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Abstract: This paper presents a model-based approach for recomnsty\B polyhedral
building models from aerial images. The proposed approxgho#s some geometric
and photometric properties resulting from the perspegtiggection of planar structures.
Data are provided by calibrated aerial images. The novditthe approach lies in its
featurelessness and in its use of direct optimization basennage rawbrightness. The
proposed framework avoids feature extraction and matchifige 3D polyhedral model
is directly estimated by optimizing an objective functidrat combines an image-based
dissimilarity measure and a gradient score over sever@laerages. The optimization
process is carried out by the Differential Evolution alfom. The proposed approach is
intended to provide more accurate 3D reconstruction thatufe-based approaches. Fast
3D model rectification and updating can take advantage optbposed method. Several
results and evaluations of performance from real and syiotimeages show the feasibility
and robustness of the proposed approach.
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1. Introduction and Motivation

In the two past decades, the cartographic field has evolgedfisantly; mainly in order to provide a
digital and 3D geometric description of urban environmém@&ddition to 2D conventional paper urban
maps. More precisely, some active work in the photogrammet@mote sensing and computer vision
communities is focused on the 3D building modeling appreacd$ince the buildings constitute urban
objects of great interest for the 3D city modeling. The 3Diding modeling approaches are more and
more developed due to the increasing needs of institutianelindustrial applications in the civil and
military contexts. The visualization of urban environneef®.g., virtual tourism), the urban planning, the
site recognition (military applications) or the conseiwatof architectural work (cultural heritage) are
some of the many applications requiring 3D building modgkpproaches. For these reasons, several
approaches are proposed across the literature and prowckaonless accurate, detailed and adapted
3D building models according to the targeted applicaticd@kbally, the proposed approaches tend to
produce 3D building models with a quality closer to the pbgkreality. The prior knowledge of the
urban areas under study (e.qg., cities topology, enviromhemsities, shape complexity, existing surveys,
urban GIS databases) and the remotely sensed rawdataedlége very rich sources of information that
can be used to develop sophisticated building modelingcgmres. The 3D building reconstruction is
a complex task due to the diversity of building shapes (arghitectural and contemporary buildings).
The building facades usually have some microstructures, (@indows, doors) and the building roofs
present some superstructures (e.g., chimneys, attic ws)dd he representations of 3D building models
can thus be divided into three main categories (see Fifjure

Figure 1. Examples of generic model representations. Three illtistra of the same
building with different level of details (from low to high).

(a) Prismatic model. (b) Simple polyhedrafc) Complex polyhedral
model. model.

The complexity of 3D building models can be planimetric (gd&x polygonal ground footprint) as
well as altimetric (e.g., heights variation). Aerial date &ery useful for the coverage of large areas
such as cities. In the literature, several aerial or stgaliata-based approaches are proposed to extract
3D prismatic and polyhedral building models. The data ugwahployed as input to these approaches
are either optical aerial or satellite images, aerial celbtg Digital Surface Model (DSM) or aerial 3D
point clouds such as aerial LIDAR data (Light Detection ArahBing data). Some data samples usually
employed are shown in Figuie
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Figure 2. The upper part of this figure illustrates an example of 3Ddnd modeling
process using a DSM. The middle part of this figure shows integed feature extraction
and assembly. The lower part shows our proposed direct aatdrédess image-based
approach. Figur@(c) is retrieved from I]. Figures2(e), 2(f), 2(g) and2(h) are retrieved
from [3].

3D building modeling using DSMs

i ; \ J\,
(a) High resolutionb) Generated 3D poir(t) Extracted 3D roofd) 3D building model
aerial image (overviewgloud (e.g., DSM). planes from DSM. (simulated example).

3D building modeling using extracted 2D and 3D features

(e) Targeted buildingf) Extracted 2D(g) Extracted 3D roof(h) 3D building model.
(aerial image). corners. corners.

3D building modeling using our proposed featureless aproa

(i) Targeted building(j) 3D building model.
(aerial image).

Figure 2 (Top) illustrates the building modeling using Digital Sacé Models. Figur@ (Middle)
illustrates the building modeling using reconstructedngewical features (e.g., 2D vertices and lines).
Figure2 (Bottom) illustrates our proposed featureless approach.

The flowchart of the two first strategies (image-based bugjanodeling) is illustrated in Figur& In
the first strategy, a DSM is generated or directly employedas (e.g., 8]). An example of a very dense
aerial DSM is shown in Figurg(b). The succeeding stages consist of the use of the DSM asmeéefer
the extraction of high level geometric features (e.g., 3gnsents or 3D planes). The extracted features
are finally assembled into a polyhedral building model usiagous optimization methods. However,
these successive estimation stages inevitably introduoe snaccuracies that propagate from one stage
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to the next, which can affect the final 3D model. If these in@acies are large enough, then, one can
note, that the obtained shape can be erroneous (e.g., sgedd() and4(b)). In the second strategy,
geometrical features are extracted from aerial images, @Xsegments, junctions, corners, lines) and
then converted into 3D features. The final polyhedral mosiéhén estimated using these 3D features
(e.g., Figure2(g)). As in the first strategy, the extraction and matching stagevitably affect the
accuracy of the final 3D model2] and [3] are well-know references in the literature which respety
illustrate the two strategies described above.

Figure 3. Flowchart diagram currently adopted by some image-basédity modeling
approaches. The diagram presents two paths conducting pmBBedral building models.
These two paths are illustrated by the first two rows of Figlre

Calibrated aerial images

Focusing stage

Urban knowledge (Area of interest)

DSM generation Image feature extraction
_______________ (3D points cloud) (e.g., 2D segments, 2D junctions)
! Hypothesis generation . ___ _ _‘ _________ .
i and verification ]
__________ Geometrical features extraction i
(e.g., 3D segments, 3D planes) (gBt%Bste%%Lgﬁtséc 85"8{5,'1%%)

Features assembly Successive estimation stages

S ST e s

3D building model

Figure 4. Some erroneous reconstructed buildings resulting fromavknfeature-based
framework for massive building reconstruction (BAID® prototype software—a large
scale building modeling pipeline developed at the FrenctidNal Geographical Agency).
The estimated 3D models are projected onto the image or DSM.

HETEk.
(a) Four modeled facets versus three for he Two modeled facets versus three for the
real building. real building.

The 3D building reconstruction of a full urban environmeadjuires automatic or semi-automatic
methods. The massive reconstruction approaches usuafiipgra feature extraction stage. However,
this stage is very sensitive since it can induce some mide&zgttions, false alarms, under-detections or
over-detections. To control these effects, the 3D buildnmgleling approaches employ computer vision
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strategies. These strategies are regrouped into two ganadiMore precisely, the first paradigm is a
bottoms-up scheme and consists in the assembly of georfedtiores without pre-existing knowledge
of the sought model. The second paradigm, called top-doxpipis a library of models and searches
the model that best fits with the input data (images, DSMs).

