
Sensors 2011, 11, 10010-10037; doi:10.3390/s111110010 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Improving Prediction Accuracy for WSN Data Reduction by 
Applying Multivariate Spatio-Temporal Correlation 

Carlos Carvalho 1,*, Danielo G. Gomes 1, Nazim Agoulmine 2 and José Neuman de Souza 1  

1 Group of Computer Networks, Software Engineering and Systems (GREat), Federal University of 
Ceará, CEP 60455-760, Fortaleza, Brazil; E-Mails: danielo@ufc.br (D.G.); neuman@ufc.br (J.S.) 

2 LRSM/IBISC Laboratory, University of Evry Val d’Essonne, 91020 Evry Courcouronnes CE 1433, 
France; E-Mail: nazim.agoulmine@iup.univ-evry.fr 

* Author to whom correspondence should be addressed; E-Mail: cgionc@gmail.com;  
Tel.: +55-85-3366-9797; Fax: +55-85-3366-9066. 

Received: 18 August 2011; in revised form: 13 October 2011 / Accepted: 19 October 2011 /  
Published: 25 October 2011 
 

Abstract: This paper proposes a method based on multivariate spatial and temporal 
correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks 
(WSN). Prediction of data not sent to the sink node is a technique used to save energy in 
WSNs by reducing the amount of data traffic. However, it may not be very accurate. 
Simulations were made involving simple linear regression and multiple linear regression 
functions to assess the performance of the proposed method. The results show a higher 
correlation between gathered inputs when compared to time, which is an independent 
variable widely used for prediction and forecasting. Prediction accuracy is lower when 
simple linear regression is used, whereas multiple linear regression is the most accurate 
one. In addition to that, our proposal outperforms some current solutions by about 50% in 
humidity prediction and 21% in light prediction. To the best of our knowledge, we believe 
that we are probably the first to address prediction based on multivariate correlation for 
WSN data reduction. 
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1. Introduction 

Wireless Sensor Networks (WSNs) consist of few or several sensor nodes which are resource 
constrained. Some sensor nodes gather data from external environments and send information  
such as temperature, humidity and light to the sink. The information is sent hop by hop (intermediate 
nodes) until the sink is reached. However, data traffic is a problem in WSN due to high energy 
consumption [1-3]. 

These sensors can be used in many applications such as event detection, location, monitoring and 
control [4]. Among these applications, environment monitoring is a very common scenario. Therefore, 
data gathering is periodical, generating a large amount of data traffic in the network. 

In this scenario, the sensor nodes frequently send the same data gathered from a specific area. The 
overlapping of information sent to the sink causes waste of energy, which decreases the network 
lifetime. The problem is even worse when the number of deployed nodes increases (scalability), 
because data communication is responsible for most of the energy consumption in WSN [4-6].  

Figure 1 describes how the monitoring system works. Note that each sensor node gathers samples of 
a particular variable (such as temperature) and sends it to the sink at each cycle (epoch). 

Figure 1. Operation of the monitoring system. 

 
 
An energy efficient communication protocol helps improve the deployment of this type of network 

in environments such as vegetation and weather monitoring. The correlation between the data gathered 
by a sensor node and its neighbors, as well as the correlation between the data gathered by the sensor 
node itself over a given time [2] must be explored by efficient protocols to improve energy 
consumption. They are known as spatial and temporal correlation. When more than one variable in the 
correlation is taken into account, the approach is named multivariate correlation. 

The purpose of data prediction is to reduce data traffic to the sink. It has been adopted in several 
papers in the literature [7]. It helps to reduce the overall energy consumption of the network. An 
algorithm is embedded within the sensor node to calculate the coefficients of a linear regression 
function. These coefficients are named β and α, and represent a sequence of variable samples gathered 
by the sensor, such as temperature. Thus, the sensor node sends the coefficients to the sink, instead of 
sending the sequence of variables samples. When β and α arrive at the sink, they are used by the linear 
regression function embedded within the sink. Then the readings sequence is predicted by the 
monitoring system (Figure 2).  
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Figure 2. Operation of the monitoring system based on prediction proposed by current 
authors (simple linear regression). 

