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Abstract: In a network of low-powered wireless sensors, it is essential to capture as many
environmental events as possible while still preserving the battery life of the sensor node.
This paper focuses on a real-time learning algorithm to extend the lifetime of a sensor
node to sense and transmit environmental events. A common method that is generally
adopted in ad-hoc sensor networks is to periodically put the sensor nodes to sleep. The
purpose of the learning algorithm is to couple the sensor’s sleeping behavior to the natural
statistics of the environment hence that it can be in optimal harmony with changes in the
environment, the sensors can sleep when steady environment and stay awake when turbulent
environment. This paper presents theoretical and experimental validation of a reward based
learning algorithm that can be implemented on an embedded sensor. The key contribution of
the proposed approach is the design and implementation of a reward function that satisfies
a trade-off between the above two mutually contradicting objectives, and a linear critic
function to approximate the discounted sum of future rewards in order to perform policy
learning.
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1. Introduction

A sensor network is a network of spatially distributed sensing devices used to monitor environmental
conditions (such as, temperature, sound, vibration, pressure, etc.) over a vast geographic area.
Due to the tiny and inexpensive nature of construction, and due to low-power, low memory and
low computational resources, these sensing devices are produced and deployed in large numbers.
Various research problems of sensor networks such as data aggregation or fusion [1,2], packet size
optimization [3], cluster formation [4,5], target localization [6], battery management [7], network
protocols [8–10] are discussed in the literature with respect to crucial energy limitations. Efficient battery
management for sensor lifetime [7] and guidelines for efficient and reliable sensor network design is
investigated in [11]. A sensor node in an ad-hoc network can contribute to the network as long as its
on-board power survives. It is known that almost 60% of the power is wasted on staying awake to
communicate with other nodes [7]. However, if there are environment events that occur when the sensor
nodes are not awake, the sensor does not transmit any new information. Let us consider a wireless
sensor network of N sensor nodes. If each sensor is in the ON state, energy consumption is given by
E =

∑N
i=1 TiPi where Ti is the period of time and Pi is the power. In a general ON−OFF cycle, the

sensor will do the following:
1. Sleep − shut down the power to all circuits except the clock
2. Wake up − supply power to all circuits
3. Read sensory information through the relevant ports. Ex. Analog to Digital conversion (ADC) port
4. Communicate the data to a remote node
5. Go back to sleep.

Environmental events that are random in nature (such as a tremor), require continuous sensing.
If a sensor node deterministically sleeps, then it could miss critical events during the sleep period.
However, time spent awake by the sensor, does not guarantee a random event in the environment—which
drastically drains the on-board power of the sensor. Therefore, compromising the two conflicting
objectives of staying awake to increase the probability of capturing critical information and conserving
limited on-board energy to prolong the service time is generally a challenging task. Assume a sensor
node is required to choose an optimum strategy of sleeping to preserve on-board power as long as
possible while maximizing the chances of capturing important changes in the environment. Since the
desired behavior is not known, the sensor can learn based on rewards and punishments in a reinforcement
based learning paradigm [12]. First we design a reward function to assess the suitability of the
sleep/awake cycles of the sensor. The paper is organized as follows. In Section 2, we predict future
rewards using Markov Decision Process and in Section 3, we describe enhanced critic function. In
Section 4, we obtain error estimation of offline critic function and outlines numerical and experimental
results where we demonstrate the benefit of our new reward function and Section 5 concludes the paper.

2. Prediction of Future Rewards using Markov Decision Process

Markov decision process (MDP) is a stochastic process and is defined by the conditional
probabilities [13]. This presents a mathematical outline for modeling decision-making where results are
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partly random and partly under the control of a decision maker. Broad ranges of optimization problems
are solved using MDPs via dynamic programming and reinforcement learning [14]. In our work we use
a reinforcement learning method.