As previously mentioned, several approaches for 3D reoactsdtn of polyhedral building models
currently employ as input Digital Surface Models (see Fegeifb)). The classical DSMs are usually
generated from calibrated aerial images by a multi-catimebased optimization process such as the
graph cut optimization. The DSMs (derived data) are gelyerahps comprising only one value of
altitude = for each ground locatioiir,y). These 2.5D maps can be considered as special 3D point
clouds. However, the obtained 3D surface does not accyratetlel the physical surface especially
at height discontinuities such as at roof and superstredtoundaries due to the correlation criterion
used. Hence, the DSMs provide an approximated geometrsakightion of building surfaces and can
be noisy. Other modeling approaches employ multi-sourt®, dar example optical images combined
with LIDAR data (e.g., 16]). Although less dense, LIDAR data can be employed in pldcBSMs
since they are both accurate (e.§-13)).

Paper Contribution

In this paper, we propose a direct and featureless approathef extraction of 3D simple polyhedral
building models from aerial images (Figu2é)). The novelty of our approach consists in the usage of a
genetic optimizer which bypasses all the intermediaryreiion/extraction stages previously mentioned.
First results of our approach were presented at the MVA ant/A@onferences, respectively ia7]
and [L8]. This paper presents a substantially extended versioohndescribes in more detail the models
as well as the core of the proposed methodology and processes

We are interested in modeling residential buildings hawngple polyhedral shapes and whose
ground footprints are represented by quadrilaterals. We tiat in most cases, these quadrilaterals
are rectangles. However, this requirement is not a linaitetto our approach. Indeed, any complex shape
can be considered as a union of simple models with rectanfpd#prints.

The input data are calibrated aerial images. Hence, ouargseleals with the intermediary degree
of generic modeling such as described in Figitb). In our case, the proposed approach can be
considered as a top-down scheme (model driven) in the séaseatlibrary of parametric building
models is employed. However, our top-down approach is novexttional in the sense that the 3D
model estimation is direct and only uses image rawbriglstns®reover, the exhaustive search for the
best model is avoided. The proposed approach employs aegagks as illustrated in Figui&a) The
building footprint (focus area) is selected by an operatoone aerial image. The building footprint
could also be retrieved from a cadastral map (existing 2D afdpilding footprints) [L,4—7]. In this
case, the 2D footprint is expressed in a georeferenced woddlinate system.

In this study, we are essentially focusing on the approaphesucing polyhedral building models
(as shown in Figuré& (b)) from a single source of data, namely the high resolutiorabenages. These
images represent the data type that is widely utilized. €guently, several image-based modeling
approaches are detailed in the following Sectidrelated work).
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The rest of the paper is organized as follows. Secfiaescribes various existing image-based
approaches for 3D polyhedral building modeling. Sec8gresents the global strategy of the proposed
approach. Sectiod describes the optimization process of the approach. Seétigives several
intermediary results and evaluations of major steps.

2. Related Work

Many interesting building modeling approaches have beeiresded in the literature for the
reconstruction of 3D polyhedral building models (e.g3434]). The intention here is to briefly describe
some aerial-based approaches that are discerned by thienizgiion process, their global methodology
or their efficiency.

In [1], Jibrini et al. propose a 3D polyhedral building modeling approach fromrg laggh resolution
aerial stereo-pair using a cadastral map. A cadastral mepsground map (detailed register) showing
the parcel delimitations of each building. This standard @Bp is often used by governments for
the annual taxation of their residents according to the gfzbeir homes. Their proposed method is
generic in the sense that it can be used to estimate the mivbltshape of buildings without pre-existing
knowledge about the real shape. Firstly, the corresponddhgne of interest is set as an extrusion of
the 2D footprint into 3D. This volume is then discretized andorrelation score is calculated for each
voxel using a stereoscopic principle and a block matchinthote The hypothesis of 3D planes are
then detected using the Hough Transform (HT) weighted bydneelation score of each voxel. Several
arrangements associated with these 3D planes inside tineiteel volume are calculated. The research
of admissible shapes will be equivalent to the research aim clicks in a compatibility graph. The
last step selects the best admissible model by optimiziagartelated to the data (compatibility between
the model and the images) and a term of regularization cktatthe model complexity.

Taillandieret al. [2] present another generic approach that can be considerad astension of
the approach described id][ The reconstruction is directly achieved using a Digitevation Map
generated from multi-view stereo images. A building is nledeby a polyhedral shape, without
overhangs. The building boundaries are modeled by vemie#ls. This proposed method is generic
and allows the modeling of almost all building categoriesr €ach building, an operator manually
selects a focus area as well as a ground altitude. 3D plaaturés (horizontal, vertical and oriented
planes) and 3D segments are then automatically extractiéusimrea. A 3D graph of arrangements is
generated by the intersection of all the planes. After alysamplification step, the search of admissible
3D models is proved to be similar to the search of maximakslicThe model is finally selected using
a Bayesian modeling method. In another wosk PDurupt and Taillandier have proposed operational
approaches useful to adapt the generic algorithm to motistiealata. These approaches are mainly
focused on the calculation of the 3D planes hypothesis.

In [8], Lafarge et al. propose an approach for the 3D building reconstruction insdeurban
environments using high resolution satellite images. Thpr@ach employs a DSM and a set of
parametric models. A marked point process is employed tonaatically extract rectangular building
footprints from the DSM. The best model parameters with @aregular footprint are searched using
pre-existing knowledge of classical models and their axtBons. The data term minimizes the error
between the models and the DSM. The model parameters assbeveéh a block of buildings are
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obtained by searching the maximum a posteriori. This maritauobtained using a RIMCMC method
(Recursive Jump Monte Carlo Markov Chain) and a SA methaa(&ted Annealing).

Fisheret al. present in 8] a model-based approach to the 3D building model extradtimm aerial
images. This proposed approach allows the reconstrucfiaaroous types of polyhedral buildings.
The building parts are classified according to their roofes/p The approach employs the extraction
of low-level image features, the matching of these featate®rding to building part models and the
aggregation of the model into complete building models.

In [14], Jayne<t al. present a model-based approach to the automatic deteaticeeonstruction of
buildings using aerial imagery. Optical aerial images ast §egmented in order to detect the buildings.
The corresponding DEM is employed to reconstruct the bugisi Each segmented DEM region is
associated with a class of building roof shape either pealtatdor curved. The segmented regions
are extruded and fitted to the DEM by an optimization procelse segmented DEM region allows
the decomposition of the building area into sub-area adcgrtb its roof shape. The final building
model is obtained by the union of roof part models indepetigestimated. This strategy allows the
reconstruction of a wide variety of polyhedral building netsi

Zebedinet al. propose in 15] an approach for the automatic building reconstructiomfraerial
images. An approach is proposed to meet the need for realisti accurate building models for virtual
applications. Line features that characterize the heigtttoditinuities are detected and combined with
dense depth data providing the roof surface by using a glgitahization process based on Graph Cuts
technique. The proposed algorithm generates elegantgifdodels. The approach has been analyzed
and evaluated using ground truth data.

