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Abstract: This paper presents a model-based approach for reconstructing 3D polyhedral

building models from aerial images. The proposed approach exploits some geometric

and photometric properties resulting from the perspectiveprojection of planar structures.

Data are provided by calibrated aerial images. The novelty of the approach lies in its

featurelessness and in its use of direct optimization basedon image rawbrightness. The

proposed framework avoids feature extraction and matching. The 3D polyhedral model

is directly estimated by optimizing an objective function that combines an image-based

dissimilarity measure and a gradient score over several aerial images. The optimization

process is carried out by the Differential Evolution algorithm. The proposed approach is

intended to provide more accurate 3D reconstruction than feature-based approaches. Fast

3D model rectification and updating can take advantage of theproposed method. Several

results and evaluations of performance from real and synthetic images show the feasibility

and robustness of the proposed approach.

Keywords: 3D building reconstruction; 3D city modeling; 3D polyhedral building model;

aerial images; featureless image registration; Differential Evolution algorithm
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1. Introduction and Motivation

In the two past decades, the cartographic field has evolved significantly; mainly in order to provide a

digital and 3D geometric description of urban environmentsin addition to 2D conventional paper urban

maps. More precisely, some active work in the photogrammetric, remote sensing and computer vision

communities is focused on the 3D building modeling approaches since the buildings constitute urban

objects of great interest for the 3D city modeling. The 3D building modeling approaches are more and

more developed due to the increasing needs of institutionaland industrial applications in the civil and

military contexts. The visualization of urban environments (e.g., virtual tourism), the urban planning, the

site recognition (military applications) or the conservation of architectural work (cultural heritage) are

some of the many applications requiring 3D building modeling approaches. For these reasons, several

approaches are proposed across the literature and provide more or less accurate, detailed and adapted

3D building models according to the targeted applications.Globally, the proposed approaches tend to

produce 3D building models with a quality closer to the physical reality. The prior knowledge of the

urban areas under study (e.g., cities topology, environment densities, shape complexity, existing surveys,

urban GIS databases) and the remotely sensed rawdata collected are very rich sources of information that

can be used to develop sophisticated building modeling approaches. The 3D building reconstruction is

a complex task due to the diversity of building shapes (e.g.,architectural and contemporary buildings).

The building facades usually have some microstructures (e.g., windows, doors) and the building roofs

present some superstructures (e.g., chimneys, attic windows). The representations of 3D building models

can thus be divided into three main categories (see Figure1).

Figure 1. Examples of generic model representations. Three illustrations of the same
building with different level of details (from low to high).

(a) Prismatic model. (b) Simple polyhedral
model.

(c) Complex polyhedral
model.

The complexity of 3D building models can be planimetric (complex polygonal ground footprint) as

well as altimetric (e.g., heights variation). Aerial data are very useful for the coverage of large areas

such as cities. In the literature, several aerial or satellite data-based approaches are proposed to extract

3D prismatic and polyhedral building models. The data usually employed as input to these approaches

are either optical aerial or satellite images, aerial or satellite Digital Surface Model (DSM) or aerial 3D

point clouds such as aerial LIDAR data (Light Detection And Ranging data). Some data samples usually

employed are shown in Figure2.
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Figure 2. The upper part of this figure illustrates an example of 3D building modeling
process using a DSM. The middle part of this figure shows image-based feature extraction
and assembly. The lower part shows our proposed direct and featureless image-based
approach. Figure2(c) is retrieved from [1]. Figures2(e), 2(f), 2(g) and2(h) are retrieved
from [3].

3D building modeling using DSMs

(a) High resolution
aerial image (overview).

(b) Generated 3D point
cloud (e.g., DSM).

(c) Extracted 3D roof
planes from DSM.

(d) 3D building model
(simulated example).

3D building modeling using extracted 2D and 3D features

(e) Targeted building
(aerial image).

(f) Extracted 2D
corners.

(g) Extracted 3D roof
corners.

(h) 3D building model.

3D building modeling using our proposed featureless approach

(i) Targeted building
(aerial image).

(j) 3D building model.

Figure2 (Top) illustrates the building modeling using Digital Surface Models. Figure2 (Middle)

illustrates the building modeling using reconstructed geometrical features (e.g., 2D vertices and lines).

Figure2 (Bottom) illustrates our proposed featureless approach.

The flowchart of the two first strategies (image-based building modeling) is illustrated in Figure3. In

the first strategy, a DSM is generated or directly employed asinput (e.g., [8]). An example of a very dense

aerial DSM is shown in Figure2(b). The succeeding stages consist of the use of the DSM as reference for

the extraction of high level geometric features (e.g., 3D segments or 3D planes). The extracted features

are finally assembled into a polyhedral building model usingvarious optimization methods. However,

these successive estimation stages inevitably introduce some inaccuracies that propagate from one stage
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to the next, which can affect the final 3D model. If these inaccuracies are large enough, then, one can

note, that the obtained shape can be erroneous (e.g., see Figures4(a)and4(b)). In the second strategy,

geometrical features are extracted from aerial images (e.g., 2D segments, junctions, corners, lines) and

then converted into 3D features. The final polyhedral model is then estimated using these 3D features

(e.g., Figure2(g)). As in the first strategy, the extraction and matching stages inevitably affect the

accuracy of the final 3D model. [2] and [3] are well-know references in the literature which respectively

illustrate the two strategies described above.

Figure 3. Flowchart diagram currently adopted by some image-based building modeling
approaches. The diagram presents two paths conducting to 3Dpolyhedral building models.
These two paths are illustrated by the first two rows of Figure2.

Calibrated aerial images

(e.g., 3D segments, 3D planes)
Geometrical features extraction

Features assembly

3D building model

Focusing stage
(Area of interest)Urban knowledge

Hypothesis generation
and verification

Successive estimation stages

Image feature extraction
(e.g., 2D segments, 2D junctions)

2D to 3D features conversion
(e.g., 3D segments, 3D planes)

DSM generation
(3D points cloud)

Figure 4. Some erroneous reconstructed buildings resulting from a known feature-based
framework for massive building reconstruction (BATI-3D R© prototype software—a large
scale building modeling pipeline developed at the French National Geographical Agency).
The estimated 3D models are projected onto the image or DSM.

(a) Four modeled facets versus three for the
real building.

(b) Two modeled facets versus three for the
real building.

The 3D building reconstruction of a full urban environment requires automatic or semi-automatic

methods. The massive reconstruction approaches usually employ a feature extraction stage. However,

this stage is very sensitive since it can induce some missed-detections, false alarms, under-detections or

over-detections. To control these effects, the 3D buildingmodeling approaches employ computer vision
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strategies. These strategies are regrouped into two paradigms. More precisely, the first paradigm is a

bottoms-up scheme and consists in the assembly of geometricfeatures without pre-existing knowledge

of the sought model. The second paradigm, called top-down, exploits a library of models and searches

the model that best fits with the input data (images, DSMs).