When quantified supervisory feedback is unavailable, reward based or reinforcement based machine
learning technique has proven to be an effective method [12,15–17]. The method is inspired by
mathematical properties of the relationship between firing patterns of Dophamine neurons in the Basal
Gangia and the timing of actions and external rewards or punishments to learn behaviors through ones
own interaction with the environment [18–20]. However, it has been a long drawn out quest to find
methods to design mathematical reward functions that are best suited to learn a given behavior [21–23].
In many cases, machines have to learn behaviors that satisfy an array of objectives sometimes with
conflicting interests [23]. We encounter the problem in this application, where a sensor node is required
to meet two conflicting objectives—one is to gather as much as information from the environment as
possible, and the other is to survive as long as possible with limited on-board energy. Consider a sensor
node to capture ambient temperature changes. We can take the ratio between the battery voltage at a
given time and that at full charge given by Wk/Wmax as a measure of the risk of losing functionality
due to battery drainage. Therefore, lower values of this ratio should reduce the reward level assigned
for capturing new information. The reward assigned for capturing new information should increase with
the increasing difference of measured temperature ∆T = |Ti+1 − Ti| between two consecutive waking
up times (i, i + 1). However, the reward should also increase if new information is captured by staying
awake for bellow average lengths of time. Therefore the sleeping behavior can be quantified by the
ratio between the current sleep time and the average sleep time defined by the user given by Slt/Slave.
Combining the above requirements of on-board energy conservation and gathering new information, the
reward function r(k) can be formulated as shown in Equation (1).

r(k) =

(
W (k)

Wmax

)(
Sl(k)

Slave

)ξ|Tk−Tk−1|

(1)

where W (k) and Wmax are battery voltage at time k and maximum battery level, Sl(k) and Slave

are sensor sleep time at time k and average sleep time and ξ is a scalar parameter. Here we assume
a battery where the open circuit voltage reflects the useful energy level. However in any other
case, a measurable variable that represents the useful energy level can be used here. According to
Equation (1), if the on-board energy level drops (drop of W (k)/Wmax), the only way to obtain higher
rewards is to go for an above average sleeping strategy so that it still captures significant temperature
changes (∆T = |Tk −Tk−1|) in the environment between two consecutive wake-up instances. However,
this reward function cannot achieve a long term optimality of the sleeping behavior of the sensor.
Therefore, we should design a critic function that estimates the total future rewards generated by the
above reward function for an agent following a particular policy. The total expected future rewards V̂ (t)

given by

V̂ (t) =
∞∑

k=0

γkr(t + k) which can be expanded to give

V̂ (t) = r(t) +
∞∑

k=1

γkr(t + k),
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= r(t) + γ
∞∑

k=0

γkr(t + k),

= r(t) + γV̂ (t)(t + k) (2)

Equation (2) holds true only if the prediction function V̂ (t) is accurate. If not V̂ (t) ̸= r(t)+γV̂ (t+1).
This prediction error as a temporal difference (TD) is given by ∆ = (r(t)+ γV̂ (t+1))− V̂ (t) as shown
in Figure 1.

Figure 1. Temporal difference based learning to predict.

β =

 reward accurate if V̂ (t) = r(t) + γV̂ (t + 1)

reward not accurate if V̂ (t) ̸= r(t) + γV̂ (t + 1)

An optimum value function can be learnt by updating the internal parameters of the function to
minimize the temporal difference error ∆. Since ∆ is a known quantity, learning the value functions
are strictly a supervised learning mechanism. However, it learns how a qualitative reward function
behaves with states and actions. It should be noted that the ability to predict is an essential ingredient
of intelligence because it allows us to explore for better behavioral policies without waiting for the final
outcome. When a human baby learns to do various things like walking, jumping, cycling, etc., the
parents often use their experience to predict the outcome of their actions. This helps the child to learn till
he builds up his own internal models of the world to predict the outcomes of his actions. This internal or
external predictor is commonly known as a critic. The job of the critic is to estimate the value function
V̂ (t). Now let us discuss how a critic can help an agent to learn an optimum policy.

Assume a critic function has learnt to predict total expected future rewards at any given state using
a temporal difference based learning scheme. Figure 2 shows how a critic can be used to evolve an
optimum controller or a policy. In this case the action space is a continuous one. We start with a
particular situation. In our terms a situation can be simplified to a Markov state. Given this state, the
trained critic predicts the total expected future rewards known as the value of the state V (t). On the
other hand, the policy can take an action . For the time being, we do not know if this action u(t) is the
best one to take given the current state. Therefore, we add a normal distributed exploratory disturbance
N(0, σ) the action, where σ is the width of the distribution. Since this distribution is centered at the
origin, the disturbance can increase or decrease the value of the action. If it is a robot, the action is
the torque/force commands to the actuators. Once this modified action is fed to the actuators, the robot
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enacts a behavior that interacts with the environment. The resulting new situation can be characterized
by a new Markov state. If we feed this new state to the same critic, it should give us the expected total
future rewards from the next point of time denoted by V (t + 1). Since we obtain a real reward value at
this point, we can compute a temporal difference of prediction induced by the disturbance. We denote
this by ∆dist = (r(t) + γV̂ (t + 1)) − V̂ (t). It should be noted that we assume that the critic is well
trained so that this temporal difference of prediction would be zero if the disturbance was not given.