In [21], Tsenget al. propose a promising 3D building reconstruction approagcth tises Genetic
Algorithms (GA) for model-image fitting. The buildings areconstructed piece by piece and each
CSG feature (Constructive Solid Geometry) is fitted acaagdo the edge pixels of aerial images. CSG
boolean set operators are employed in order to combineibgifthrts into a single building. The theory
of the GA method for model image fitting has been analyzed angothstrated in several examples.

Table 1. Some feature-based approaches developed for 3D polyhadiding modeling
from aerial images.

Paper Process Input data Strategy
Jibrini et al,, [1] Automatic Urban map/Aerial Images Bottom-up
Taillandieret al,, [2] Automatic Aerial Images Bottom-up
Fischeret al, [3] Automatic Aerial Images Hybrid
Lafargeet al,, [8] Automatic Aerial Images Top-down
Jaynest al, [14] Automatic DEM/Aerial Images Hybrid
Zebedinet al, [15] Automatic Aerial Images Bottom-up
Tsenget al,, [2]] Interactive Aerial Images Top-down

Tablel briefly presents some feature-based building modelingagmbres available in the literature.
The regrouped approaches demonstrate the high diversigmpioyed techniques in 3D building
modeling from aerial images. The presented approachesgedpiilding modeling advances at various
levels of generalization, geometry, accuracy, and realiime priority characteristic is guided by the
targeted application. In our case, the main goal is (i) toroxp the accuracy of 3D polyhedral building



Sensorg011, 11 235

models using images, and (ii) to rectify the erroneous edgoh shape of building model issues from
certain feature-based approaches (as shown in Fure

3. Problem Statement and M oddl Parametrization

In this section, we present our formulation of the problerd #re adopted parametrization. In the
previous section, we described several approaches thatlie®n addressed in the literature. Here we
state the characteristics of our approach.

Since aerial images are employed, the proposed approaghdeals with roof models due to the
angle of view. Indeed, an aerial image allows the visuabredf two facades at best, since the building
generally has a rectangular footprint. Nevertheless, thklibg facades can actually be determined
using the prior knowledge of the ground-height of the aredeustudy (from urban database) and by the
assumption that the dominant facade planes are verticahidrmpaper, we restrict our study to simple
polyhedral models (several roof varieties). Some aretithied in Figurés. The shown models present
either horizontal and/or vertical symmetry assumptiortstae inner and outer vertices respectively have
the same height. These parametric building models withsrba¥ing two, three, or four facets can also
be described by a more generic building model (see Figurdn this model, any simple polyhedral
model can be obtained by varying the 3D location of the inregtices {.e., a deformable model) and
by setting the height of all external vertices. Furtherméne multi-facet model (Figuré) and the one
facet model (Figur®&(b)) can describe all typical situations: asymmetric shagepijrgy roofs or ground
(i.e., every vertex can have a different height). Hence, the meggeneric model describes more various
building models than the model set shown in Figbir&ince a complex building can be described as an
aggregation of simple polyhedral building models, our apph can also deal with complex buildings
once a patrtitioning of the building into simple buildingrsais done. In this case, vertices are estimated
for each simple model. The vertices having adjacent modelseplaced by the barycenter of these
points in order to reconstruct the final model.

The adopted multi-facet roof model comprises six vertiggsB, C, D, M, N (see Figuref).

In theory, the estimation of the roof model is equivalenthie estimation of the three-dimensional
coordinates X, Y, Z) of each vertex. As previously mentioned, the rectangulaiding footprint is
manually selected in one image by an operator (interactigthad). This footprint is considered as
the footprint of reference for the succeeding processesedler, the calibration of the aerial images
is known (intrinsic and extrinsic parameters of the canmjer&onsequently, the perspective 3D lines
passing by the vertices of the image footprint are known. JDevertices that we seek to determine
(A, B, C, D) are 3D points located along these perspective lines witthown heights. In other
words, by varying the height value, the corresponding 3Dhpslides along the perspective line. In
this condition, the outer vertices we are searching for deste one degree of freedom. Hence, our
polyhedral model can be simplified to ten parameters insteajhteen: four parameters for the heights
of the outer vertices and six parameters for the three-dsineal coordinates of the inner vertices. These
ten parameters are encapsulated into one single wector

W = (X]\47Y]\47ZMaXN7YN7ZN7ZA7Z37ZC7ZD)T (1)
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Figure 5. Samples of parametric building mode¥$ that can be reconstructed by our
proposed featureless approach. Standard polyhedralshapeheir corresponding ground
footprints are shown.D corresponds to the number of parametefsdenotes the model
parametersH, and H. correspond to the gutter height and the central line heigland 3
respectively represent the horizontal and vertical reassbustrated in blue.

D=1
M1

P=H, .

(a) Flat roof.

D=2

M2 M3

P =(Hg, Hpy) P=(Hy H)
(b) Shed roof. (c) Pyramidal roof.
M4 M5
P= (H_,,, He) P = (HgvHr:)
(d) Gable roof. (e) Gable roof.
a, M6 M7
P = (Hy, He, ) P = (Hy, He, )
(f) Hip roof. (g) Hip roof.
M8 M9
P = (Hg, He, ) P = (Hg, He, §)
(h) Hip roof. (i) Hip roof.
M10 M11
P = (Hy, He, @) P = (Hg, He, ) .
(j) Hip roof. (k) Hip roof.
M12 M13
P = (Hy, He, §) - P = (Hy, He, @)
() Saltbox roof. (m) Saltbox roof.
D=4
M14 M15

¢

P=(Hy,He, o, [3) P=(Hy,He, o, 3)
(n) Hip roof. (o) Hip roof.
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Figure6. The adopted generic 3D polyhedral model. The multi-facedehf.e., deformable
model) is parameterized by EquatioB).( sa, sz, Sc, sp correspond to the footprint
vertices selected in the image plaige (master image)A,, and\y correspond to the linear
coordinates of the inner verticdd and N (unknown) along the detected Hough lihg;.

(', corresponds to the center of projection of camera 1. Bluegaeen lines are outer and
inner lines of sight (perspective lines), respectivell, represents the ground plane in a
geo-referenced world coordinate system.

Moreover, since the images are calibrated the 3D coordinaitéhe inner verticed/ and N can
be replaced by the triple{d/y;, Vi, Zy) and (Un, Vv, Zy), respectively.(U, V') represent the image
coordinates in the reference image.