As previously mentioned, several approaches for 3D reconstruction of polyhedral building models

currently employ as input Digital Surface Models (see Figure 2(b)). The classical DSMs are usually

generated from calibrated aerial images by a multi-correlation based optimization process such as the

graph cut optimization. The DSMs (derived data) are generally maps comprising only one value of

altitude z for each ground location(x, y). These 2.5D maps can be considered as special 3D point

clouds. However, the obtained 3D surface does not accurately model the physical surface especially

at height discontinuities such as at roof and superstructure boundaries due to the correlation criterion

used. Hence, the DSMs provide an approximated geometrical description of building surfaces and can

be noisy. Other modeling approaches employ multi-source data, for example optical images combined

with LIDAR data (e.g., [16]). Although less dense, LIDAR data can be employed in place of DSMs

since they are both accurate (e.g., [9–13]).

Paper Contribution

In this paper, we propose a direct and featureless approach for the extraction of 3D simple polyhedral

building models from aerial images (Figure2(a)). The novelty of our approach consists in the usage of a

genetic optimizer which bypasses all the intermediary estimation/extraction stages previously mentioned.

First results of our approach were presented at the MVA and ACIVS conferences, respectively in [17]

and [18]. This paper presents a substantially extended version which describes in more detail the models

as well as the core of the proposed methodology and processes.

We are interested in modeling residential buildings havingsimple polyhedral shapes and whose

ground footprints are represented by quadrilaterals. We note that in most cases, these quadrilaterals

are rectangles. However, this requirement is not a limitation to our approach. Indeed, any complex shape

can be considered as a union of simple models with rectangular footprints.

The input data are calibrated aerial images. Hence, our research deals with the intermediary degree

of generic modeling such as described in Figure1(b). In our case, the proposed approach can be

considered as a top-down scheme (model driven) in the sense that a library of parametric building

models is employed. However, our top-down approach is not conventional in the sense that the 3D

model estimation is direct and only uses image rawbrightness. Moreover, the exhaustive search for the

best model is avoided. The proposed approach employs aerialimages as illustrated in Figure2(a). The

building footprint (focus area) is selected by an operator in one aerial image. The building footprint

could also be retrieved from a cadastral map (existing 2D mapof building footprints) [1,4–7]. In this

case, the 2D footprint is expressed in a georeferenced worldcoordinate system.

In this study, we are essentially focusing on the approachesproducing polyhedral building models

(as shown in Figure1(b)) from a single source of data, namely the high resolution aerial images. These

images represent the data type that is widely utilized. Consequently, several image-based modeling

approaches are detailed in the following Section2 (related work).
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The rest of the paper is organized as follows. Section2 describes various existing image-based

approaches for 3D polyhedral building modeling. Section3 presents the global strategy of the proposed

approach. Section4 describes the optimization process of the approach. Section 5 gives several

intermediary results and evaluations of major steps.

2. Related Work

Many interesting building modeling approaches have been addressed in the literature for the

reconstruction of 3D polyhedral building models (e.g., [23–34]). The intention here is to briefly describe

some aerial-based approaches that are discerned by their optimization process, their global methodology

or their efficiency.

In [1], Jibrini et al. propose a 3D polyhedral building modeling approach from a very high resolution

aerial stereo-pair using a cadastral map. A cadastral map isa 2D ground map (detailed register) showing

the parcel delimitations of each building. This standard 2Dmap is often used by governments for

the annual taxation of their residents according to the sizeof their homes. Their proposed method is

generic in the sense that it can be used to estimate the polyhedral shape of buildings without pre-existing

knowledge about the real shape. Firstly, the correspondingvolume of interest is set as an extrusion of

the 2D footprint into 3D. This volume is then discretized anda correlation score is calculated for each

voxel using a stereoscopic principle and a block matching method. The hypothesis of 3D planes are

then detected using the Hough Transform (HT) weighted by thecorrelation score of each voxel. Several

arrangements associated with these 3D planes inside the delimited volume are calculated. The research

of admissible shapes will be equivalent to the research of maximal clicks in a compatibility graph. The

last step selects the best admissible model by optimizing a term related to the data (compatibility between

the model and the images) and a term of regularization related to the model complexity.

Taillandier et al. [2] present another generic approach that can be considered asan extension of

the approach described in [1]. The reconstruction is directly achieved using a Digital Elevation Map

generated from multi-view stereo images. A building is modeled by a polyhedral shape, without

overhangs. The building boundaries are modeled by verticalwalls. This proposed method is generic

and allows the modeling of almost all building categories. For each building, an operator manually

selects a focus area as well as a ground altitude. 3D planar features (horizontal, vertical and oriented

planes) and 3D segments are then automatically extracted inthis area. A 3D graph of arrangements is

generated by the intersection of all the planes. After a graph simplification step, the search of admissible

3D models is proved to be similar to the search of maximal clicks. The model is finally selected using

a Bayesian modeling method. In another work [6], Durupt and Taillandier have proposed operational

approaches useful to adapt the generic algorithm to more realistic data. These approaches are mainly

focused on the calculation of the 3D planes hypothesis.

In [8], Lafarge et al. propose an approach for the 3D building reconstruction in dense urban

environments using high resolution satellite images. The approach employs a DSM and a set of

parametric models. A marked point process is employed to automatically extract rectangular building

footprints from the DSM. The best model parameters with a rectangular footprint are searched using

pre-existing knowledge of classical models and their interactions. The data term minimizes the error

between the models and the DSM. The model parameters associated with a block of buildings are
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obtained by searching the maximum a posteriori. This maximum is obtained using a RJMCMC method

(Recursive Jump Monte Carlo Markov Chain) and a SA method (Simulated Annealing).

Fisheret al. present in [3] a model-based approach to the 3D building model extractionfrom aerial

images. This proposed approach allows the reconstruction of various types of polyhedral buildings.

The building parts are classified according to their roof types. The approach employs the extraction

of low-level image features, the matching of these featuresaccording to building part models and the

aggregation of the model into complete building models.

In [14], Jayneset al. present a model-based approach to the automatic detection and reconstruction of

buildings using aerial imagery. Optical aerial images are first segmented in order to detect the buildings.

The corresponding DEM is employed to reconstruct the buildings. Each segmented DEM region is

associated with a class of building roof shape either peaked, flat or curved. The segmented regions

are extruded and fitted to the DEM by an optimization process.The segmented DEM region allows

the decomposition of the building area into sub-area according to its roof shape. The final building

model is obtained by the union of roof part models independently estimated. This strategy allows the

reconstruction of a wide variety of polyhedral building models.

Zebedinet al. propose in [15] an approach for the automatic building reconstruction from aerial

images. An approach is proposed to meet the need for realistic and accurate building models for virtual

applications. Line features that characterize the height discontinuities are detected and combined with

dense depth data providing the roof surface by using a globaloptimization process based on Graph Cuts

technique. The proposed algorithm generates elegant building models. The approach has been analyzed

and evaluated using ground truth data.

