*

1
 Department of Information and Communication Engineering, Sejong University 98 Gunja-Dong,

Gwangjin-Gu, Seoul 143-747, Korea; E-Mail: woojin@sejong.ac.kr
2

R&D Center, Hunter Technology, 170-5 Guro-3Dong, Guro-Gu, Seoul 152-769, Korea;

E-Mail: sespop@empal.com
3

Electronic Commerce Research Institute, Dongguk University, 707 Seokjang-dong, Gyeongju,

Gyeongsangbuk-do, 780-714, Korea

* Author to whom correspondence should be addressed; E-Mail: mooknc@gmail.com or

redsea@dongguk.ac.kr.

Received: 30 July 2010; in revised form: 6 September 2010 / Accepted: 10 September 2010 /

Published: 17 September 2010

Abstract: In sensor networks, nodes must often operate in a demanding environment

facing restrictions such as restricted computing resources, unreliable wireless

communication and power shortages. Such factors make the development of ubiquitous

sensor network (USN) applications challenging. To help developers construct a large

amount of node software for sensor network applications easily and rapidly, this paper

proposes an approach to the automated construction of node software for USN applications

using attributes. In the proposed technique, application construction proceeds by first

developing a model for the sensor network and then designing node software by setting the

values of the predefined attributes. After that, the sensor network model and the design of

node software are verified. The final source codes of the node software are automatically

generated from the sensor network model. We illustrate the efficiency of the proposed

technique by using a gas/light monitoring application through a case study of a Gas and

Light Monitoring System based on the Nano-Qplus operating system. We evaluate the

technique using a quantitative metric—the memory size of execution code for node

software. Using the proposed approach, developers are able to easily construct sensor

network applications and rapidly generate a large number of node softwares at a time in a

ubiquitous sensor network environment.

OPEN ACCESS

Sensors 2010, 10

8664

Keywords: attributes; node software; ubiquitous sensor network application; automated

construction; model-based development

1. Introduction

Recent advances in wireless communications and electronics have enabled the development of

low-cost, low-power, multi-functional sensor nodes. These sensor nodes leverage the idea of sensor

networks [1]. A Ubiquitous Sensor Network [2] is a wireless network which consists of a large number

of lightweight, low-powered sensor nodes. Such sensor nodes consist of sensing, data processing and

communicating components. Sensor networks are drawing a lot of attention as a way of realizing a

ubiquitous society. They collect environmental information to realize a variety of functions through a

lot of wireless nodes that are located everywhere [1,3]. The nodes are connected to a network and

sense geographical and environmental changes of the field. Objects can recognize other objects

through the sensor network and perceive changes in the environment. Users can obtain and use

information at any time in any place through the objects connected to the sensor network. The sensor

networks can be used for various application areas such as health, military, robot, home and so on.

However, the construction of applications is challenging. Node resources in a sensor network are

limited and wireless communication between nodes is unreliable. Nodes should also perform

low-power operations. Accordingly, techniques to help developers easily construct applications, even

if they do not know the low-level information details such as low-level communication, data sharing

and collective operations, are necessary. Moreover, a sensor network consists of a large number of

sensor nodes that have various roles and a large number of node softwares for those roles must be

constructed, so such techniques should also help automatic construction of applications in order to

efficiently generate a large amount of node software.

To satisfy these requirements, this paper proposes a technique for automated construction of node

software using attributes. In the proposed technique, application construction proceeds by first

developing a model for the sensor network. Then design of software for nodes in the sensor network is

achieved by setting the values of the predefined attributes. After that, the sensor network model and

the design of node software are verified. Finally, source codes of node software are automatically

generated from the sensor network model.

In this paper, we describe in Section 2the limits of the existing techniques for USN application

development by comparing them with our approach. In Section 3 we present the USN application

development framework which is the base for the proposed technique. We describe the process and

method for constructing an application based on the proposed framework in Section 4. To make our

illustration more concrete, we describe the proposed technique using a gas/light monitoring application

as an example. In Section 5, we evaluate the proposed technique through a case study with a Gas and

Light Monitoring System based on the Nano-Qplus operating system. We evaluate the proposed

technique using a quantitative metric—the memory size of execution code for node software. Section 6

concludes the paper. The contribution of this paper is to demonstrate that the proposed technique helps

Sensors 2010, 10

8665

developers easily construct sensor network applications, generates a large number of node softwares at

a time and provides methods to verify a sensor network model.