 
 
That approach usually takes into account the correlation of only one variable to be predicted (named 

dependent or response variable, e.g., temperature) and only one variable to predict the dependent 
variable (named independent or explanatory variable, e.g., time/epoch). However, the time variable is 
not the most correlated variable with others variables such as temperature, humidity and light. 

Thus, the prediction adopted by current solutions, is sometimes not accurate. Consequently, the 
questions we address here are: “can we use the correlation between the variables gathered by the same 
sensor node to improve prediction accuracy?” and “is the multivariate prediction more accurate than 
published methods?” 

Figure 3. Operation of the monitoring system based on prediction proposed on this paper 
(multiple linear regression). 
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We propose a method that performs prediction of data based on multivariate correlation. In our 
method, we take into account the correlation between two readings of data gathered by the sensor node 
and also the time/epoch variable (Figure 3). Our method is different from current works which use the 
correlation between one variable gathered and the time variable. 

2. Principles 

In our approach we use a tree-based routing protocol to forward the data traffic from sensor nodes 
to the sink node, an approach similar to the one adopted by Li et al. [8]. To avoid spatial overlapping, 
each sensor node checks whether there is a degree of multivariate correlation between the packets 
previously sent by its neighbors. This is done before each sensor node sends the linear regression 
coefficients. Moreover, we also use the multivariate correlation method to avoid temporal overlapping 
in the same sensor node. 

In this paper, simulations with simple and multiple linear regression functions are carried out to 
evaluate the prediction solution. For our solution, initially the correlation degree of the variables 
gathered by the sensor node is measured to decide which variable will be the independent one. Here in 
this paper, the Pearson’s coefficient (r) [9] in a real data trace indicates the strength of a linear 
relationship between two variables, e.g., if the variables are independent, Pearson’s coefficient is zero. 
We evaluate the energy consumption and prediction accuracy in every solution, in which the sensor 
nodes run simple linear regression (current solution) or multiple linear regression (our solution) function. 

An original application to data collection without any prediction mechanism was developed. This 
application emulates a real gathering of temperature, humidity and light data. Then, the original 
version of this application is compared to three enhanced versions, where two use simple linear 
regression and one uses multiple linear regression. The prediction accuracy performance is evaluated 
by means of Residual Sum of Squares (SSerr) and coefficient of determination (R2). 

3. Related Work 

Goel and Imielinski [10] applied the concepts of MPEG compression to reduce energy consumption. 
They proposed a prediction based on a monitoring mechanism, called PREMON, which abstracts the 
data stream sent by sensor nodes to the sink as a video stream encoded by MPEG standard. 

After PREMON, some works [8,11-14] have shown the feasibility of the use of spatial and temporal 
correlation to optimize the communication protocols in WSN. They use algorithms embedded within 
motes, in a distributed way, to reduce data transmission to the sink. These techniques reduce energy 
consumption and consequently increase the network lifetime. 

Xu and Lee [15] proposed a localized prediction mechanism based on object tracking that reduces 
energy consumption due to hierarchy topology. According to Santini and Romer [13], sensor nodes in 
a distributed way are not able to operate, by itself, a data reduction system that can be as accurate as a 
centralized system. It uses statistics of the data history gathered by sensor nodes. 

Matos et al. [7] proposed a simple linear regression to reduce data generated by sensor nodes which 
gather temperature from the external environment. They compared the prediction accuracy performance 
of the simple linear regression with prediction based on the average. The difficulty lies in the fact that 
prediction accuracy based on simple linear regression depends on only one variable, which in many 
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situations, is not correlated with any other. The time variable is usually less correlated than other 
variables gathered in the field, such as temperature, humidity or light. Therefore, prediction errors tend 
to be higher, i.e., less accurate. That paper is the closest to our proposed solution, but it performs 
prediction of user’s queries, instead of constantly performing stream predictions. 