In [21], Tsenget al. propose a promising 3D building reconstruction approach that uses Genetic

Algorithms (GA) for model-image fitting. The buildings are reconstructed piece by piece and each

CSG feature (Constructive Solid Geometry) is fitted according to the edge pixels of aerial images. CSG

boolean set operators are employed in order to combine building parts into a single building. The theory

of the GA method for model image fitting has been analyzed and demonstrated in several examples.

Table 1. Some feature-based approaches developed for 3D polyhedralbuilding modeling
from aerial images.

Paper Process Input data Strategy
Jibrini et al., [1] Automatic Urban map/Aerial Images Bottom-up
Taillandieret al., [2] Automatic Aerial Images Bottom-up
Fischeret al., [3] Automatic Aerial Images Hybrid
Lafargeet al., [8] Automatic Aerial Images Top-down
Jayneset al., [14] Automatic DEM/Aerial Images Hybrid
Zebedinet al., [15] Automatic Aerial Images Bottom-up
Tsenget al., [21] Interactive Aerial Images Top-down

Table1 briefly presents some feature-based building modeling approaches available in the literature.

The regrouped approaches demonstrate the high diversity ofemployed techniques in 3D building

modeling from aerial images. The presented approaches propose building modeling advances at various

levels of generalization, geometry, accuracy, and realism. The priority characteristic is guided by the

targeted application. In our case, the main goal is (i) to improve the accuracy of 3D polyhedral building
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models using images, and (ii) to rectify the erroneous estimated shape of building model issues from

certain feature-based approaches (as shown in Figure4).

3. Problem Statement and Model Parametrization

In this section, we present our formulation of the problem and the adopted parametrization. In the

previous section, we described several approaches that have been addressed in the literature. Here we

state the characteristics of our approach.

Since aerial images are employed, the proposed approach only deals with roof models due to the

angle of view. Indeed, an aerial image allows the visualization of two facades at best, since the building

generally has a rectangular footprint. Nevertheless, the building facades can actually be determined

using the prior knowledge of the ground-height of the area under study (from urban database) and by the

assumption that the dominant facade planes are vertical. Inthis paper, we restrict our study to simple

polyhedral models (several roof varieties). Some are illustrated in Figure5. The shown models present

either horizontal and/or vertical symmetry assumptions and the inner and outer vertices respectively have

the same height. These parametric building models with roofs having two, three, or four facets can also

be described by a more generic building model (see Figure6). In this model, any simple polyhedral

model can be obtained by varying the 3D location of the inner vertices (i.e., a deformable model) and

by setting the height of all external vertices. Furthermore, the multi-facet model (Figure6) and the one

facet model (Figure5(b)) can describe all typical situations: asymmetric shapes, sloping roofs or ground

(i.e., every vertex can have a different height). Hence, the proposed generic model describes more various

building models than the model set shown in Figure5. Since a complex building can be described as an

aggregation of simple polyhedral building models, our approach can also deal with complex buildings

once a partitioning of the building into simple building-parts is done. In this case, vertices are estimated

for each simple model. The vertices having adjacent models are replaced by the barycenter of these

points in order to reconstruct the final model.

The adopted multi-facet roof model comprises six verticesA, B, C, D, M , N (see Figure6).

In theory, the estimation of the roof model is equivalent to the estimation of the three-dimensional

coordinates (X, Y, Z) of each vertex. As previously mentioned, the rectangular building footprint is

manually selected in one image by an operator (interactive method). This footprint is considered as

the footprint of reference for the succeeding processes. Moreover, the calibration of the aerial images

is known (intrinsic and extrinsic parameters of the cameras). Consequently, the perspective 3D lines

passing by the vertices of the image footprint are known. The3D vertices that we seek to determine

(A, B, C, D) are 3D points located along these perspective lines with unknown heights. In other

words, by varying the height value, the corresponding 3D point slides along the perspective line. In

this condition, the outer vertices we are searching for eachhave one degree of freedom. Hence, our

polyhedral model can be simplified to ten parameters insteadof eighteen: four parameters for the heights

of the outer vertices and six parameters for the three-dimensional coordinates of the inner vertices. These

ten parameters are encapsulated into one single vectorw:

w = (XM , YM , ZM , XN , YN , ZN , ZA, ZB, ZC, ZD)T (1)
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Figure 5. Samples of parametric building modelsM that can be reconstructed by our
proposed featureless approach. Standard polyhedral shapes and their corresponding ground
footprints are shown.D corresponds to the number of parameters.P denotes the model
parameters.Hg andHc correspond to the gutter height and the central line height.α andβ

respectively represent the horizontal and vertical recessas illustrated in blue.

D = 1
M1

P = Hg

(a) Flat roof.

D = 2
M2

P = (Hg, Hg′)

(b) Shed roof.

M3

P = (Hg, Hc)

(c) Pyramidal roof.

M4

P = (Hg, Hc)

(d) Gable roof.

M5

P = (Hg, Hc)

(e) Gable roof.

D = 3M6

P = (Hg, Hc, α)

α

(f) Hip roof.

M7

P = (Hg, Hc, β)

β

(g) Hip roof.

M8

P = (Hg, Hc, α)

(h) Hip roof.

M9

P = (Hg, Hc, β)

(i) Hip roof.

M10

P = (Hg, Hc, α)

(j) Hip roof.

M11

P = (Hg, Hc, β))

(k) Hip roof.

M12

P = (Hg, Hc, β)

(l) Saltbox roof.

M13

P = (Hg, Hc, α)

(m) Saltbox roof.

D = 4
M14

P = (Hg, Hc, α, β)

(n) Hip roof.

M15

P = (Hg, Hc, α, β)

(o) Hip roof.
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Figure 6. The adopted generic 3D polyhedral model. The multi-facet model (i.e., deformable
model) is parameterized by Equation (3). sA, sB, sC , sD correspond to the footprint
vertices selected in the image planeΠI (master image).λM andλN correspond to the linear
coordinates of the inner verticesM andN (unknown) along the detected Hough lineLH .
C1 corresponds to the center of projection of camera 1. Blue andgreen lines are outer and
inner lines of sight (perspective lines), respectively.ΠG represents the ground plane in a
geo-referenced world coordinate system.

b b

b

bb

b

b

b
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b
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b b
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C

B
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U

V

X

Y
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sD

sB
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λMλN

Moreover, since the images are calibrated the 3D coordinates of the inner verticesM andN can

be replaced by the triplets(UM , VM , ZM) and(UN , VN , ZN), respectively.(U, V ) represent the image

coordinates in the reference image.

Furthermore, it is easy to show that our polyhedral model canbe fully described by the 3D coordinates

of the inner vertices and of two outer vertices that are diagonally opposite (coplanarity constraint).

Indeed, the building can be parameterized by eight parameters: four parameters for the image location

of the inner verticesM andN but also four parameters for the height of the verticesA, M , N , andC.