2. Related Works

There are currently several techniques for generating USN applications such as Regiment [4],

Kairos [5], SNACK [6], SPIDEY [7], TinyGALS [8] and ATaG [9-11]. SNACK and TinyGALS draw

up the model at the node-level and develop the node software, while Regiment, Kairos, SPIDEY and

ATaG draw up the model at the network-level and develop an application. Techniques at the

node-level provide methods of developing single software to be implemented at each node. On the

other hand, network-level techniques provide methods of designing the model with focus on actions

among multiple nodes at the network-level and, on that basis, developing node software to be

implemented at each node. Therefore, because the network-level method generates node software for

multiple nodes comprising the sensor network on the basis of the single sensor network model, it is

more effective than the method at the node-level that individually designs and generates node software

for each node. Accordingly, this paper will present a method of drawing up the model and developing

an application at the network-level in order to develop sensor network application more effectively.

TinyGALS generates software codes from the model. Therefore, the model should be designed in

detail to include sufficient information to generate software codes. Regiment, Kairos, SNACK,

SPIDEY and ATaG provide high level languages or scripts for application design. If using these

techniques, the programs should be prepared by using the provided languages in order to generate an

application. On the other hand, the method presented in this paper designs an application by setting

values for the pre-defined attributes so that it can design the application more conveniently than

other methods.

The attributes which are mentioned in ATaG [9-11] are similar to our attributes in terms that the

attributes represent capability of a node, but they are used to determine the type of a node. In our

approach, attributes represent functional capability of the node, so developers can program node

software using the attributes. In contrast with our approach, developers must program tasks using the

provided langauge for implementing functional capability of the node in ATaG [9-11].

SNACK conducts model validation by finding errors (for example, unknown component types,

multiple declarations of the same name, missing parameters, connections that join interfaces with

different types and so forth) through static semantic checking. TinyGALS conducts model validation

by finding errors through syntax checking. On the other hand, ATaG conducts model validation in two

stages during compilation. First, it checks whether task/data names are duplicated, whether one data

item has two producers, etc. through a syntax check. Second, it makes sure that application codes will

be generated as intended by the developer by conducting task mapping according to instantiation rules.

Such model validation is to confirm that the application codes will be generated as requested by the

developer. In this paper, validation will be conducted by finding errors through syntax check during

compilation and further, for more accurate model designing, model verification will be conducted

before compilation to find errors that are likely to occur in the model design process. As model design

is conducted by a developer, errors can occur in the design process due to mistakes and faults of the

Sensors 2010, 10

8666

developer. In order to check such errors beforehand, this paper conducts model verification at the stage

prior to generation of application codes from a model.

There are also modeling tools that achieve easy and rapid programming such as LabVIEW [12] and

RTDS [13]. However, they are the tools for embedded application development and are not suitable for

sensor network application development. They support embedded operating systems but embedded

operating systems have different characteristics from sensor network operating systems, which are

lightweight and low-power and capable of controlling resource-constrained hardware platform, so such

tools cannot be easily adopted for developing applications for sensor network operating systems.

Moreover, when using these tools node softwares can only be developed one at a time. This contrasts

with our approach, which allows a large number of node softwares to be generated at once from the

same model.

3. USN Application Development Framework

When our approach is used, node software for an application is designed by setting values of the

predefined attributes and then source code for node software is automatically generated by composing

code templates according to the values of these attributes. To support this application development

technique, the USN application development framework should be established. Figure 1 presents

the framework.

Figure 1. USN application development framework.

The USN application development framework consists of Attributes, Code Templates and

Development Tool. To effectively develop USN applications using the method presented in this paper,

a toolkit for application development needs to be established. We call this toolkit “Development Tool.”

The Development Tool is established by an expert developer familiar with the target OS for which

USN application will be executed.

The developer of the Development Tool makes Attributes and Code Template necessary for

designing an application on the basis of functions and modules (or components) provided by the target

Attributes

Code Templates

Development Tool

Function Attributes

Development Attributes

Execution Code Templates

Module Code Templates

Modeler

Model Verifier

Configuration Information

Generator

Source Code Generator

USN Application Development Framework

Sensors 2010, 10

8667

OS. The Attributes and Code Templates so made will be included in the Development Tool and used

in developing USN applications.

Attributes are categorized into Function Attributes and Development Attributes. Function Attributes

are used to select the modules which are provided by the target OS. Development Attributes are used

to set the information for development of node software.

Code templates are developed for generating node software for an application according to the

functions of nodes such as data sensing, data transmitting, data collecting, data processing and

actuating. Code templates are developed based on modules provided by target OS. Code Templates are

categorized into Module Code Templates and Execution Code Templates. Module Code Templates are

developed by composing the modules of target OS in order to support the functions of nodes.

Execution Code Templates are templates for core codes to execute node software based on the selected

functions. Code Templates can vary according to the target OS.