Figure 2. Actor−critic based learning: using the ability to predict to improve the behaviors
(control policy). Here is a sleeping policy of the sensor node.

If ∆dist is a positive value, that means the modified action and the new state has been better than what
was expected when the critic predicted V (t). This will be true if and only if (r(t) + γV (t + 1)) > V̂ (t).
This implies that the controller or the policy should change its internal functionality to be one that would
produce an action closer to the modified action given the state S(t). Here state S(t) is the average change
of temperature detected by the sensor during an awake cycle. If the modified action was detrimental in
the eyes of the reward function, this would be reflected by a negative ∆dist. In that case, the policy should
try to move away from generating an action in the direction of the modified action given the state S(t).
This can be seen in Figure 2.

Figure 3. How the temporal difference can be used to improve the policy. Here
u(t) = π(s(t)).

∆dist > 0 S(t) → π
′
(s(t)) → π(s(t)) + η(u

′
(t)) − π(s(t))

∆dist < 0 S(t) → π
′
(s(t)) → π(s(t)) − η(u

′
(t)) − π(s(t))
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where η is a scaler. According to Figure 3, the policy updating rule can be generalized as given by
π

′
= π + η∆dist(u

′
(t) − u(t)).

Simplification−1

Let us have a closer look at the actual function that the critic is trying to estimate. Ideally the total
expected future rewards is given by

V (k) =
∞∑

m=0

γmr(k + m), γ = 0.6. (3)

The choice of a value for γ depends on the user’s prior expectation of the uncertainty of the
environment. Lower the value, the shorter the effective span of future rewards that will be accounted
for in the computation of the total expected future rewards V (k). Here we choose γ = 0.6. We
observe that γ1 = 0.6, γ2 = 3.6, γ3 = 0.216, γ4 = 0.126, γ5 = 0.077, γ6 = 0.046.This implies
that any future reward value beyond the sixth time step will be discounted by less than 4%. Therefore,
we can reasonably assume that we take only those future reward values upto the sixth time step. This
reduces the complexity of estimating the critic function. However, this assumption depends on the
uncertainty of the environment which is reflected in the value of the discounting factor. If discounting
factor γ = 0, then the learning agent is extremely uncertain about the future so that it does not even dare
to predict what will happen in the next time step. If the environment is quite predictable, the value of γ

approaches 1.

3. Enhanced Critic Function

Here we investigate the possibility of developing an autoregressive function to estimate V (k) given
by, where V̂ (k) = ϕT (k)θ(k), where ϕ(k) = [r(k) r(k − 1) · · · r(k − N + 1)]T is a vector of past
rewards, and θ(k) is a vector of scalar parameters of the same size as ϕ(k). Due to the limitation of
computational resources available for the embedded sensor to estimate the critic function, we choose to
train the critic off-line. In order to do that, we can take a series of training data in different environmental
conditions. Figure 4 shows how this prediction mechanism works. The polynomial function predicts the
total expected discounted sum of future rewards at time t = k using the past rewards. Then we take
six data points from t = k to calculate the actual value function for γ = 0.6. It should be kept in
mind that this can be done because we are training the critic off-line using batches of data obtained
from experiments. Therefore the prediction error is given by ϵ = V (k) − V̂ (k). Here, we assume
that the nonlinear dynamic behavior of the sensor and the environment can be approximated by a linear
combination of the non-linear static reward functions. The importance of this assumption is that the
simplified linear dynamic regression function can be easily implemented on an embedded sensor with
limited processing and memory capacity because it only requires remembering a short array of past
reward values and a similar number of polynomial parameters.
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Figure 4. The structure of the polynomial critic function.

4. Error Estimation of Offline Critic Function

The following recursive least squares algorithm is used to optimize the polynomial parameter vector
θ(k).