The remaining vertices are determined by intersecting the corresponding lines of sight with the estimated

support planes. Indeed, we assume thatB belongs to the estimated plane (ANM) andD belongs to the

estimated plane (CMN) since the roof shape is supposed to be composed of planar facets. For these

reasons, Equation (1) can be simplified to:

w = (UM , VM , UN , VN , ZA, ZM , ZN , ZC)T (2)

where (UM ,VM ) and (UN ,VN ) are the image coordinates of the verticesM andN , respectively.
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In other words, our method has the obvious advantage that thecoplanarity constraints are implicitly

enforced in the model parametrization. By contrast, the feature-based approach requires fitting the planes

to DSM or 3D points.

Recall that the3D coordinates are expressed in a local coordinate system whose Z-axis coincides

with the ground normal (the aerial images are geo-referenced). In practice, although the location of

inner vertices is not known, the2D line (the projection of a ridge segment) going through them can

be easily extracted from the image by using a conventional edge detector (e.g., Canny edge detector)

followed by a Hough transform. Once the equation of this lineis known, the parametrization of the

building model (Equation2) can be further simplified to:

w = (λM , λN , ZA, ZM , ZN , ZC)T (3)

whereλM andλN parameterize the location of the inner vertices along the 2Dsegment obtained by

intersecting the 2D line with the building footprint.

Thus, finding the model boils down to finding this vectorw. Henceforth, we have defined the

parametrization of the adopted generic building model. Thesucceeding section aims at describing a

global methodology in order to determine the kind of model (one-facet or multi-facet) that corresponds

to the reality as well as to compute the corresponding numeric parameters. To this effect, some computer

vision mechanisms and strategies are described for 3D building shape recovery.

4. Proposed Approach

In this study, we present a novel modeling approach which is direct and image-based. The challenge

consists in the reconstruction of 3D polyhedral building shapes using directly photometric information

of aerial images. In computer vision, direct approaches have been essentially proposed for the image

registration in order to generate mosaic images. Featureless image registration techniques strive to

compute the global motion of the brightness pattern (e.g., affine or homographic transforms) without

using matched features (e.g., [20]). We were inspired by this kind of approach and we propose a direct

method for 3D building reconstruction. The flowchart diagram of the proposed approach is depicted in

Figure7.

4.1. Multiscopic Context and 3D to 2D Projection

As previously mentioned, our approach employs calibrated aerial images. The building under study

is observed byn different points of view (n ≥ 2), in other words, in a multiscopic context. The visible

area common to all the associated images is called overlapping area or overlapping volume. This area

potentially characterizes the reconstructible area into 3D. We mention that geometric principles for

3D scene reconstruction from multiple views are described in detail in [35]. Besides, if the camera’s

calibration is known and if the images are properly georeferenced, as assumed in our case, then

an hypothetic physical 3D pointM(X, Y, Z) (expressed in the world referential) that belongs to the

overlapping volume can be projected in each image acquired by the cameraCi onto a corresponding
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image pointpi(ui, vi) where1 ≤ i ≤ n. These image points called homologous points can be calculated

using a3 × 4 projective camera matrixP:

P = K · [R|T] (4)

whereK corresponds to the matrix of intrinsic parameters related to the cameraCi, R andT correspond to

the extrinsic parameters which denote the coordinate system transformations from 3D world coordinates

to 3D camera coordinates.

Figure 7. Flowchart diagram of the proposed approach (top) and illustrations of the main
steps (bottom).

Calibrated aerial images

3D building model

Focusing stage
(Area of interest)Urban knowledge

Hypothesis generation
and verification

Direct and featureless approach

4.2. Measuring Model-to-Data Consistency

In computer vision, the homography principle is employed inimage registration, auto-calibration of

cameras, motion estimation and also for stereoscopy and 3D scene reconstruction. Mathematically, the

homography is a projective collineation that describes an image-to-image transformation that can be

used either in the case of a pure 3D camera rotation, or a planar scene (see Figure8). The homography

matrix can be estimated by different techniques. An overview of these techniques are described in [19].

We are particularly interested by the homography principlesince it can be used to transfer a roof facet

of an image to another image if the 3D support plane of the facet is known.
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Figure 8. Homography induced by a plane.

(R,T) N

frame 1

frame 2

bb

b
b

P

The homography matrix is the transfer matrix that allows thetransfer of the pointp1(x1,y1) of the

reference image (image 1) to its homologous pointp2(x2,y2). The equation that links each pair of

homologous points can be defined as:


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

x2

y2

1


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
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
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
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
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1






⇔ X2

∼= HX1 (5)

where∼= denotes the equality to a given scale factor. Equation (5) provides:















x2 =
H11x1 + H12y1 + H13

H31x1 + H32y1 + H33

y2 =
H21x1 + H22y1 + H23

H31x1 + H32y1 + H33

(6)

The matrixH has eight degrees of freedom. For this reason, it is possibleto judiciously select four

points in another image in order to solve the system. We can note that this technique is generally

employed with key points detectors. The coefficients of the matrix H depend on intrinsic and extrinsic

parameters of the cameras as well as on the parameters of the plane:

H ∼= K2 · [R +
T
d

Nt] · K−1

1
(7)

where the matrixK1 andK2 respectively are the intrinsic matrix of the two cameras,R represents the

rotation,T represents the translation vector (R andT represent the motion between the two cameras),N

andd represent the parameters of the plane in the camera 1.

In our case, the intrinsic and extrinsic parameters of the cameras are known (calibrated cameras). The

parameters of the plane need to be determined for each facet that compose the model. If the planes’

parameters are known, the homography matrix will directly transfer, facet by facet, sets of master pixels

to their homologous pixels.
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Measuring Facets-to-Data Consistency

In this subsection, a measure has been defined in order to value the accuracy of hypothetical facets

according to the data. As we recall, in the multi-facet case,the facets are rigidly joined as shown in

Figure 6. Firstly, we stress the importance of having a rigorous matching between the homologous

points. The homologous points are 2D pixels representing the same 3D physical point in the scene. For

this reason, the pixel intensities of homologous points have very close numeric values.

More precisely, our basic idea relies on the following fact:if the shape and the geometric parameters

of the building (encoded by the vectorw) correspond to the real building shape and geometry, then the

pixel-to-pixel mapping (induced by homographies) betweenthe master imageIm (the one containing the

selected 2D footprint) and any other aerial image (in which the building is visible) will be correct for the

entire building footprint. In other words, the dissimilarity associated with the two sets of pixels should

correspond to a minimum.

Recall thatw is defining all support planes of all the building’s facets and thus the corresponding

pixel p′ of any pixelp is estimated by a simple image transfer through homographies (3 × 3 matrices)

based on these planes. Therefore, the associated global dissimilarity measure reaches a minimum. For

an arbitrary model instancew, the global dissimilarity is given by the following score:

e =
n−1
∑

j=1

∑

p∈S

ρ(|Im(p) − Ij(p
′)|) (8)

wheren is the number of aerial images in which the whole building roof is visible (in practice,n is

between 2 and 5),S is the footprint of the building in the master imageIm, p′ is the pixel in the image

Ij 6= Im that corresponds to the pixelp ∈ Im, andρ(x) is a robust error function.