Finally, the role of the Development Tool is to support sensor network programming in order to

expedite development of applications. The Development Tool includes core four modules—Modeler,

Model Verifier, Configuration Information Generator and Source Code Generator. Modeler helps

developers to draw sensor network model diagrams and design node software by setting attributes.

Model Verifier checks whether the model of the application is correctly designed without errors. The

Configuration Information Generator creates the configuration information of nodes in the model using

the model information such as attribute values. The Source Code Generator creates software for nodes

using code templates.

4. USN Application Development Based on the Framework

4.1. The Process of USN Application Development

Figure 2 shows the process for constructing a USN application based on the framework proposed in

our approach.

Figure 2. Construction process of USN application.

Sensors 2010, 10

8668

In Phase 1 of the process, the developer draws a sensor network model diagram. The model is

described using the UML class diagram notation [17]. In Phase 2, the developer sets attribute values of

classes in the model. Through the setting of attribute values, operating system components to support

the application are selected. In Phase 3, the developer verifies the sensor network model. If the model

is not correct, the construction process should be repeated from Phase 1 or Phase 2. Model verification

of Phase 3 is necessary because the developer manually writes the model and sets attribute values.

After model verification, the developer generates configuration information for each class in the model.

In Phase 4, the developer generates source code for classes using the configuration information and

code templates. Then application development is completed by editing the source code if needed.

4.2. Sensor Network Modeling

A sensor network model is described with three elements: node, node type and association. The

notation of the sensor network model shown in Table 1 was obtained from UML class diagram

notation [17].

Table 1. The notation for the sensor network model.

Name Notation Corresponding UML notation

Node

Class

Node Type <<type name>>

Stereotype which represents the type of a class.

<<SENSOR>>, <<ROUTER>>, <<SINK>>,

<<ACTUATOR>>, <<SENSOR_ROUTER>>,

<<ROUTER_SINK>>,

<<ACTUATOR_ROUTER>>, etc. can be

stereotypes of the classes that indicate node types

Association Association between classes

There are four roles which can be performed by nodes in a sensor network: sensor, router, sink and

actuator. In sensor network modeling phase, a developer should draw a sensor network model diagram

by considering the features of nodes according to their roles. Features per node role are as follows.

 Sensor: A node which has a sensor role senses data and transmits the data to a coordinator

node.

 Router: A node which has a router role plays the coordinator role. It controls a subnetwork. A

router node receives data from other nodes in the subnetwork and transmits the received data

to the Personal Area Network (PAN) coordinator node.

 Sink: A node which has a sink role plays the PAN coordinator role. It controls the whole

network. A sink node collects data from other nodes in the sensor network and controls them.

 Actuator: A node which has an actuator role controls devices.

Sensors 2010, 10

8669

Node Type can be created according to the roles for nodes. The “type name” is defined by

enumerating role names separated by underscore. For example, type of a node is <<SENSOR>> if the

node has a sensor role. And type of a node is <<SENSOR_ROUTER>> if the node has two

roles—sensor and router.

4.3. Attribute Setting

To generate node software from the designed model, the developer should configure the attributes

of each node. The developer should set attribute values of each class in the model. The developer can

set scheduler type, network topology, sensor type, etc. of each class in the model. Figure 3 shows an

example of attribute setting. In the example, one can see attribute values of sink0 in the sensor network

model for Gas and Light Monitoring System. A developer can design node software by setting

attribute values for each node in the sensor network model as in Figure 3.

Figure 3. Attributes values setting for sink0.

4.4. Model Verification

Model verification is conducted to find and correct errors of the designed model. The developer

conduct model verification to check whether the model he designed is accurately designed according

to specifications and assumptions [18]. If the model has errors, the generated application is highly

likely to produce errors during execution. Therefore, model verification is needed to check before

generation of application codes whether there are errors in the designed model.

For this, this paper conduct model verification on the designed sensor network model from the three

viewpoints of commonality verification, association verification and node verification.

 Commonality verification: Requirements common to all nodes should be confirmed in order to

ensure that communication between nodes can be performed without any problems. They include

communication protocol compatibility and communication channel compatibility.

<<SINK>>

sink0

Sensors 2010, 10

8670

 Association verification: Associations in the sensor network model represent the routing paths

between nodes. Through association verification, developers can check whether the model is

properly designed such that data is transmitted to the server through an appropriate routing path.

Association verification is effective in case of designing an application using a static routing table.

A static routing table may be used when the number of nodes comprising the sensor network is

small like in a home network and the application to be designed can determine the routing path

between the nodes beforehand. A static routing table may also be used when designing an

application based on an OS that supports static routing such as Nano-Qplus. In such cases,

conducting association verification is effective in generating an accurate application. If the

operating system supports dynamic routing, association verification of the sensor network model is

not performed.