θ(k) = θ(k − 1) + P (k)ϕ(k − 1)[V (k) − ϕ(k − 1)T θ(k − 1)] (4)

P (k) = P (k − 1) − P (k − 1)ϕ(k − 1)[1 + ϕ(k − 1)T P (k − 1)ϕ(k − 1)]−1ϕ(k − 1)T P (k − 1)

P (k) ∈ RN×N

The above least squares estimation algorithm was run for different orders of the polynomial from 2
to 7. We observe that the total estimation error across all data sets behaved for different orders of the
polynomial. Based on the simulation results and experimentations, it was noted that order 4 polynomial
is best suited with a minimum average estimation error ϵ =

∑T
k=1 ||(V (k)− V̂ (k))||, where T is the total

time span.

4.1. Experimental Validation of the Critic

Figure 5 shows a typical scenario used to train the critic, where sleep time and temperature were
changed and data were obtained when the battery voltage was dropping as in [24]. Figure 5 is helpful in
evaluating the quality of our reward function. It can be seen that the reward increases when the sensor
detects a high temperature difference with a high sleep time. This means that the sensor is awake to
capture an important event, thanks to an adaptive sleeping strategy. Similarly, the reward is low with
temperature changes when the battery voltage is low. Once the critic is trained, we program the sensor
to keep the polynomial equation to estimate the total expected future rewards for a chosen sleeping
strategy. In the real-world implementation, the sensor will calculate the critic value for several different
sleep times after every four sampling time steps. It will implement the sleep time that gives the best
critic output. All experiments were performed on a MTS400CA embedded board with 128 kb memory
and 16 MHz processing speed show in Figure 6.
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Figure 5. Evaluations of reward and critic.

Figure 6. Implementation of reinforcement learning on sensors in an outdoor environment,
by using MTS400 CA embedded board with external antenna.
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Table 1. The comparison of performance with and without the critic based adaptive sleeping
behavior.

Time Number of Transmitted Packet

With Critic Without Critic

0 0 0

50 100 600

100 120 1200

150 200 1850

200 260 2500

250 310 3100

300 400 3750

4.2. Extension to Clusters of Sensor Nodes with a Simplified Real-Time Markov Decision Making
Process

With critic loaded on the sensor node, a 10 times reduction in the number of packets transmitted was
achieved with a very few misses in registering the events. The events registered (i.e., temperature reading
captured) with and without critic is observed. The number of transmitted packets with and without critic
running on sensor node is as shown in Table 1.We examine, there are only few temperature differences
missed by using adaptive sleep time. Whenever there is a change in temperature registered, the sleep
time is automatically decreased so as to capture the change with a finer resolution. In a general case,
this can be thought of as sensor adaptively waking up based on the environmental changes in order to
localize the events.

4.3. Real-Time Decision Making in Clusters of Sensor Nodes

We further simplify the Markov decision making process and extend the real-time learning algorithm
to a cluster of sensors that can choose the most optimum one out of several possible sleep strategies.

Initialize variables:

Vi is the discounted sum of past rewards for the ith sleeping strategy, γ is the discounting factor, Ri is
the reward assigned to the ith sleeping strategy Si.

Step-1: Use the measurements obtained during an awake cycle to compute the reward for the chosen
sleep strategy Si. The reward is given by R = I(E/Emax), where I is the total information gathered
during the awake period, E is the remaining on-board energy, and Emax is the energy at full charge.
The gathered information I is the mean unsigned temperature change detected by the sensor. Therefore,
given an energy level a sensor receives higher reward if it matches awake time to suit the statistics of the
environment. We achieve a compromise between the two conflicting objectives of preserving on-board
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energy by sleeping on one hand and to gather as much information as possible by staying awake on the
other, by taking the product of the two quantities I and (E/Emax).

Step-2: Compute the discounted sum of rewards for all possible sleeping strategies given by
Vi = Viγ + Ri.

Step-3: Share locally Vi computed values among all sensor nodes in a local cluster at any given time.
Use Roulette wheel selection strategy to choose a sleeping strategy at the node level.

Step-4: Use a 10% probability to make a deviation from the chosen sleeping strategy to the next
best strategy at a sensor node level. Therefore, different nodes may make different deviations from the
optimal solution for the cluster.

Step-5: Go to Step-1.
Our purpose here is to achieve the reward function defined by the following multiple objective

unconstrained optimization problem:

max
k∈K

(1 − α)R(k) − αϵ(k),

where K is define the set of all possible time, K = {ki|0 < i ≤ ∂E
∂Pi

} and α ∈ [0, 1] the weight factor
designates the relative significance of the two objectives R(k) and ϵ(k).