The choice of the error functionρ(x) will determine the nature of the global error (8) which can

be the Sum of Squared Differences (SSD) (ρ(x) = 1

2
x2), the Sum of Absolute Differences (SAD)

(ρ(x) = x), or the saturated Sum of Absolute Differences. In general,the functionρ(x) could be

any M-estimator [36]. In our experiments, we used the SAD score since it is relatively robust and its

computation is fast.

We seek the polyhedral modelw⋆ = (λ⋆
M , λ⋆

N , Z⋆
A, Z⋆

M , Z⋆
N , Z⋆

C)T that minimizes the above

dissimilarity measure over the building footprint:

w⋆ = arg min
w

e (9)

We can also measure the fitness of the 3D model by measuring thegradient norms along the projected

3D segments of the generated 3D models. In general, at facet discontinuities the image gradient is high.

Thus, for a good fit, the projection of the 3D segments will coincide with pixels having a high gradient

norm in all images. Therefore, we want to maximize the sum of gradient norms along these segments

over all images. Recall that we have at most nine segments forour simple 3D polyhedral model. Thus,

the gradient score is given by:

g =
1

n

n
∑

j

gj (10)
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wheregj is the gradient score for imageIj . It is given by the average of the gradient norm over all pixels

coinciding with the projected 3D model segments.

Since we want the dissimilarity measure (8) and the gradient score (10) to help us determine the best

3D polyhedral model, we must combine them in some way. One obvious way is to minimize the ratio:

w⋆ = arg min
w

e

g
(11)

It is worth noting that during the optimization of (11) there is no feature extraction nor matching

among the images. Furthermore, the use of the image gradientnorms in (11) is not equivalent to a

feature-based method.

The image-to-image transfer can be carried out pixel-to-pixel by combining 3D point construction

(line of sight intersected with plane) and 3D-to-2D projection; or more directly facet-to-facet by using

homographic transfer (Equation5).

In order to minimize (11) over w, we will use an evolutionary optimizer that will be described in

Subsection4.3.

4.3. Computing the Polyhedral Building Model

In this subsection, we briefly describe the mechanisms and the goals of optimization processes.

Moreover, we select an optimizer adapted to the considered modeling problem.

4.3.1. Computing the Prismatic Building Model

In our case, our approach begins by approximating any building model by one horizontal facet,

i.e., adopting a prismatic model. An urban database is employed in order to know the minimum and

maximum ground altitudeZground min, Zground max of the area under study as well as the minimum and

maximum heights amongst all the included buildingsHmin, Hmax (e.g.Hmin = 5m andHmax = 50m).

The ground altitudes are provided according to the sea altitude. Consequently, we know with certainty

that the building altitudez is in the intervalI = [Zground min + Hmin; Zground max + Hmax]. If we sweep

this interval forz values with a step△z, then we obtain a set of candidates from which the best prismatic

model is selected—the one that minimizes the objective function (11).

4.3.2. Computing the 3D Model Using the Differential Evolution Algorithm

The Differential Evolution algorithm belongs to the familyof Genetic Algorithms and to the

evolutionary strategies. The genetic algorithm modifies the structure of individuals using the mutation

and the crossover. The evolutionary strategies achieve theauto-adaptation by geometric manipulation of

individuals. These ideas have been formulated by a simple and powerful operation of vectors mutation

proposed in 1995 by Price and Storn ([37]). Since then the Differential Evolution has become an essential

method for a large quantity of real problems and benchmarks.

The DE algorithm is employed in order to compute the 3D model and integrates the minimization

process guided by the dissimilarity measure previously defined. This algorithm achieves generations

of solutions—populations. The population of the first generation is randomly chosen around a rough



Sensors2011, 11 243

solution. The rough solution will thus define a given distribution for the model parameters. The

rough solution is simply given by a zero-order approximation model (the prismatic model) which is

also obtained by minimizing the dissimilarity score over one unknown (the average height of the roof).

In our case, the use of the DE algorithm is described in Figure9 which illustrates the main steps

performed in one single iteration for one facet. (1) The prismatic model is estimated, (2) a population is

generated from the prismatic model, (3) the best model is determined, (4) a new solution is generated by

using crossover, mutation and evaluation steps.

Figure 9. Illustration of one iteration of the DE algorithm.

Initial population

Resulting population - progeny (iteration 1)

Individual 0 Individual n

Minimal score

BESTTRIAL

Prismatic model

< 60
◦

= +- -( ( ))+ [ ]F*

Crossing Mutation

?

Evaluation / Selection

If SAD(TRIAL) ≤ (SAD(BEST)) Then BEST← TRIAL

If SAD(TRIAL) ≤ (SAD(Individual i)) Then Individual i← TRIAL

1

2

3

4

We use the Differential Evolution optimizer since it has four interesting properties: (i) it does not need

an accurate initialization, (ii) it can integrate geometric constraints according to the context (adaptability

properties), for example, constraints can be imposed in order to ensure that the polyhedral roof model

are an assembly of facets with slopes inferior to60◦ (standard information coming from urban databases

concerning the area under study), (iii) it does not need the computation of partial derivatives of the

cost function, and (iv) theoretically it can provide the global optimum. Hence, this algorithm is easy

to implement and to integrate into the applications. In our case, the experiments show that only a few

iterations lead to convincing results.
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4.3.3. Selecting One or Multi-Facet Building Modeling

This subsection deals with the one-facet or multi-facet selection. Several automatic strategies can be

employed:

• The first strategy consists in reconstructing the two modelsindependently (one-facet model (sloped

roof) and multi-facet model). Each calculated model provides a SAD score. The 3D model

finally obtained will be the solution providing the minimum score among the models shown in

Figures10(b), 10(c), 10(d) in the sense that this score characterizes a better correspondence

between the 3D model and the image data set.

• The second strategy (adopted) exploits the putative estimation of 4 facet normals. The building

footprint (rectangular) is divided into4 triangular facets as a pyramidal model (see Figure10(a)).

The estimation of the pyramidal model is driven by the evolutionary algorithm as described above.

A geometrical constraint is imposed; namely, the central 3Dpoint is located along the line of

sight that passes across the central pixel of the footprint in the master image. In this first step, a

pyramidal model is computed. In a second step, a scoreS6 is set the highest deviation between

the 4 facet normals and the vertical direction. If this computed score is less than a predefined

tolerance threshold for normals verticalness denotedT⊥ (low angular deviation empirically fixed)

then the retained model is the prismatic model initially calculated (e.g., Figure10(b)). If this

score exceeds this tolerance threshold (normals are non vertical), a scoreS ′6 is set to the highest

deviation between the facet normals. If this calculated score is less than a predefined tolerance

threshold for normals parallelism denotedT‖ then the one-facet estimation (e.g., Figure10(c)) is

carried out (estimation of a triangular facet using the rectangular footprint and estimation of the

fourth vertex by intersecting the associated line of sight with the estimated plane). Otherwise,

it means that the normal vectors are neither vertical, nor parallel (e.g., Figure10(d)). In this

condition, the multi-facet modeling is carried out.