 Node verification: Attribute values of each node should be checked for their correct values.

Through node verification, developers can check whether node software is properly designed such

that they satisfy the constraints imposed by the node type and the constraints imposed by the target

platform.

After model verification, the developer should generate configuration information for each node

before code generation, which is automatically generated from model information. The configuration

information stores attribute values which are set in Phase 2. And it is used to automatically generate

node software for each node.

4.5. Code Generation

Figure 4 presents the algorithm for generating software source codes of each node. Configuration

information is parsed in order to get the attribute values of a node and to select the operating system

components that are necessary to generate the software. According to the values of attributes, module

and execution code templates are selected from the Code Templates Repository and composed into the

node software.

Figure 4. The algorithm for generating node software.

READ the type of the target OS

FOR each node in the sensor network model

INIT template

READ configuration information

FOR each attribute in the configuration information

GET the value of the attribute

OBTAIN module code template according to the value

COMPUTE template = template + module code template

ENDFOR

GET the pattern of the main code

OBTAIN main code template according to the pattern

COMPUTE template = template + main code template

ENDFOR

Sensors 2010, 10

8671

In general, even when two nodes have the same node type, their software source codes may differ

from node to node because different components can be selected depending on the specific values of

their attributes.

5. Evaluation

We performed a case study in order to confirm the effectiveness of the proposed approach. In this

section, we apply the proposed technique to Gas and Light Monitoring System (G&LM System) based

on the Nano-Qplus operating system for home environmental monitoring and evaluated the result. A

variety of applications using gas sensor networks are developed for environmental and safety

monitoring [19,20]. A light sensing and actuation application [21] is a well-studied problem in the

home environment. Accordingly, we prototyped G&LM System for home environmental monitoring

as an application example.

Our sample application consists of nodes which have roles such as gas and light sensor, router, sink

and actuator. Sensor nodes sense gas and light data and transmit the sensing data to router nodes. The

router nodes receive the data and transmit it to the sink node. The sink node aggregates the data,

computes it, determines the action commands and transmits the commands to actuator nodes. The

actuator nodes perform the actions, that is, the gas valve and the light lamp operate according to the

actions. Figure 5 presents the structure of the G&LM System. The G&LM System is a simple

environmental monitoring system, but it has all kinds of sensor nodes which are necessary for a sensor

network. So, we think that it is possible to evaluate the proposed technique through the G&LM System.

Figure 5. Structure of the G&LM System.

Sensors 2010, 10

8672

Table 2. The list of attribues for the design of node software based on Nano-Qplus.

Attribute Description

Development

Attributes

nodeType Choose one type among Sensor, Router, Sink and Actuator.

applicationAuthorName Write information about application author.

nodeID Write identification number of node.

adjacentActuatorNodeID Write identification number of adjacent actuator node.

PAN_Cordinator_Node_Enable Decide whether the node is PAN coordinator.

NON_BEACON_Enable Decide whether the node uses BEACON.

defaultMACAddr Write MAC address.

Default_Extended_MAC_Addr_

Used
Decide whether the node uses extended MAC address.

defaultExtendedMACAddr

Write extended MAC address if the node uses extended MAC

address.

associationPermitStartNodeID
Write identification number of the first node which is permitted

to associate.

associationPermitEndNodeID
Write identification number of the last node which is permitted

to associate.

nextHopRoutingFirstNodeID Write identification of the next node in routing path.

nextHopRoutingSecondNodeID Write identification of the next alternative node in routing path.

rfChannel
Write RF channel. If nodeType is Router or Sink, rfChannel

should be set.

scanChannel
Write scan channel. If nodeType is Sensor or Actuator, scan

Channel should be set.

Function

Attributes

Scheduler Choose one among none, FIFO and PreemptionRR.

Zigbee RF Choose one among Simple, IEEE802.15.4MAC and StarMesh.

EEPROM_Enable Enable EEPROM module.

Flash_Memory_Enable Enable Flash Memory module.

Timer_Enable Enable timer module.

UART
Choose one among none, printf_module, scanf_module and

printf&scanf.

LED_Enable Enable LED module.

RSSI_Enable Enable RSSI module.

Sensor_Battery_Enable Enable Battery sensor module.

Sensor_Temperature_Enable Enable Temperature sensor module.

Sensor_Light_Enable Enable Light sensor module.

Sensor_Gas_Enable Enable Gas sensor module.

Sensor_Point_infra_red_Enable Enable Point_infra_red sensor module.

Sensor_Humidity_Enable Enable Humidity sensor module.

Sensor_Ultra_sonic_Enable Enable Ultra_sonic sensor module.