Furthermore, it is easy to show that our polyhedral modebesfully described by the 3D coordinates
of the inner vertices and of two outer vertices that are diaflp opposite (coplanarity constraint).
Indeed, the building can be parameterized by eight paraméetaur parameters for the image location
of the inner vertices\/ and N but also four parameters for the height of the vertides/, N, andC'.
The remaining vertices are determined by intersectingdhesponding lines of sight with the estimated
support planes. Indeed, we assume thdtelongs to the estimated plané/ ' M) and D belongs to the
estimated plane({) N) since the roof shape is supposed to be composed of plareis fa€or these
reasons, Equatiori) can be simplified to:

W:(UM7VM7UN7VN7ZA7ZM7ZN7ZC)T (2)

where (U;,Vy) and (Uy,Vy) are the image coordinates of the vertidédsand N, respectively.
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In other words, our method has the obvious advantage thatofblanarity constraints are implicitly
enforced in the model parametrization. By contrast, thieaufeabased approach requires fitting the planes
to DSM or 3D points.

Recall that the3D coordinates are expressed in a local coordinate systemewhasis coincides
with the ground normal (the aerial images are geo-refednck practice, although the location of
inner vertices is not known, theD line (the projection of a ridge segment) going through them c
be easily extracted from the image by using a conventiongé etktector (e.g., Canny edge detector)
followed by a Hough transform. Once the equation of this Imm&nown, the parametrization of the
building model (Equatior2) can be further simplified to:

W = ()\]\47)\N7ZA7Z]\47ZN7ZC)T (3)

where \); and Ay parameterize the location of the inner vertices along thes@@ment obtained by
intersecting the 2D line with the building footprint.

Thus, finding the model boils down to finding this vecter Henceforth, we have defined the
parametrization of the adopted generic building model. 3Sieceeding section aims at describing a
global methodology in order to determine the kind of modele(dacet or multi-facet) that corresponds
to the reality as well as to compute the corresponding nunpariameters. To this effect, some computer
vision mechanisms and strategies are described for 3Dibgi&hape recovery.

4. Proposed Approach

In this study, we present a novel modeling approach whiclréestland image-based. The challenge
consists in the reconstruction of 3D polyhedral buildingss using directly photometric information
of aerial images. In computer vision, direct approache® lmeen essentially proposed for the image
registration in order to generate mosaic images. Feasge@éfgage registration techniques strive to
compute the global motion of the brightness pattern (effineaor homographic transforms) without
using matched features (e.g20]). We were inspired by this kind of approach and we proposeextd
method for 3D building reconstruction. The flowchart diagraf the proposed approach is depicted in
Figure7.

4.1. Multiscopic Context and 3D to 2D Projection

As previously mentioned, our approach employs calibragghbimages. The building under study
is observed by different points of view{ > 2), in other words, in a multiscopic context. The visible
area common to all the associated images is called oveng@pea or overlapping volume. This area
potentially characterizes the reconstructible area irdo \B/e mention that geometric principles for
3D scene reconstruction from multiple views are descrilmedettail in 35]. Besides, if the camera’s
calibration is known and if the images are properly geomfeed, as assumed in our case, then
an hypothetic physical 3D point/ (X, Y, Z) (expressed in the world referential) that belongs to the
overlapping volume can be projected in each image acquiyetthd camera’; onto a corresponding
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image point;(u;, v;) wherel < i < n. These image points called homologous points can be cédcula
using a3 x 4 projective camera matri:

P=K[RIT] @

whereK corresponds to the matrix of intrinsic parameters reladeldd¢ cameré;, R andT correspond to
the extrinsic parameters which denote the coordinate syssformations from 3D world coordinates
to 3D camera coordinates.

Figure 7. Flowchart diagram of the proposed approach (top) and ifitishs of the main
steps (bottom).

Calibrated aerial images

Focusing stage
(Area of interest)

Urban knowledge

: Hy%‘ﬁg%ﬂﬁf?ﬁﬁfﬁﬁon i 3D building mode! Direct and featureless approach

Calibrated aerial
| images

L

Building ’
outline \

Direct = "
approach
.:fngkf_ o =Y j Polyhedral model

| Selected building

4.2. Measuring Model-to-Data Consistency

In computer vision, the homography principle is employednage registration, auto-calibration of
cameras, motion estimation and also for stereoscopy anat@megeconstruction. Mathematically, the
homography is a projective collineation that describesmage-to-image transformation that can be
used either in the case of a pure 3D camera rotation, or amptaerae (see Figu®. The homography
matrix can be estimated by different techniques. An ovengéthese techniques are describedlif|]
We are patrticularly interested by the homography princgihee it can be used to transfer a roof facet
of an image to another image if the 3D support plane of the fadenown.
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Figure 8. Homography induced by a plane.

frame

LRD

framezﬁ

The homography matrix is the transfer matrix that allowstta@sfer of the poinp;(z1,y:) of the
reference image (image 1) to its homologous poiit:2,y2). The equation that links each pair of
homologous points can be defined as:

i

X2 Hy, Hys Hi X1
Yo| & |Hn Hxp Hay| |y| & Xo=HX, (5)
1 Hs Hszy Hss 1

where= denotes the equality to a given scale factor. Equa&ypiovides:

Hyywy + Hygyr + Hyz
H3zywy + Hioyr + Haz
Hoyxy + Hooyr + Has
H3zywy + Hioyr + Haz

To =

(6)

Yo =

The matrixH has eight degrees of freedom. For this reason, it is possihieliciously select four
points in another image in order to solve the system. We cde that this technique is generally
employed with key points detectors. The coefficients of tlarimH depend on intrinsic and extrinsic
parameters of the cameras as well as on the parameters datiee p

HgK,m+gwny (7)
where the matriXK; andK, respectively are the intrinsic matrix of the two cameiRgepresents the
rotation,T represents the translation vectB® 4ndT represent the motion between the two camends),
andd represent the parameters of the plane in the camera 1.

In our case, the intrinsic and extrinsic parameters of thheecas are known (calibrated cameras). The
parameters of the plane need to be determined for each featetdmpose the model. If the planes’
parameters are known, the homography matrix will directysfer, facet by facet, sets of master pixels
to their homologous pixels.
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Measuring Facets-to-Data Consistency

In this subsection, a measure has been defined in order te tlauaccuracy of hypothetical facets
according to the data. As we recall, in the multi-facet célse,facets are rigidly joined as shown in
Figure 6. Firstly, we stress the importance of having a rigorous matg between the homologous
points. The homologous points are 2D pixels representiag#ime 3D physical point in the scene. For
this reason, the pixel intensities of homologous pointehaary close numeric values.

More precisely, our basic idea relies on the following faicthe shape and the geometric parameters
of the building (encoded by the vecta)) correspond to the real building shape and geometry, theen th
pixel-to-pixel mapping (induced by homographies) betwiermaster imagé,, (the one containing the
selected 2D footprint) and any other aerial image (in whinghlduilding is visible) will be correct for the
entire building footprint. In other words, the dissimilgrassociated with the two sets of pixels should
correspond to a minimum.