Figure 10. (a) Building footprint initially selected. No prior knowledge of the model shape
is known. (b) Estimated prismatic model (algorithm initialization). (c) Estimated one-facet
model (sloped roof). (d) Estimated multi-facet model (hip roof).

?
(a)

(b) (c) (d)



Sensors2011, 11 245

It is worth noting that erroneous feature-based solutions as illustrated in Figures4(a) and 4(b)

(DEM-based) or coming from existing, less accurate, modeling pipeline could be used as initial solutions

for the prismatic model estimation. Alternatively, they can also be used more directly as initial solutions

for the Differential Evolution algorithm (multi-facet). In summary, the proposed approach proceeds in

two parts. First, the algorithm decides if the building contains one or more facets. This decision is carried

out by analyzing the 3D normals associated with four virtualtriangles forming a partition of the whole

building footprint. Second, once the model is selected, itsassociated parameters are then estimated by

minimizing the defined dissimilarity score.

5. Experimental Results and Performance Study

In this section, we present the dataset employed as input of the proposed approach as well as the

evaluations and the results obtained by our reconstructionmethod. We carry out several evaluations in

order to analyze the convergence, the robustness and the accuracy of our image-based approach. These

evaluations demonstrate the high potential of our modelingapproach.

5.1. Input Dataset

The considered input dataset contains multiscopic gray-scale aerial images (see sample Figure11).

Each acquired image is described by a set of data specifying the georeferencing, the intrinsic parameters

of the camera (e.g., focal, distortion coefficient, principal point) as well as the extrinsic parameters of

camera location and orientation (rotation matrix, coordinates of point of view). These images have

been acquired from an airplane, equipped with three cameras, coming from the aerial office of the city of

Toulouse. A central camera was oriented vertically to the Nadir point. Two other cameras were mounted,

one to the front of the plane and the other to the back of the plane, with a front and back oblique view. The

resolution of the digital images is sub-metric and is around10 centimeters. There are two key parameters

related to acquisition, namely;B that corresponds to the distance between two cameras (two positions)

andH that corresponds to the altitude of the flight. Generally, these two parameters are provided by

the ratio B
H

. A high ratio allows for a more accurate reconstruction. A low ratio allows a more reliable

matching but reduces the accuracy. For the considered dataset, B
H

= 230

1280
≈ 0.18. The acquired images

are well-spaced and demonstrate a sufficient level of overlap. Hence, the input dataset is appropriate to

carry out the 3D reconstruction.

Comments:

• The image resolution is sufficient in order to reach the intermediary level of modeling

(Figure1(b)).

• In order to reduce self-occlusion of roofs and perspective effects, we use images

captured by the vertical camera only. Moreover, for a given set of Nadir images in

which the building under study is visible, the master image is the one having its center

the closest to the 2D building footprint. These choices for the camera and for the

master image maintain a certain matching robustness.

• As previously mentioned, no Digital Elevation Model has been used in our approach.
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Figure 11. A pair sample of aerial images extracted of the multiscopic dataset. Each image
covers a common area of the city of Marseille acquired from different points of view (partial
overlapping). The size of the images isNc × Nr = 4, 158 × 4, 160 whereNc andNr

correspond to the number of columns and rows, respectively.

(a) View point 1 (b) View point 2

5.2. Reconstructed 3D Models and Convergence Study

In this subsection, we measure the quality of the reconstruction obtained using the DE algorithm.

We carry out a 3D modeling of one generic 3D facet running the DE algorithm with30 iterations. The

considered facet contains5, 424 pixels. The number of individuals that compose the population is fixed

to 30.

Figure 12. (a) illustrates the facet in the master image. (b) illustrates the successively
estimated 3D facets during the evolution of DE algorithm. (c) and (d) illustrate the final
estimated 3D model.

(a) the selected facet in the
master image (top view).

(b) Estimated 3D facets
resulting from three
successive iterations
(perspective view).

(c) the estimated one-facet
3D model (a quarter).

(d) the estimated multi-facet
pyramidal (full).
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Figure 12(b) shows the estimated 3D facet corresponding to three iterations of the DE algorithm.

The facets green, blue and red respectively correspond to the solution associated with iterations1, 11

and26, respectively. We can observe the facet evolved in the three-dimensional space. Each emerging

facet represents a more accurate solution than the solutionestimated in the preceding iteration. The

intermediary solutions tend to correlate with the 3D groundtruth. The image facet initially selected

corresponds to a roof portion of a pyramidal building (Figure12(a)). In Figure12(b), the coarse structure

drawn in white is only shown to accentuate the perspective effect for a better comprehension. The final

3D models (3D quarter and pyramidal model) resulting from the estimation are respectively shown in

Figures12(c)and12(d).

Figure 13. Estimated 3D polyhedral building model and related convergence.

(a) the selected building in
the master image.

(b) the estimated 3D
polyhedral model.

(c) the projection of the
estimated model onto the
image.

(d) the evolution of the best
SAD as a function of the
iteration number.

Figure13 shows the reconstructed 3D model (Figure13(b)) associated with the building footprint

selected in the master image (Figure13(a)). The estimated 3D model projected into 2D images

(e.g., 13(c)) enables the qualitative verification of the geometric coherence of the reconstructed 3D

model. Figure13(d)illustrates the global SAD score normalized by the number ofpixels corresponding

to the best individual obtained by each iteration. The graphevolution of the SAD shows the progressive

evolution of the reconstructed 3D facets towards the groundtruth configuration.

Additional evaluations and results of reconstructed 3D building models and convergence are

illustrated in Figures14and15. In particular, Figure15shows in detail the evolution of a 3D polyhedral

building model using the DE algorithm. The model convergence is analyzed in the aerial images

(column1 and2) and in the three dimensional space (column3) at different iterations of the algorithm

(iterations1, 3 and5). We observe that the registration of the full building footprint (boundaries and inner
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line segments) between the master image (fixed footprint) and the other images (moving footprints) from

the multiscopic dataset allows the correct 3D structure of the associated polyhedral model to be inferred.

The registration process is guided by the DE algorithm. The estimated 3D models show a coherent

converging shape from one to the next iteration. This continuity demonstrates the convergence reliability

of the process.

Figure 14. Estimated 3D polyhedral building model and related convergence.

(a) the selected building in
the master image.

(b) the estimated 3D
polyhedral model.

(c) the projection of the
estimated model onto the
image.

(d) the evolution of the best
SAD as a function of the
iteration number.