Utility_Functions_Enable Enable utility functions.

Kernel_Debug_Functions_Enable Enable kernel debug functions.

System_Log_Functions_Enable Enable system log functions.

Sensors 2010, 10

8673

In this paper, development framework is established first in order to develop an application for

G&LM system based on the Nano-Oplus OS. The development framework is established in the order

of attribute design, preparation of code templates and development of Development Tool.

Table 2 is the complete list of attributes made for model design of an application based on

the Nano-Qplus OS. When the values for the attributes in Table 2 are set, the code templates related to

the relevant attributes are selected and combined to generate node software.

Table 3 maps the OS module code files corresponding to each attribute in order to prepare module

code templates necessary to generate node software to be implemented under the Nano-Oplus OS.

Table 3. The list of module code provided by Nano-Qplus corresponding to attributes.

Attribute Module Code Files of Nano-Qplus

Timer_Enable timer.h, timer.c

ADC_Enable adc.h, adc.c

UART printf.h, printf.c, scanf.h, scanf.c

EEPROM_Enable eeprom.h, eeprom.c

LED_Enable led.h, led.c

Scheduler fifo.h, fifo.c, preemption-rr.h, preemption-rr.c

Zigbee_RF rf.h, rf.c, net.h, mac.c, routing-star-mesh.c

Flash_Memory_Enable flashmem.h, flashmem.c

Sensor_Battery_Enable adc_bat.h, adc_bat.c

Sensor_Temperature_Enable adc_temp.h, adc_temp.c

Sensor_Light_Enable adc_light.h, adc_light.c

Sensor_Gas_Enable adc_gas.h, adc_gas.c

Sensor_Point_infra_red_Enable adc_ir.h, adc_ir.c

Sensor_Humidity_Enable adc_humidity.h, adc_humidity.c

Sensor_Ultra_sonic_Enable adc_ultrasonic.h, adc_ultrasonic.c

Utility_Functions_Enable utils.h, utils.c

System_Log_Functions_Enable log.h, log.c

Table 4 shows module code templates and execution code templates drawn up for generation of

node software codes to be implemented under Nano-Oplus OS. Table 5 shows design of the table on

determination of reliance between templates necessary for combination of code templates for

generation of node software based on Nano-Oplus OS.

Sensors 2010, 10

8674

Table 4. Code templates for node software based on Nano-Qplus.

Template Type Template

Module

Code

Templates
Module code templates for

attributes without option

#include “.h file name of a module”

#ifdef module name

#include “.c file name of a module”

#endif

Module code templates for

attributes with option

#include “.h file name of a module”

#ifdef module name

#if defined.(name of option)

#include “.c file name of option”

#elif defined (name of option)

#include “.c file name of option”

#endif

…

#endif

Execution

Code

Templates

Codes

included

according to

selection of

the type of

RF module

SimpleZigbee
mlme_start_request(MY_MAC_ADDRESS,

rf_recv_data);

MAC Zigbee

mlme_ll_link_start(NULL, rf_recv_data);
StarMesh

Codes

included

according to

selection of

the type of

scheduler

FIFO (*start)((void *)0);

PreemptionRR

uint8_t int_handle;

int_handle = thread_disable_int();

thread_enable_ints(int_handle);

pthread_create(NULL, rf_recv_data);

start_threads();

Table 5. Table on determination of reliance between templates according to the role of node.

Role of Node Reliance between Code Templates

SENSOR startnet_schedulesense send

ROUTER start net_schedule receive send

ACTUATOR start net_schedule receive actuate

SINK start net_schedule receivecomputesend

Node software is generated by combining code templates in the order presented in Table 5

according to the role of node. The software code is generated based on the templates presented in

Table 4. The templates of Table 4 are generated from the module code files presented in Table 3.

Using the attributes presented in Table 2, module code files are selected and development information

is set to generate node software.

Sensors 2010, 10

8675

Figure 6 shows the result of G&LM System modeling using the tool to support application

development based on the Nano-Qplus operating system. It was implemented as a plug-in for an

Eclipse [15] platform and utilized the Eclipse Graphical Modeling Framework (GMF) [16] for the

modeling of the application. Through the tool, developers can perform modeling, design and code

generation of the application for the Nano-Qplus [14] operating system.

Figure 7 shows the result of commonality verification. Through the commonality verification, errors

for communication protocol and communication channel of a USN model were found. Figure 7(a)

shows four errors which were detected in commonality verification. Communication protocols of

actuator16, router5 and sensor10 nodes were not compatible because default MAC addresses of

actuator16, router5 and sensor10 nodes were set to wrong value. Communication channel of router 5

node was also not compatible because the RF channel of router 5 node was set to a wrong value.