Seo et al. [16] carried out evaluations of some techniques for reducing the multivariate data traffic. 
These techniques are based on wavelet, sampling, hierarchical clustering and Singular Value 
Decomposition—SVD. 

Silva et al. [17] reduced the multivariate dimensionality of data gathered by sensor nodes. The 
authors used Principal Component Analysis—PCA as a reduction technique in an air quality 
monitoring application. The algorithm identifies the more significant samples and then sends them to 
the sink. The highlight of that work is that the parameters’ performance, such as reduced data quality, 
energy consumption and delay, are taken into account in the experiments. Therefore, it is possible to 
observe the effects of applying the technique in multivariate data reduction. However, multivariate 
spatial correlation is not addressed. Also, there are few details about the solution operation, mainly 
about the error resulting from the dimensionality reduction procedure. 

Multivariate spatial and temporal correlation is the key to solve problems of prediction accuracy 
and improve energy savings through data reduction techniques. The papers found in the literature have 
superficially addressed prediction accuracy, but it is an essential issue in WSNs. 

This paper has the advantage (Table 1) of performing correlation analysis of variables gathered by 
sensor nodes before prediction is implemented. Also, the effects of using prediction based on 
multivariate spatial and temporal correlation in WSN were checked. Implementation details of our 
solution are highlighted, revealing the challenges of embed simple and multiple linear regression in 
WSN. In addition, we show when the use of prediction based on the multivariate correlation method is 
more appropriate, according to results. 

Table 1. Comparison of the main characteristics of solutions. 

Work 
Main Characteristics 

Topology 
Spatial 
Correl. 

Temporal 
Correl. 

Mechanism Multivariate 
Correlation 

Analysis 
Goel and  
Imielinski [10] 

Centralized Yes No MPEG Standard—like No No 

Xu and  
Lee [15] 

Localized Yes Yes Dual prediction No No 

Matos et al. [7] Distributed No Yes Simple Linear Regression No No 

Silva et al. [17] Distributed No Yes 
Principal Component 

Analysis 
No No 

Our solution Distributed Yes Yes Multiple Linear Regression Yes Yes 
 
Our work is inspired on these techniques and concepts (spatial and temporal correlation, data 

reduction and prediction), already known in the literature to address energy saving issues in WSN. 
However, we focus on the challenge of improving prediction accuracy of WSN data based on a 
multivariate correlation method. 
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4. Background 

Several techniques have been defined to optimize energy consumption in applications for reducing 
data sent to the sink. The most common are compression, aggregation and fusion [1,4]. Such 
techniques are usually used without taking into account the multivariate spatial and temporal 
correlation of readings gathered by sensors nodes on field. However, many sensor nodes deployed on 
field are usually able to monitor more than one variable, and are thus called multisensors. 

This section describes two concepts used by current works found in the literature, which we used in 
the conception of our solution. To the best of our knowledge, there is no other paper that uses multiple 
linear regressions to perform prediction and Euclidian distance to check correlation between neighbor 
sensor nodes readings, but we found papers such as that of Skordylis et al. [14] which use a technique 
adopted for spatial correlated data reduction by Pearson’s coefficient (r). Also, we found papers such 
as the one by Matos et al. [7] which uses a technique adopted for temporal correlated data reduction by 
simple linear regression. Next, we present these two concepts and the corresponding equations. 

4.1. Pearson’s Coefficient 

Pearson’s coefficient [Equation (1)] is used to identify the spatial correlation of the same variable 
between two sensor nodes [14]. But, it can also be used to identify the correlation between two 
variables of the same sensor node: 

,  ∑∑ ∑  (1) 

where ,  represents the relationship between two one-dimensional vectors  and ,  
to be compared in terms of their correlation. They contain samples window of two variables,   , … ,  and  , … , , where 1, … ,  and  is the number of samples.  and  
represent the average of samples of each variable vector. 