5.3. Accuracy Evaluation

Figure15 shows the results of reconstructing a building composed of four facets. The images shown

in the middle column represent the projection of the estimated 3D model. At the end of the optimization

process, we observe that the model points projected onto theother image coincide from one image to the

other. This demonstrates that the estimated three-dimensional model is accurate. For a more quantitative

evaluation, we selected one facet of this building and compared the 3D model with that obtained by a

DEM-based modeling approach.

Table2 provides a comparison associated with one 3D facet using on the one side, a DEM-based

approach and on the other side, our proposed direct approach. The DEM-based approach from the

known modeling pipeline previously mentioned has been usedas a reference in our evaluation. Notice

that the presented 3D facet solution (3D plane equation) hasbeen estimated using a robust estimator by

considering the complete set of 3D points included in the facet footprint.

The direct image-based and featureless approach provides asatisfying three-dimensional modeling

since the results are very close to the ground truth data. As can be seen in Table2, the results indicate an

average deviation of around one decimeter.
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Accuracy evaluation will also be studied in the following subsections that deal with the robustness

evaluation of the proposed approach in complex cases.

Figure 15. The best solution at several iterations of the DifferentialEvolution algorithm.
The evolution of the 3D model and the footprint in the associated image is shown. The
proposed algorithm converges to an optimal final solution ina few iterations.

ite. 0

ite. 1

ite. 3

ite. 5
Master image Associated image 3D model
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Table 2. Comparison of 3D modeling results obtained in the first case from a DEM-based
approach and in the second case from our direct image-based approach.

DEM-based approach Featureless proposed approach
p1 (117.59, 396.80, 26.95) (117.66, 396.75, 27.21)
p2 (123.96, 387.79, 23.70) (124.05, 387.74, 23.80)
p3 (108.36, 390.32, 24.51) (108.33, 390.26, 23.85)

Barycenter (116.70, 391.62, 24.97) (116.66, 391.67, 25.06)

5.4. Performance in the Presence of Image Noise

In order to get a quantitative evaluation of the 3D accuracy of the proposed approach, we adopted a

simple and cheap scheme. For the sake of simplicity, we limited the study to a triangular facet that is

viewed in two aerial images. In this scheme, we employ semi-synthetic aerial images (see Figure16).

Starting from a 3D facet model associated with a master imagewe synthesize the rawbrightness of this

facet in the second image by simply warping its rawbrightness in the master image to the second image.

The 3D selected solution will be considered as the ground truth. Each pixel belonging to the footprint

in the second image is synthesized by its match from the master image using a bilinear interpolation

and the corresponding ground-truth homography. In this case, the associated SAD value will be close to

zero. We then add image noise to the transferred rawbrightness. The proposed reconstruction approach

is then invoked in order to compute the 3D model of this facet.The deviation between the ground-truth

3D model and the estimated 3D model is calculated as a function of the noise magnitude.

Figure 16. Adding noise to a facet for robustness evaluation. The intensities of the
gray-scale pixels belong to the interval [0,255]. The magnitudeM of the uniform noise
progressively increases according to the respective intervalsM1 = [−4, 4], M2 = [−8, 8],
M3 = [−16, 16] andM4 = [−32, 32]. These four levels of noise are shown in (b) (the
corresponding random noise affected the bottom facet).

(a) Targeted pyramidal building
model.

(b) Noisy facets (bottom facet).

We have used two kinds of image noise: uniform and Gaussian. The three first tests correspond to a

uniform noise. The three succeeding tests correspond to a Gaussian noise (see Figure17).

Figures17, 18 and19 show the errors of 3D reconstruction of one facet as a function of the level

of noise, respectively uniform (to the left) and Gaussian (to the right). These errors are obtained by
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calculating an average over ten trials for each noise level,i.e., ten reconstruction solutions. The 3D errors

are expressed in meters. Thex-axis shows the four levels of noise magnitude. The square deviation of

the Gaussian noise is equal to32 when the level of magnitude is equal to4.

Figure 17. Error on the facet height.
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(b) Gaussian noise

Figure 18. Error on the sloping angle.
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Figure 19. Error on the vertex 3D positions.
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In this way, the added noise that progressively increases simulates images of buildings with different

levels of quality and tests them for a 3D reconstruction. Thus, the first level of noise simulates slight

defaults in the acquisition. In this way, we can test the robustness of our reconstruction method according

to the quality of the acquired images.

We observe that the noise added to the image of footprints does not severely affect the accuracy of

the 3D reconstruction. Depending on the type of noise, the average errors associated to the vertices can

reach 33 cm, the average error associated with the sloping angle can reach3.5◦ and the average error

associated with the vertices altitude can reach 31 cm. Moreover, we can observe that the maximum

errors have an inaccuracy multiplied by two to three with a maximum sloping angle of7.2◦, a maximum

location deviation of 62 cm and a maximum altitude deviationof 53 cm. The values concerning the

location and the sloping errors seem to oscillate while the altitude error seems to increase more with the

noise. Nevertheless, despite the presence of high noise magnitude, the location deviations remain inferior

to one meter and the sloping angle deviation is inferior to10◦. These values prove that the quality of the

acquired images and their resolution are sufficient to allowaccurate 3D building reconstruction using the

proposed method.

5.5. Performance According to the Image Resolution

In this subsection, we propose to study the performance of the approach when the image resolution is

reduced. A simple experiment was conducted. A triangular facet was selected. This facet contains5432

pixels. We generated a sub-sampled facet by dropping every other column in the original image. Thus,

we simulated a facet image with a reduced resolution.

Table 3. Comparison of 3D modeling results in the cases original resolution and sub-sample
images.

Original resolution images Sub-sampled images
p1 (117.65, 396.75, 27.14) (117.65, 396.77, 26.87)
p2 (124.05, 387.75, 23.70) (124.05, 387.75, 23.76)
p3 (108.35, 390.24, 24.44) (108.34, 390.25, 24.27)

Table3 illustrates the 3D reconstruction of the tested triangularfacet with the original resolution (first

column) and with the reduced resolution (second column). The deviation between these two solutions

is very small. The estimated 3D coordinates of the facet vertices globally varied for a few centimeters.

In extreme cases, this deviation was around 20cm. In spite ofa decrease in the image resolution, the

accuracy of the estimated 3D models does not considerably downgrade.

5.6. Performance in the Presence of Superstructures

As previously mentioned, we aim to reconstruct planar roofsfrom aerial images. An important

question comes to mind: what is the effect of superstructures on our reconstruction method? Indeed, a

large majority of buildings incorporate superstructures.Consequently, the superstructures may generate

unwanted noise since their 3D structures are not included inthe dominant plane associated with the facet.
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In this section, we present a method which increases the robustness of the facet reconstruction having

several superstructures. The aim is to prevent the superstructures from distorting the estimation of the

planar roofs. The idea consists in (i) detecting the pixels of the superstructures, and (ii) in using the

footprint removed from these pixels. Assuming that the 3D plane calculated by the Differential Evolution

algorithm is relatively accurate, we can thus classify the associated pixels into two categories: the pixels

belonging to the dominant plane and the outlier pixels (pixels that do not belong to the plane). The

proposed method proceeds in two passes:

• In the first pass, the DE algorithm is used with the totality ofthe reference footprint.