Accordingly, default MAC addresses of actuator16, router5 and sensor10 nodes were set to proper

values. RF channel of router 5 node also was set to proper value in order to generate correct

application. After correcting wrong values, communication protocols and communication channels of

nodes were compatible [see Figure 7(b)].

Figure 6. G&LM System modeling using the development tool.

Sensors 2010, 10

8676

Figure 7. The result of commonality verification.

Figure 8 shows the result of association verification. Through the association verification, errors for

associations between nodes in a USN model were found. Figure 8(a) shows two errors which were

detected in the association verification. Figure 8(a) presents the mismatched associations. The

association between sensor18 node and router4 node was mismatched. The association between

router4 node and router2 node was also mismatched. Accordingly, the mismatched associations were

corrected. After correcting the mismatched associations, there were no errors in associations between

nodes [See Figure 8(b)]. That means routing path of the sensor network for light & gas monitoring

application is correct.

Figure 8. The result of association verification.

(a) Result of commonality verification before correcting errors

(b) Result of commonality verification after correcting errors

(a) Result of association verification before correcting errors (b) Result of association verification after correcting errors

Sensors 2010, 10

8677

Figure 9 shows the result of node verification for sink0 node. Through the node verification, errors

for each node in a USN model were found. Figure 9(a) shows two errors which were detected in node

verification for sink0 node. Sink0 node should be PAN coordinator and it should use timer module.

Accordingly, values of PAN_Cordinator_Node_Enable and Timer_Enable were set to „true‟ in order to

generate correct software codes for sink0 node. After correcting wrong values, all attribute values of

sink0 node were appropriate [see Figure 9(b)].

Figure 9. The result of node verification for sink0.

Figure 10 shows the automatically generated software codes for sink0 node. Sink0 node receives

values of gas and light sensed by the sensor node and compares them with threshold values. If it

determines on comparison that gas valve or light lamp needs to be operated, it transmits through router

node actuation command to actuator node connected to gas valve or light lamp. Figure 10 is part of

software codes implementing such operation, which shows module part that processes transmitted data

and execution code part.

In order to evaluate the efficacy of the proposed development approach, we developed the

application for G&LM System using two approaches and compared the results from the two

approaches. One approach is to develop the application using the proposed technique as you can see in

the previous sections. Another approach is to manually develop the application using a standard set of

APIs which are provided by the target operating system. We developed the application for G&LM

System based on the Nano-Qplus operating system version 1.5.x in two approaches. The evaluation

environment is as follows:

 Developer—Expert (Known about Nano-Qplus & USN concept)

 System—AMD Athlon XP 2600(CPU), 1Gbytes(RAM), Windows 2000

 Nano-Qplus Version—1.5.2e

(a) Result of node verification before correcting errors (b) Result of node verification after correcting errors

Sensors 2010, 10

8678

Figure 10. Generated source code for sink0.

We compared the memory size of execution code in the two cases. Table 6 presents the result of

comparison. The first one is the size of node software generated when toolkit is made by the presented

method and the application is established by using the toolkit. The second one is the size of node

software when the developer directly developed the application using APIs provided by the sensor

network OS without using the presented method. From the results presented in Table 6, we find that

the memory size of execution code is approximately the same in the two cases. That is, the execution

code produced by our approach is optimized. In our approach, the attributes are used to compose

modules or components of target operating system, so the execution code sizes are not increased.

#include "config.h"

#include "sig-qplusn.h"

...

#define TURN_ON_DEBUG

#ifdef STAR_MESH_ROUTE

BYTE NEXT_HOP_ROUTING_FIRST_NODE=5;

BYTE NEXT_HOP_ROUTING_SECOND_NODE=1;

#endif

...

void rf_recv_data(ADDRESS *srcAddr, INT8 nbyte, BYTE *data) {

route_t route;

BYTE *org_pkt=NULL, packet_type;

UINT8 i;

packet_type = (BYTE)(data[1]);

if (packet_type == SENSOR_DATA_PACKET) {

org_pkt = data;

}

else if (packet_type == INDIRECT_PACKET_TRANSMIT) {

i = decode_indirect_packet(data,&route);

org_pkt = &data[i];

}

nlde_node_incomming_data_indication(org_pkt);

}

....

int main(void) {

uint8_t int_handle;

int_handle = thread_disable_ints();

initialize_nano_resources();

thread_enable_ints(int_handle);

mlme_ll_link_start(NULL,rf_recv_data);

pthread_create(NULL,NULL,start,(void *)0);

start_threads();

return 0;

}

Sensors 2010, 10

8679

Table 6. The memory size of execution code.