4.4. Simulation Results for a Cluster of Three Sensor Nodes

We performed simulations for three sensor nodes that can adaptively choose from three different
strategies of sleeping duty cycles given by [10%, 50%, 100%]. In order to test the ability of the
learning strategy to adapt itself under changing environmental conditions, we use a sinusoidal ambient
temperature profile that changes its frequency over time, given by θ = 2+sin(2πf(n)nT ), f = n/KN ,
n = 1, 2, 3, · · · , N , where θ is the ambient temperature, T is the sampling interval, n is the sampling step,
N is the total number of samples, and K = 10 is a constant. Apparently, the ambient temperature in this
case starts at a high frequency sinusoidal pattern, and gradually progress to a low frequency sinusoidal
pattern. Therefore, a learning sensor node should be able to change the duty cycle of sleeping to suit the
rate of change of ambient temperature—low sleeping duty cycle at low frequencies and high sleeping
duty cycle at high frequencies of ambient temperature. Each sensor node lost a fixed amount of energy in
every awake sampling step so that if the nodes stay awake throughout the N sampling steps, they would
lose all on-board energy.

Figure 7 shows the simulation results for 100 trials of three sensor nodes staying a span of 250
seconds in each trial to detect as much changes in the ambient temperature as possible by learning to
optimize sleeping behavior to retain as much on-board energy as possible. Figure 7(a) shows the ambient
temperature profile that monotonically increases the frequency of sinusoidal fluctuations. Figure 7(b)
shows the probability of using each sleep strategy (10%, 50%, and 100%) at any given time across the
100 trials. It should be noted in Figure 7(b) that 100% awake cycles have been chosen more often in
the early stages (< 50 seconds). However, when the on-board energy drops (Figure 7(d)) the sensors
have chosen to fall down to 50% and 10% awake cycles more often especially between 100−130 second
interval. The blue line approaching zero in Figure 7(d) confirms that the sensors would have lost all
on-board energy had they chosen 100% awake policy all the time. The other lines show how the
sensors preserved on-board energy by optimal selection of sleeping strategies. However, it should be
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noted that the sensors have explored the viability of both 100% awake cycles in this period with more
tendency to choose the former. This exploration has been more vigorous around 150 second where the
sensors experienced a drop of on-board energy closer to (62 +/− 12)% of their original on-board energy.
Towards the latter part (200 seconds) all sensors had preferred 10% awake policy that helped all sensors
to lower the rate of loss of on-board energy (Figure 7(d)). What is important to note here is that sensors
had not abandoned the explorative behavior even after taking the energy management under control.
They have explored all policies after 210 seconds to capture more information in the rapidly changing
environment. This is reflected in the fact that all three sensors have increased the average information
captured as shown in Figure 7(c).

Figure 7. Adaptive behavior of a cluster of sensor nodes following a Markov decision
process in a stochastic environment.

The above intelligent behavior emerged in a cluster of three sensors that used Markov decision process
with a simple reward function that combined the two contradicting needs—to gather as much information
as possible and to preserve as much on-board energy as possible—of a typical stand-alone sensor node.
According to this approach, a cluster will have a general tendency to select the sleeping strategy that
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has accumulated the largest discounted sum of rewards. However, the explorative moves will enable the
sensors to keep a track of the changing level of optimality of other strategies in a stochastic environment.
Therefore, the Markov decision making strategy can automatically adapt to suit the statistics of the
environment.

5. Conclusion

Real-time learning algorithm is developed to extend the lifetime of a sensor node to sense and transmit
environmental events. The purpose of our new learning algorithm is to couple the sensor’s sleeping
behavior to the natural statistics of the environment therefore it can be in optimal synchronization with
changes in the environment by sleeping with steady environment and staying awake when turbulent
environment. Theoretical and experimental validation of a reward based learning algorithm that can be
implemented on an embedded sensor is presented. Our results show the inclusion of proposed learning
algorithm is significantly more effective to preserve sensor on-board energy by optimal selection of
sleeping strategies.

We have presented results for a network of three sensor nodes. However, the method can be extended
to a generic N number of nodes. However, in that case, the algorithm will accurately reflect distributed
phenomena in the environment if local clusters were formed to respond to local changes in the measured
variables (temperature in this case). An optimal strategy to form such clusters should be based on the
statistics of the environment, and is outside the scope of this paper. This paper discusses how such a
local cluster would perform when the variation of the temperature increases its frequency over a 250

second time span. However, it can be readily extended to any time span because the in-built forgetting
mechanism—through discounting past rewards—maintains the timeliness of the optimality of the cluster.
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