Recall thatw is defining all support planes of all the building’s facetsl dhus the corresponding
pixel p’ of any pixelp is estimated by a simple image transfer through homogragBig 3 matrices)
based on these planes. Therefore, the associated globahilisity measure reaches a minimum. For
an arbitrary model instanae, the global dissimilarity is given by the following score:

=3 S pllhale) - L)) ®)

j=1 pes

wheren is the number of aerial images in which the whole buildingfrigovisible (in practicen is
between 2 and 5) is the footprint of the building in the master imagg, p’ is the pixel in the image
I; # I, that corresponds to the pixele I,,, andp(x) is a robust error function.

The choice of the error functiop(x) will determine the nature of the global errd) (which can
be the Sum of Squared Differences (SSP)« = % 2?%), the Sum of Absolute Differences (SAD)
(p(x) = x), or the saturated Sum of Absolute Differences. In genéha,functionp(z) could be
any M-estimator 36]. In our experiments, we used the SAD score since it is ratirobust and its
computation is fast.

We seek the polyhedral modeV* = (X, Ay, 2%, 23, Z%, Z&)T that minimizes the above
dissimilarity measure over the building footprint:

W = arg mv\ilne (9)

We can also measure the fithness of the 3D model by measuriggatent norms along the projected
3D segments of the generated 3D models. In general, at feserdinuities the image gradient is high.
Thus, for a good fit, the projection of the 3D segments wilhcade with pixels having a high gradient
norm in all images. Therefore, we want to maximize the sumraflignt norms along these segments
over all images. Recall that we have at most nine segmentaufasimple 3D polyhedral model. Thus,
the gradient score is given by:

1 n
_ - - 10
g nzj:gj (10)
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whereg; is the gradient score for imade. It is given by the average of the gradient norm over all @ixel
coinciding with the projected 3D model segments.

Since we want the dissimilarity measuB} &nd the gradient scord&@) to help us determine the best
3D polyhedral model, we must combine them in some way. Oneabwvay is to minimize the ratio:

W = arg mv\ilng (11)

It is worth noting that during the optimization o1l) there is no feature extraction nor matching
among the images. Furthermore, the use of the image grageents in (1) is not equivalent to a
feature-based method.

The image-to-image transfer can be carried out pixel-x@igdy combining 3D point construction
(line of sight intersected with plane) and 3D-to-2D project or more directly facet-to-facet by using
homographic transfer (Equaticj.

In order to minimize {1) overw, we will use an evolutionary optimizer that will be descdba
Subsectiort.3

4.3. Computing the Polyhedral Building Model

In this subsection, we briefly describe the mechanisms aedytals of optimization processes.
Moreover, we select an optimizer adapted to the considestelimg problem.

4.3.1. Computing the Prismatic Building Model

In our case, our approach begins by approximating any Imgldnodel by one horizontal facet,
l.e, adopting a prismatic model. An urban database is emplay&dder to know the minimum and
maximum ground altitude y, ound_mins Zground.maz Of the area under study as well as the minimum and
maximum heights amongst all the included buildit§s;,., H,... (€.9. H,;n = 5m and H,,,, = 50m).
The ground altitudes are provided according to the seaid#it Consequently, we know with certainty
that the building altitude is in the intervall = [Z, ound.min + Hmin; Zground.maz + Hmaz|. 1f We sweep
this interval forz values with a step\ z, then we obtain a set of candidates from which the best ptisma
model is selected—the one that minimizes the objectivetiong11).

4.3.2. Computing the 3D Model Using the Differential Evadut Algorithm

The Differential Evolution algorithm belongs to the famibf Genetic Algorithms and to the
evolutionary strategies. The genetic algorithm modifiesgtiucture of individuals using the mutation
and the crossover. The evolutionary strategies achievautoeadaptation by geometric manipulation of
individuals. These ideas have been formulated by a simulgoawerful operation of vectors mutation
proposed in 1995 by Price and Stor8{]). Since then the Differential Evolution has become anmessle
method for a large quantity of real problems and benchmarks.

The DE algorithm is employed in order to compute the 3D model iategrates the minimization
process guided by the dissimilarity measure previouslynddfi This algorithm achieves generations
of solutions—populations. The population of the first gatien is randomly chosen around a rough
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solution. The rough solution will thus define a given diattibn for the model parameters. The
rough solution is simply given by a zero-order approximatiodel (the prismatic model) which is
also obtained by minimizing the dissimilarity score oveeamknown (the average height of the roof).

In our case, the use of the DE algorithm is described in Fi@undich illustrates the main steps
performed in one single iteration for one facet. (1) Thermpeatc model is estimated, (2) a population is
generated from the prismatic model, (3) the best model eroehed, (4) a new solution is generated by
using crossover, mutation and evaluation steps.

Figure 9. lllustration of one iteration of the DE algorithm.
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We use the Differential Evolution optimizer since it hasrfoueresting properties: (i) it does not need
an accurate initialization, (ii) it can integrate geometwnstraints according to the context (adaptability
properties), for example, constraints can be imposed iaraaensure that the polyhedral roof model
are an assembly of facets with slopes inferiof@ (standard information coming from urban databases
concerning the area under study), (iii) it does not need trmaputation of partial derivatives of the
cost function, and (iv) theoretically it can provide the lghb optimum. Hence, this algorithm is easy
to implement and to integrate into the applications. In ase; the experiments show that only a few
iterations lead to convincing results.
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4.3.3. Selecting One or Multi-Facet Building Modeling

This subsection deals with the one-facet or multi-facetc@n. Several automatic strategies can be
employed:

e The first strategy consists in reconstructing the two madelspendently (one-facet model (sloped
roof) and multi-facet model). Each calculated model presid SAD score. The 3D model
finally obtained will be the solution providing the minimurocsse among the models shown in
Figures10(b), 10(c), 10(d) in the sense that this score characterizes a better conméspoe
between the 3D model and the image data set.

e The second strategy (adopted) exploits the putative estimaf 4 facet normals. The building
footprint (rectangular) is divided inté triangular facets as a pyramidal model (see Fidii&).
The estimation of the pyramidal model is driven by the evohary algorithm as described above.
A geometrical constraint is imposed; namely, the centralp®it is located along the line of
sight that passes across the central pixel of the footpmitité master image. In this first step, a
pyramidal model is computed. In a second step, a sSores set the highest deviation between
the 4 facet normals and the vertical direction. If this computedrs is less than a predefined
tolerance threshold for normals verticalness den@te@low angular deviation empirically fixed)
then the retained model is the prismatic model initiallycotdted (e.g., Figurd0(b)). If this
score exceeds this tolerance threshold (normals are ntinahlgra scoreS’Z is set to the highest
deviation between the facet normals. If this calculatedes@® less than a predefined tolerance
threshold for normals parallelism denotgdthen the one-facet estimation (e.g., Figlit¥c)) is
carried out (estimation of a triangular facet using theaegtlar footprint and estimation of the
fourth vertex by intersecting the associated line of sighhwhe estimated plane). Otherwise,
it means that the normal vectors are neither vertical, noallgh (e.g., FigurelO(d)). In this
condition, the multi-facet modeling is carried out.