Node Type The proposed approach
Manual development

approach

Sensor 102Kbytes 100Kbytes

Router 100Kbytes 99Kbytes

Sink 103Kbytes 101Kbytes

Actuator 101Kbytes 100Kbytes

6. Conclusions

The traditional techniques for generating sensor network applications are limited in that developers

must learn new abstraction mechanisms such as high-level language and APIs and most of the

approaches do not provide methods to verify models of applications. Moreover, a developer can

generate only one node software at a time in some approaches. To complement the existing techniques,

this paper proposed a programming technique that helps users construct a large number of node

softwares for sensor network applications easily and rapidly.

The suggestions in this paper can be divided into two—one that constitutes framework and the other

that develops the sensor network application. In the framework build, the method to construct

development kit on an attribute basis is proposed. The framework is constructed by professionals who

are well aware of the sensor network operating system. The framework provides the infrastructure so

that node software for sensor network application can be created automatically as in SNACK [6]. The

codes of sensor network operating system are modularized in the framework. Therefore, a new

template does not have to be added nor an existing template need be altered unless the operating

system codes are updated. This framework can be used continuously once constructed by the

professionals who know sensor network operating system well, unless the operating system is changed

for a new one.

In the section of sensor network application development, the method to develop node software for

sensor network application through attribute set-up is proposed so developers who do not know the

sensor network operating system can create applications easily. Developers who do not know

operating system code can easily develop sensor network applications because the node software is

created automatically through attribute set-up offered by framework. In other words, sensor network

applications can be developed much easier than with other existing techniques, as node software is

created only by attribute set-up on the basis of framework constructed by specialists, not by each

developer. This way is different from the existing techniques in which each developer must make

codes for the each node software. Of course, existing code is reusable in the techniques but if a node

with new function is added, a new code should be made accordingly. So, developers should be familiar

with code writing. However, if developers follow what we suggest in this paper, they just need to set

up the attribute value for the relevant node even if new nodes are added.

The development using attributes is the key technique that enables automated construction of node

software for USN application. The proposed technique has the following strengths:

Sensors 2010, 10

8680

 Using attributes, the developer can easily design applications without learning new abstraction

mechanisms.

 Since the technique generates code from sensor network model instead of models of node software,

a large number of node softwares can be generated at once. For example, if a developer designs a

model for a sensor network which consists of 50 nodes, node software for the 50 nodes can be

generated from the model at one time. Node software here refers to an image file in binary format

that can be installed in one node and can be composed of multiple source code files.

 The technique provides a method to verify the sensor network model so that developers can verify

models of applications in terms of commonality verification, association verification and node

verification.

Table 7 shows the result of comparison and evaluation between the method presented in this paper

and the existing USN application development methods mentioned in relevant studies. As seen in the

Table, the method presented in this paper has the advantages of design facilitation and generation of

more accurate applications as well as all the advantages of the existing methods. As future research

directions, we plan to extend the scope of the verification aspects that can be checked by our

verification module and also plan to build Model Simulator for strengthened verification and validation

of sensor network models based on formal approaches.

Table 7. Comparison of the techniques for USN application development.

Our

approach
Regiment Kairos SNACK SPIDEY

TinyGA

LS
ATaG

Programming

level

Network-

level

Network-

level

Network-

level

Node-

level

Network-

level

Node-

level

Network-

level

Design

method
AVS WP WP WP WP DM WP

Model

verification
Support

Not

Support

Not

Support

Not

Support

Not

Support

Not

Support

Not

Support

Model

validation
Support Uncertain Uncertain Support Uncertain Support Support

Code

generation

method

Auto Auto Auto Auto Auto Auto Auto

No. of node

software

generated

from model

multiple multiple multiple multiple multiple single multiple

Convenience

of design
H M M M M MH M

Accuracy of

application
MH M M M M M M

*WP: write program using high-level language or script; DM: detailed model design;

AVS: attribute value setting; Auto: automatically; M: medium; MH: medium-high; H: high.

Sensors 2010, 10

8681

Acknowledgments

This research was supported by the MKE (The Ministry of Knowledge Economy), Korea, under the

national HRD support program for convergence information technology supervised by the NIPA

(National IT Industry Promotion Agency; NIPA-2010-C6150-1001-0013).

References

1. Akyildiz, I.F.; Su, W.L.; Sankarasubramaniam, Y; Cayirci, E. A survey on sensor networks. IEEE

Commun. Mag. 2002, 40, 102-114.

2. Chong, C.Y.; Kumar, S.P. Sensor networks: Evolution, opportunities and challenges. IEEE 2003,

91, 1247-1256.