The coefficient  measures the degree of linear relationship between two one-dimensional vectors 
and its results can range from 1 to 1 (real numbers, e.g., 0.9 is highly correlated and 0.9 is also 
highly correlated and 0 is little correlated). There is a perfect linear relationship (two vectors are 
increasing or decreasing their values) when the correlation value is 1. On the other hand, there is a 
perfect inverse linear relationship (one vector increases its values while the other decreases its values) 
when correlation value is 1. There is no linear relationship between two vectors if the correlation 
value is 0 (zero). 

Therefore, when coefficient (r) is close to the highest or lowest value (1 or 1), then the correlation 
between two vectors is high. Thus, we can calculate the spatial and temporal correlation of the 
readings of just one variable between two neighbor sensor nodes [14]. The problem is that we cannot 
calculate the multivariate spatial correlation by using this method, which is necessary for our solution. 
However, the next section shows how Euclidian distance is used to identify the multivariate spatial 
correlation in our solution. 
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In addition, we can build a table which determines how much one variable is related to another. The 
correlation table for variables from real data trace is shown in the next section. Coefficient  is used to 
identify what variable is more correlated to another. This highly correlated variable was used to 
calculate β and α coefficients of the multiple linear regression and also for data recovery in the sink to 
which the data was not sent. 

4.2. Simple Linear Regression 

The current solutions of data reduction by means of linear regression are performed by using simple 
linear regression based on the least squares [Equations (2) and (3)], as applied by Matos et al. [7].  
In that case, each sensor node calculates β and α coefficients by using one variable, usually the 
epoch/time. Then, the sensor node sends its β and α coefficients to the sink, instead of sending the 
readings. The advantage of this solution is that energy consumption is reduced, but on the other hand, 
the prediction is not always accurate. 

Two application versions based on simple linear regression (as the current solutions) were 
developed to compare the performance evaluation of our solution, which use prediction based on 
univariate correlation (simple linear regression based on the least squares). One application version is 
also used by Matos et al. [7], which uses time as independent variable and based on simple linear 
regression. Another application version uses temperature as independent variable and is also based on 
simple linear regression. Coefficients β and α are calculated according to Equations (2) and (3), as 
follows: β ∑ ∑  (2) 

α β (3) 

where β represents a constant that is multiplied by the value of each independent variable. α is a 
constant added to the previous multiplication, resulting in the predicted value.  and  are two  
one-dimensional vectors, which respectively represent samples window of the independent and 
dependent variables, with , … ,  and , … , , where 1, … ,  and  is the number of 
samples.  and  represent the average of samples of each vector. 

Coefficients β and α are calculated by each sensor node and, when arriving at the sink, they are used 
for data recovery, according to Equation (4): α β (4) 

where  and  represent one one-dimensional vectors, which respectively contain the values of the 
predictions made by one dependent variable  and samples window of one independent variable , 
respectively.  , … ,  and , … , , where 1, … ,  and  is the number of 
samples. β and α respectively represent the coefficients calculated by Equations (2) and (3). 

This approach is used in current solutions, but we propose the use of multiple linear regression 
instead of simple linear regression due to the fact that prediction accuracy in multivariate correlation is 
better. In the next section, we describe how to calculate β and α coefficients to perform our method. 
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5. Proposed Solution 

The purpose of our approach is to improve prediction accuracy in the WSN data reduction. We use 
multivariate correlation to decrease prediction errors by means of multiple linear regression as follows: 

(1) multivariate temporal correlation is applied to perform prediction of consecutive readings by 
means of multiple linear regression in each sensor node;  

(2) each sensor node calculates its β and α coefficients and sends them to the sink, instead of 
sending all field readings;  

(3) multivariate spatial correlation is used to detect data overlapping by means of Euclidean 
distance. Therefore, we avoid that the same information is sent by several neighbor sensor 
nodes; and  

(4) the missing data can be generated by the sink. 