Figure 10. (a) Building footprint initially selected. No prior knowdige of the model shape
is known. (b) Estimated prismatic model (algorithm initzakion). (c) Estimated one-facet
model (sloped roof). (d) Estimated multi-facet model (fopf).

A
(a)

(b) (€) (d)
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It is worth noting that erroneous feature-based solutiahdllastrated in Figuresi(a) and 4(b)
(DEM-based) or coming from existing, less accurate, modgipeline could be used as initial solutions
for the prismatic model estimation. Alternatively, theyadso be used more directly as initial solutions
for the Differential Evolution algorithm (multi-facet) nlsummary, the proposed approach proceeds in
two parts. First, the algorithm decides if the building @n$ one or more facets. This decision is carried
out by analyzing the 3D normals associated with four virtdahgles forming a partition of the whole
building footprint. Second, once the model is selectedastsociated parameters are then estimated by
minimizing the defined dissimilarity score.

5. Experimental Results and Performance Study

In this section, we present the dataset employed as inputeoptoposed approach as well as the
evaluations and the results obtained by our reconstruatietmod. We carry out several evaluations in
order to analyze the convergence, the robustness and thmagof our image-based approach. These
evaluations demonstrate the high potential of our modepgoach.

5.1. Input Dataset

The considered input dataset contains multiscopic graleszerial images (see sample Figa(de.
Each acquired image is described by a set of data specifyengdoreferencing, the intrinsic parameters
of the camera (e.g., focal, distortion coefficient, primtipoint) as well as the extrinsic parameters of
camera location and orientation (rotation matrix, cocatis of point of view). These images have
been acquired from an airplane, equipped with three camesasng from the aerial office of the city of
Toulouse. A central camera was oriented vertically to thdiNaoint. Two other cameras were mounted,
one to the front of the plane and the other to the back of theegplaith a front and back oblique view. The
resolution of the digital images is sub-metric and is arolhdentimeters. There are two key parameters
related to acquisition, namelys that corresponds to the distance between two cameras (tsvtiqns)
and’H that corresponds to the altitude of the flight. Generallgsthtwo parameters are provided by
the ratio%. A high ratio allows for a more accurate reconstruction. ¥ tatio allows a more reliable
matching but reduces the accuracy. For the consideredeliaﬁa& % ~ 0.18. The acquired images
are well-spaced and demonstrate a sufficient level of gveHence, the input dataset is appropriate to

carry out the 3D reconstruction.

Comments:

e The image resolution is sufficient in order to reach the imtediary level of modeling
(Figure 1(b)).

e In order to reduce self-occlusion of roofs and perspectiffeces, we use images
captured by the vertical camera only. Moreover, for a giveh & Nadir images in
which the building under study is visible, the master imag#e one having its center
the closest to the 2D building footprint. These choices & ¢amera and for the
master image maintain a certain matching robustness.

¢ As previously mentioned, no Digital Elevation Model hasibeged in our approach.
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Figure 11. A pair sample of aerial images extracted of the multiscopiaset. Each image
covers a common area of the city of Marseille acquired froffieidnt points of view (partial
overlapping). The size of the imagesA§ x N, = 4,158 x 4,160 where N, and \,
correspond to the number of columns and rows, respectively.

¢

(a) View point 1 (b) View point 2
5.2. Reconstructed 3D Models and Convergence Study

In this subsection, we measure the quality of the reconstruobtained using the DE algorithm.
We carry out a 3D modeling of one generic 3D facet running tEealjorithm with30 iterations. The
considered facet contaifis424 pixels. The number of individuals that compose the poporteits fixed
to 30.

Figure 12. (a) illustrates the facet in the master image. (b) illussathe successively

estimated 3D facets during the evolution of DE algorithm) ged (d) illustrate the final
estimated 3D model.

(a) the selected facet in the (b) Estimated 3D facets

master image (top view). resulting from three
successive iterations
(perspective view).

(c) the estimated one-facet (d) the estimated multi-facet
3D model (a quarter). pyramidal (full).
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Figure 12(b) shows the estimated 3D facet corresponding to three ibmrstdf the DE algorithm.
The facets green, blue and red respectively corresponcetedlution associated with iteratioms11
and26, respectively. We can observe the facet evolved in the ttlimmensional space. Each emerging
facet represents a more accurate solution than the solestmated in the preceding iteration. The
intermediary solutions tend to correlate with the 3D grotnuth. The image facet initially selected
corresponds to a roof portion of a pyramidal building (Fegi2(a). In Figurel2(b) the coarse structure
drawn in white is only shown to accentuate the perspectifexefor a better comprehension. The final
3D models (3D quarter and pyramidal model) resulting from éistimation are respectively shown in
Figuresl2(c)and12(d)

Figure 13. Estimated 3D polyhedral building model and related cormecg.

(a) the selected building i(b) the estimated 3D
the master image. polyhedral model.

1 2 3 4 ‘5 6 7 8 9
Iteration

(c) the projection of thé¢d) the evolution of the best
estimated model onto tHe@AD as a function of the
image. iteration number.

Figure 13 shows the reconstructed 3D model (Figd&b)) associated with the building footprint
selected in the master image (Figut8(a). The estimated 3D model projected into 2D images
(e.g.,13(c) enables the qualitative verification of the geometric eehee of the reconstructed 3D
model. Figurel3(d)illustrates the global SAD score normalized by the numbeixeéls corresponding
to the best individual obtained by each iteration. The gmamiution of the SAD shows the progressive
evolution of the reconstructed 3D facets towards the gratuitl configuration.

Additional evaluations and results of reconstructed 3Dldmg models and convergence are
illustrated in Figured4 and15. In particular, Figurel5 shows in detail the evolution of a 3D polyhedral
building model using the DE algorithm. The model convergeix analyzed in the aerial images
(column1 and2) and in the three dimensional space (colushmt different iterations of the algorithm
(iterationsl, 3 and5). We observe that the registration of the full building fmabt (boundaries and inner



Sensorg011, 11 248

line segments) between the master image (fixed footprintjlother images (moving footprints) from
the multiscopic dataset allows the correct 3D structur@éefissociated polyhedral model to be inferred.
The registration process is guided by the DE algorithm. Té$temated 3D models show a coherent
converging shape from one to the next iteration. This caiitrdemonstrates the convergence reliability
of the process.

Figure 14. Estimated 3D polyhedral building model and related conzecg.

(a) the selected building i(b) the estimated 3D
the master image. polyhedral model.

x 10t

IE I L L I L 1 1 L
o1 2 3 4 5 B 7T 8 8§
lteration

(c) the projection of thé¢d) the evolution of the best
estimated model onto tHeAD as a function of the
image. iteration number.

5.3. Accuracy Evaluation

Figure15 shows the results of reconstructing a building composedwffacets. The images shown
in the middle column represent the projection of the es@th&D model. At the end of the optimization
process, we observe that the model points projected ontthiee image coincide from one image to the
other. This demonstrates that the estimated three-dilmeaisnodel is accurate. For a more quantitative
evaluation, we selected one facet of this building and coethbthe 3D model with that obtained by a
DEM-based modeling approach.