• In the second pass, the DE algorithm is used with only those pixels considered as belonging to the

dominant plane.

Once the plane has been estimated in the first pass, several techniques can be used in order to carry

out a coarse classification of the pixels. We observe that thepixels that do not belong to the theoretical

plane of the facet will have a significant residual (absolutedifference between the gray levels in different

images) since the transfer pixel-to-pixel will not be correct. The idea is then to detect the pixels having

a significant residual. We present then two techniques basedon the threshold of individual residuals:

• The first technique selects the outlier pixels by determining a threshold for the residuals. The

empirical thresholdTemp is defined as follows:

Temp = µ + k × σ (12)

wherek is the coefficient of weight and has been manually determined. µ is the average of the

individual residuals andσ is the associated square deviation.

For k = 0.2, we observe that the major part of the superstructures included in the facet (chimney and

trap of roof) are detected.

• The second technique uses another formula for the threshold. This threshold notedTgen is defined

by:

Tgen = 2.5 × Me (13)

where Me corresponds to the median value of the residuals associatedwith the whole facet

footprint.

We observe in Figure20 that the major parts of the numerous superstructures belonging to the facet

are detected. The detected white pixels shown in Figures20(b)and21(b)are ignored in the calculation

of the final solution. All the pixels having higher residual values thanTgen are removed. The adopted

thresholdTgen provides satisfying results for massive and generic filtering of the facet superstructures.

We have carried out a comparison of modeling methods by usingthe solution provided by the DEM as

a reference solution. We have applied the reconstruction methods on one facet including superstructures

namely several chimneys (see Figure20(a)). The solution provided by the DEM has been obtained by

estimating a 3D facet from all the associated elevation points via a robust estimator. Two measures of

dissimilarity have been applied in our DE algorithm, in the first case, the SAD measure and in the second
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case, the SSD measure. Table4 summarizes the 3D reconstruction of the facet using five strategies. We

only report the height of the estimated vertices.

We observe the reconstructions to the altitude of the vertices since it is the parameter that varies the

most (see Table4). We have used the first technique in order to filter the superstructures. The coefficient

k has been empirically tuned to0.2. Although a part of the pixels belonging to the roof plane is filtered

out, this part is low in comparison to the number of the considered pixels (several thousands) in the facet

estimation.

Figure 20. Automatic detection and filtering of the superstructures. The thresholdTgen is
proportional to the median of all residuals. The removed pixels are shown in white.

(a) Targeted facet part with
superstructures.

(b) Detected superstructures.

Figure 21. Filtering out the superstructures. (b) Tuning thek coefficient for the
determination of the residual thresholdTemp ( k = 0,k = 0.1,k = 0.2,k = 0.3, respectively, ).
The removed pixels are shown in white.

(a) Targeted facet part with
superstructures.

(b) The superstructure detection with
different values fork.

We observe that the most accurate method seems to employ the SAD measure. Moreover, we find

that the presence of superstructures can affect the 3D reconstructed model. A filtering stage is thus

necessary in order to increase the accuracy of the solution.To this step, we envisage testing several

methods integrating by different ways the superstructure filtering with the aim of model improvement.

We stress on the fact that the DEM-based reference solution does not correspond to the ground truth.
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Table 4. Comparing the modeling results obtained with the SAD and SSDscores using
facets including superstructures with and without the filtering process.

DEM SAD SAD SSD SSD
Including superstructures filtering superstructures filtering

z1 41.96 m 42.92 m 42.22 m 43.61 m 42.75 m
z2 41.36 m 41.10 m 40.98 m 40.84 m 40.87 m
z3 39.78 m 39.62 m 40.22 m 38.88 m 40.10 m

Average deviation inz 0.0 m 0.46 m 0.36 m 1.02 m 0.53 m

5.7. Performance in the Presence of Significant Shadows

As previously mentioned, the correct image registration ofthe building footprint leads to a correct 3D

building model. Figure22 illustrates the 3D modeling of some buildings using aerial images containing

significant areas of shadow. In the figure, we visualize the 2Dprojection of the obtained 3D model in

the non-reference image. As can be seen, for a variety of different buildings, the registration process is

robust even in the presence of significant shadows.

Figure 22. Correct building modeling in the presence of significant shadows. The master
images are not shown.

(a) Gable roof. (b) Hip roof.

(c) Gable roof. (d) Hip roof.

6. Conclusions

6.1. Contribution

In this work, we provided an overview of some problems and solutions dealing with 3D building

modeling. We proposed a new methodology for 3D building reconstruction based on a featureless

process. To the best of our knowledge, this method has never been exploited in the 3D building

modeling problem. Unlike existing methods, the pixel-to-pixel matching process is avoided. However,
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it is a by-product of the proposed method in the sense that once the 3D shape of the building is

known, the image-to-image transfer is known from the associated homographies. The optimization

associated with the proposed method has been carried out using the Differential Evolution algorithm.

The method has been validated using real and simulated images. The proposed approach was compared

with DEM based modeling approaches. It is beyond the scope ofthe current work to compare the

proposed approach with all existing feature-based approaches. Indeed, it is well known that featureless

approaches outperform feature-based approaches regarding the accuracy of the estimated geometric

transforms used for image registration. The proposed method provides a satisfying polyhedral building

reconstruction from gray-scale calibrated aerial images.The proposed top-down approach is also able

to rectify erroneous reconstructed polyhedral building models in existing 3D city models whenever the

corresponding aerial images are available. Furthermore, we argue that the proposed modeling method

provides a novel tool that can be used in existing large-scale urban modeling pipelines as a main or

complementary tool.

6.2. Future Work

Future work will be concentrated on the following directions:

• Testing other dissimilarity measures. New dissimilarity measures could be used and evaluated.

• Improving the reconstruction of roofs having superstructures. One possible solution is the

integration of the outlier pixel filtering in the Differential Evolution algorithm. Indeed, each

individual provides a normalized SAD score which considersonly the pixels belonging to the roof

plane. The pixels belonging to the superstructures will notbe considered in the score calculation.

The superstructure filtering will generate a different distribution in the progeny and provide a more

accurate solution. The second scenario envisions running the proposed two passes several times.

• As we have previously mentioned, the registration process is carried out between a reference

footprint (fixed boundaries) selected by an operator in the master image and the rawbrightness

of the aerial images of the multiscopic data set in which the building is visible. Consequently, the

initial boundary line segments of the reference footprint could be slightly shifted. In a future work,

we intend to use a method that is able to deform a rough 2D footprint into a precise 2D footprint.

This rectification process should precede the image based 3Dreconstruction. We stress the fact

that the use of cadastral maps can release the requirement ofhaving an accurate 2D footprint.

• In our work, we assume that the building roof has conventional and simple shapes. Research could

be done in the future in order to extend the direct approach tothe case of generic buildings and

roofs with atypical shapes.
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