3. Fukunaga, S.; Tagawa, T.; Fukui, K.; Tanimoto, K.; Kanno, H. Development of ubiquitous sensor

network. Oki Tekunikaru Rebyu 2004, 71, 24-29.

4. Newton, R.; Welsh, M. Region streams: Functional macroprogramming for sensor networks. In

Proceedings of the First Workshop on Data Management for Sensor Networks, Toronto, ON,

Canada, August 2004; pp. 78-87.

5. Gummadi, R.; Gnawali, O.; Govindan, R. Macro-programming wireless sensor networks using

Kairos. In Proceedings of the 1st International Conference on Distributed Computing in Sensor

Systems, Marina del Rey, CA, USA, June 30-July 1; 2005; pp. 126-140.

6. Greenstein, B.; Kohler, E.; Estrin, D. A sensor network application construction kit (SNACK). In

Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems,

Baltimore, MD, USA, November 2004; pp. 69-80.

7. Mottola, L.; Picco, G.P. Logical Neighborhoods: A Programming Abstraction for Wireless Sensor

Networks. In Proceedings of the 2006 International Conference on Distributed Computing in

Sensor Systems, San Francisco, CA, USA, June 2006; pp. 150-168.

8. Cheong, E.; Liebman, J; Liu, J; Zhao, F. Tinygals: A programming model for event-driven

embedded systems. In Proceedings of the 18th Annual ACM Symposium on Applied Computing,

Melbourne, FL, USA, March 2003; pp. 698-704.

9. Bakshi, A.; Prasanna, V.K.; Reich, J.; Larner, D. The abstract task graph: A methodology for

architecture-independent programming of networked sensor systems. In Proceedings of the 2005

Workshop End-to-end, Sense-and-Respond Systems, Applications and Services, Seattle, WA, USA,

June 2005; pp. 19-24.

10. Pathak, A.; Mottola, L.; Bakshi, A.; Prasanna, V.K.; Picco, G.P. Expressing Sensor Network

Interaction Patterns using Data-Driven Macroprogramming. In Proceedings of the 5th IEEE

International Conference on Pervasive Computing and Communications Workshops, White Plains,

NY, USA, March 2007; pp. 255-260.

11. Pathak, A.; Mottola, L.; Bakshi, A.; Prasanna, V.K.; Picco, G.P. A compilation framework for

macroprogramming networked sensors. In Proceedings of the 3rd International Conference on

Distributed Computing in Sensor Systems, Santa Fe, NM, USA, June 2007; pp. 189-204.

12. LabVIEW. Available online: http:// www.ni.com/pdf/products/us/2005-5554-821-101-LO.pdf/

(accessed on 20 August 2010).

Sensors 2010, 10

8682

13. RTDS. Available online: http://www.pragmadev.com/index2.html/(accessed on 20 August 2010).

14. Lee, K.; Shin, Y.; Choi, H.; Park, S. A Design of Sensor Network System based on Scalable &

ReconFigureurable Nano-OS Platform. In Proceedings of IT Soc. Seoul, Korea, October 2004;

pp. 344-347.

15. Moore, B.; Dean, D.; Gerber, A.; Wagenknecht, G.; Vanderheyden, P. Eclipse Development

Using the Graphical Editing Framework and the Eclipse Modeling Framework; IBM Corporation:

Armonk, NY, USA, 2004.

16. GMF. Available online: http://wiki.eclipse.org/index.php/GMF_Tutorial/(accessed on 20 August

2010).

17. Booch, G.; Rumbaugh, J.; Jacobson, I. The Unified Modeling Language User Guide.

Addison-Wesley: Boston, MA, USA, 1998.

18. Carson, J.S., II. Model Verification and Validation. In Proceedings of the 34th conference on

Winter simulation: exploring new frontiers, San Diego, CA, USA, December 2002; pp. 52-58.

19. Maeng, S.; Guha, P.; Udrea, F.; Ali, S.Z.; Santra, S.; Gardner, J.; Park, J.; Kim, S.H.; Moon, S.E.;

Park, K.H.; Kim, J.D.; Choi, Y.; Milne, W.I. SOI CMOS-Based smart gas sensor system for

ubiquitous sensor networks. ETRI. J. 2008, 30, 516-525.

20. Tsujita, W.; Ishida, H.; Moriizumi, T. Dynamic Gas Sensor Network for Air Pollution Monitoring

and Its Auto-Calibration. In Proceedings of the IEEE Sensors Conference, Vienna, Austria,

October 2004; pp. 56-59.

21. Li, S.F. Wireless sensor actuator network for light monitoring and control application. In

Proceedings of the IEEE Consumer Communications and Networking. Las Vegas, NV, USA,

January 2006; pp. 974-978.

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