Table 2 provides a comparison associated with one 3D facet usingn@mne side, a DEM-based
approach and on the other side, our proposed direct approélicse DEM-based approach from the
known modeling pipeline previously mentioned has been aseal reference in our evaluation. Notice
that the presented 3D facet solution (3D plane equationplas estimated using a robust estimator by
considering the complete set of 3D points included in thetfémotprint.

The direct image-based and featureless approach provisasséying three-dimensional modeling
since the results are very close to the ground truth dataaA$e seen in Tabl2 the results indicate an
average deviation of around one decimeter.
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Accuracy evaluation will also be studied in the followindosections that deal with the robustness
evaluation of the proposed approach in complex cases.

Figure 15. The best solution at several iterations of the Differenfablution algorithm.
The evolution of the 3D model and the footprint in the asdedamage is shown. The
proposed algorithm converges to an optimal final solutioa few iterations.

ite. 0

ite. 1

ite. 3

ite. 5 L\ -
Master image Associated image 3D model
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Table 2. Comparison of 3D modeling results obtained in the first case fa DEM-based
approach and in the second case from our direct image-bppedazh.

DEM-based approach Featureless proposed approach
pl (117.59, 396.80, 26.95) (117.66,396.75,27.21)
p2 (123.96, 387.79,23.70) (124.05, 387.74, 23.80)
p3 (108.36,390.32,24.51) (108.33,390.26, 23.85)
Barycenter (116.70,391.62,24.97) (116.66, 391.67,25.06)

5.4. Performance in the Presence of Image Noise

In order to get a quantitative evaluation of the 3D accurddh® proposed approach, we adopted a
simple and cheap scheme. For the sake of simplicity, wednnihe study to a triangular facet that is
viewed in two aerial images. In this scheme, we employ semiketic aerial images (see Figuté).
Starting from a 3D facet model associated with a master innggsynthesize the rawbrightness of this
facet in the second image by simply warping its rawbrighgneshe master image to the second image.
The 3D selected solution will be considered as the grourtti.tridach pixel belonging to the footprint
in the second image is synthesized by its match from the mastege using a bilinear interpolation
and the corresponding ground-truth homography. In this,dhg associated SAD value will be close to
zero. We then add image noise to the transferred rawbrigbtriéhe proposed reconstruction approach
is then invoked in order to compute the 3D model of this fa¢ée deviation between the ground-truth
3D model and the estimated 3D model is calculated as a funofithe noise magnitude.

Figure 16. Adding noise to a facet for robustness evaluation. The sgities of the
gray-scale pixels belong to the interval [0,255]. The magie M of the uniform noise
progressively increases according to the respectivevisieM ; = [—4, 4], M, = [-8, 8],
Ms = [-16,16] and M, = [-32,32]. These four levels of noise are shown in (b) (the
corresponding random noise affected the bottom facet).

(a) Targeted pyramidal building (b) Noisy facets (bottom facet).
model.

We have used two kinds of image noise: uniform and Gaussiaa.tAree first tests correspond to a
uniform noise. The three succeeding tests correspond taadize noise (see Figuid).

Figures17, 18 and 19 show the errors of 3D reconstruction of one facet as a funaticthe level
of noise, respectively uniform (to the left) and Gaussiantie right). These errors are obtained by
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calculating an average over ten trials for each noise leeelten reconstruction solutions. The 3D errors
are expressed in meters. Theaxis shows the four levels of noise magnitude. The squaraiien of
the Gaussian noise is equal3®when the level of magnitude is equal4o

Figure 17. Error on the facet height.
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Figure 18. Error on the sloping angle.
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Figure 19. Error on the vertex 3D positions.
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In this way, the added noise that progressively increaseslates images of buildings with different
levels of quality and tests them for a 3D reconstruction. sThhe first level of noise simulates slight
defaults in the acquisition. In this way, we can test the stdeiss of our reconstruction method according
to the quality of the acquired images.

We observe that the noise added to the image of footprints doeseverely affect the accuracy of
the 3D reconstruction. Depending on the type of noise, tleeage errors associated to the vertices can
reach 33 cm, the average error associated with the slopigig aan reacl3.5° and the average error
associated with the vertices altitude can reach 31 cm. Mereove can observe that the maximum
errors have an inaccuracy multiplied by two to three with ximam sloping angle of.2°, a maximum
location deviation of 62 cm and a maximum altitude deviatwdrb3 cm. The values concerning the
location and the sloping errors seem to oscillate while ttiide error seems to increase more with the
noise. Nevertheless, despite the presence of high noiseitudg, the location deviations remain inferior
to one meter and the sloping angle deviation is inferiarto These values prove that the quality of the
acquired images and their resolution are sufficient to alloeurate 3D building reconstruction using the
proposed method.

5.5. Performance According to the Image Resolution

In this subsection, we propose to study the performanceecdpiproach when the image resolution is
reduced. A simple experiment was conducted. A triangulzetfavas selected. This facet contaidg2
pixels. We generated a sub-sampled facet by dropping etkey oolumn in the original image. Thus,
we simulated a facet image with a reduced resolution.

Table 3. Comparison of 3D modeling results in the cases originallmi®m and sub-sample
images.

Original resolution images  Sub-sampled images
pl (117.65,396.75,27.14) (117.65,396.77,26.87)
p2 (124.05, 387.75,23.70) (124.05, 387.75, 23.76)
p3  (108.35,390.24,24.44)  (108.34,390.25,24.27)

Table3 illustrates the 3D reconstruction of the tested triangialeet with the original resolution (first
column) and with the reduced resolution (second column}k déviation between these two solutions
is very small. The estimated 3D coordinates of the facetoestglobally varied for a few centimeters.
In extreme cases, this deviation was around 20cm. In spited&crease in the image resolution, the
accuracy of the estimated 3D models does not considerablpgiade.

5.6. Performance in the Presence of Superstructures

As previously mentioned, we aim to reconstruct planar rdodsn aerial images. An important
question comes to mind: what is the effect of superstrustareour reconstruction method? Indeed, a
large majority of buildings incorporate superstructu@snsequently, the superstructures may generate
unwanted noise since their 3D structures are not includdteidominant plane associated with the facet.
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In this section, we present a method which increases thestobss of the facet reconstruction having
several superstructures. The aim is to prevent the supetstes from distorting the estimation of the
planar roofs. The idea consists in (i) detecting the pixélthe superstructures, and (ii) in using the
footprint removed from these pixels. Assuming that the 3hplcalculated by the Differential Evolution
algorithm is relatively accurate, we can thus classify thspaiated pixels into two categories: the pixels
belonging to the dominant plane and the outlier pixels (gixkat do not belong to the plane). The
proposed method proceeds in two passes:

¢ In the first pass, the DE algorithm is used with the totalityhaf reference footprint.

¢ Inthe second pass, the DE algorithm is used with only thoselconsidered as belonging to the
dominant plane.

Once the plane has been estimated in the first pass, sewdraigees can be used in order to carry
out a coarse classification of the pixels. We observe thapitteds that do not belong to the theoretical
plane of the facet will have a significant residual (absotlitierence between the gray levels in different
images) since the transfer pixel-to-pixel will not be cotrelhe idea is then to detect the pixels having
a significant residual. We present then two techniques basdae threshold of individual residuals:

e The first technique selects the outlier pixels by deterngranthreshold for the residuals. The
empirical thresholden, is defined as follows:

Tamp = f+ kX 0 (12)

wherek is the coefficient of weight and has been manually determiners the average of the
individual residuals and is the associated square deviation.

For k£ = 0.2, we observe that the major part of the superstructacdgded in the facet (chimney and
trap of roof) are detected.

e The second technique uses another formula for the threshbid threshold notetg, is defined
by:
Tgen = 2.5 x Me (13)

where Me corresponds to the median value of the residuals assocmtbdthe whole facet
footprint.

We observe in Figur@0 that the major parts of the numerous superstructures bielgng the facet
are detected. The detected white pixels shown in Fig2oéls)and21(b)are ignored in the calculation
of the final solution. All the pixels having higher residualwes thariZg, are removed. The adopted
thresholdZye, provides satisfying results for massive and generic fiigeof the facet superstructures.

We have carried out a comparison of modeling methods by ukagolution provided by the DEM as
a reference solution. We have applied the reconstructiaghade on one facet including superstructures
namely several chimneys (see Fig@&®&a). The solution provided by the DEM has been obtained by
estimating a 3D facet from all the associated elevationtpaira a robust estimator. Two measures of
dissimilarity have been applied in our DE algorithm, in thistfcase, the SAD measure and in the second
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case, the SSD measure. Tabblsummarizes the 3D reconstruction of the facet using fiveéegjiras. We
only report the height of the estimated vertices.

We observe the reconstructions to the altitude of the \est&ince it is the parameter that varies the
most (see Tabld). We have used the first technique in order to filter the supesires. The coefficient
k has been empirically tuned €02. Although a part of the pixels belonging to the roof planelisifed
out, this part is low in comparison to the number of the comi®d pixels (several thousands) in the facet
estimation.

Figure 20. Automatic detection and filtering of the superstructurebe Threshold/ye, is
proportional to the median of all residuals. The removeelsiare shown in white.

(a) Targeted facet part with (b) Detected superstructures.
superstructures.

Figure 21. Filtering out the superstructures. (b) Tuning thecoefficient for the
determination of the residual threshdlgl, (£ =0,k =0.1,k = 0.2,k = 0.3, respectively, ).
The removed pixels are shown in white.

——— T

(a) Targeted facet part witfb) The superstructure detection with
superstructures. different values fok.

We observe that the most accurate method seems to employAther®asure. Moreover, we find
that the presence of superstructures can affect the 3D stacted model. A filtering stage is thus
necessary in order to increase the accuracy of the solufiorthis step, we envisage testing several
methods integrating by different ways the superstructlieriftg with the aim of model improvement.
We stress on the fact that the DEM-based reference soluties ot correspond to the ground truth.
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Table 4. Comparing the modeling results obtained with the SAD and S&@es using
facets including superstructures with and without therfiiigg process.

DEM SAD SAD SSD SSD
Including superstructures filtering superstructures rintg
z1 41.96 m 42.92m 42.22 m 43.61m 42.75m
22 41.36 m 41.10m 40.98 m 40.84 m 40.87 m
23 39.78 m 39.62m 40.22 m 38.88m 40.10m
Average deviationin 0.0 m 0.46m 0.36m 1.02m 0.53m

5.7. Performance in the Presence of Significant Shadows

As previously mentioned, the correct image registratiothefouilding footprint leads to a correct 3D
building model. Figur@2illustrates the 3D modeling of some buildings using aer@ges containing
significant areas of shadow. In the figure, we visualize thep&ijection of the obtained 3D model in
the non-reference image. As can be seen, for a variety @rdiit buildings, the registration process is
robust even in the presence of significant shadows.

Figure 22. Correct building modeling in the presence of significantdsives. The master
images are not shown.

(a) Gable roof. (b) Hip roof.

(c) Gable roof. (d) Hip roof.

6. Conclusions

6.1. Contribution

In this work, we provided an overview of some problems anditsmhs dealing with 3D building
modeling. We proposed a new methodology for 3D building mstaction based on a featureless
process. To the best of our knowledge, this method has neaam bxploited in the 3D building
modeling problem. Unlike existing methods, the pixel-tegbmatching process is avoided. However,
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it is a by-product of the proposed method in the sense tha¢ dme 3D shape of the building is
known, the image-to-image transfer is known from the asdedi homographies. The optimization
associated with the proposed method has been carried owg g Differential Evolution algorithm.
The method has been validated using real and simulated sndge proposed approach was compared
with DEM based modeling approaches. It is beyond the scopbeoturrent work to compare the
proposed approach with all existing feature-based appesadndeed, it is well known that featureless
approaches outperform feature-based approaches regalginaccuracy of the estimated geometric
transforms used for image registration. The proposed nigthavides a satisfying polyhedral building
reconstruction from gray-scale calibrated aerial imagéd®se proposed top-down approach is also able
to rectify erroneous reconstructed polyhedral buildingdels in existing 3D city models whenever the
corresponding aerial images are available. Furthermoeeargue that the proposed modeling method
provides a novel tool that can be used in existing largeesadban modeling pipelines as a main or
complementary tool.

6.2. Future Work

Future work will be concentrated on the following directson

Testing other dissimilarity measures. New dissimilarityasures could be used and evaluated.

e Improving the reconstruction of roofs having superstrtetu One possible solution is the
integration of the outlier pixel filtering in the Differemdi Evolution algorithm. Indeed, each
individual provides a normalized SAD score which consiasly the pixels belonging to the roof
plane. The pixels belonging to the superstructures willb@tonsidered in the score calculation.
The superstructure filtering will generate a differentrilsttion in the progeny and provide a more
accurate solution. The second scenario envisions runhagroposed two passes several times.

e As we have previously mentioned, the registration processairied out between a reference
footprint (fixed boundaries) selected by an operator in tlaster image and the rawbrightness
of the aerial images of the multiscopic data set in which tkling is visible. Consequently, the
initial boundary line segments of the reference footprould be slightly shifted. In a future work,
we intend to use a method that is able to deform a rough 2D ffimbipto a precise 2D footprint.
This rectification process should precede the image baseg@ihstruction. We stress the fact
that the use of cadastral maps can release the requiremieaxiofy an accurate 2D footprint.

¢ In our work, we assume that the building roof has conventiand simple shapes. Research could

be done in the future in order to extend the direct approatchdaase of generic buildings and

roofs with atypical shapes.
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