The main contributions of this paper are: (1) discussion about prediction accuracy in environmental 
monitoring, which includes the correlation between gathered variables such as temperature, humidity 
and light; (2) it highlights that it is possible to use more accurate prediction solutions through the 
multivariate correlation method; and (3) it presents the challenges and shows, in details, the steps 
required to use this solution for data reduction based on prediction approach by multiple linear 
regression. 

5.1. Proposed Mechanism 

Our proposed solution is done in eight steps. Some premises are assumed, such as a neighbor 
coefficients table is created in each sensor node when it starts; a coefficients table is created in the 
sink; every sensor node remains in promiscuous mode and it stores neighbor coefficients; sampling 
window must be suitable to maximum size of the packet and defined early by the developer. Figure 4 
shows the mechanism according to the steps detailed below: 

(a) Step #1: the sensor node stores a fixed number of samples of gathered readings from all the 
variables in each cycle. 

(b) Step #2: each sensor node calculates coefficients β and α of the multiple linear regression 
function when the sampling window reaches the maximum storage threshold previously 
defined. 

(c) Step #3: before sending its β and α coefficients to the sink, the sensor node looks for duplicated 
entry in its neighbor coefficients table. These coefficients are received from its neighbor sensor 
nodes by broadcast. 

(d) Step #4: if the values generated by the sensor node have already been sent to a neighbor sensor 
node, the sensor node drops its β and α coefficients. Then, it sends a special packet of reduced 
size, named correlation packet. This packet advertises that the sensor node is correlated to 
another neighbor sensor node. 

(e) Step #5: if coefficients β and α have not been sent yet by another neighbor sensor node, the 
sensor node sends them to its parent node until the sink is reached. 
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(f) Step #6: the sensor node also sends the sequence of variable readings which is used as 
independent variable. It is worth mentioning that this variable is calculated by using Pearson’s 
coefficient [Equation (2)]. In our experiment the independent variable is the temperature. 

(g) Step #7: when coefficients β and α reach the sink, they are used in the multiple linear 
regression function to predict the readings which have not been sent. Moreover, these 
coefficients are stored for later use by the correlation packets (Step #4). 

(h) Step #8: if a correlation packet reaches the sink instead of the coefficients, the sink looks for 
entries from the correlated node in its coefficients table (Step #7). Then β and α coefficients 
previously stored, are used to predict the readings. 

Figure 4. Proposed mechanism diagram. 

 

5.2. Multivariate Spatial Correlation 

WSNs consist of multiple nodes spread in a redundant way. Thus, we get a fault tolerant system 
through dense networks. On the other hand, these networks are usually composed of resource 
constrained devices. The energy is supplied by batteries and energy consumption can be better 
managed when the correlations from monitoring applications are taken. Therefore, we can develop 
solutions which reduce data traffic in the network. The spatial correlation can be exploited to optimize 
data communication to the sink and between neighbor sensor nodes [2,12,14]. 

The spatial correlation happens due to similarities of data being sent to the sink by several  
sources from high density network [2]. As mentioned in the previous section, Pearson’s coefficient  
[Equation (1)] does not calculate the multivariate spatial correlation. We propose the use of the 
Euclidean distance to determine the multivariate spatial correlation between two multidimensional 
vectors, instead of using Pearson’s coefficient. The Euclidian distance shows how close a 
multidimensional vector is to another. The Euclidian distance is defined as follows: 

, (5) 

where , … ,  and , … , . In our case ,  represents the correlation between 

two multidimensional vectors of dimension  with 1, … ,  to be compared in terms of their 
correlations. Each vector contains the values of β and α coefficients of each gathered variable by 
sensor node  and its neighbor sensor node . 
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The smaller the Euclidean distance is, the greater is the correlation between two vectors. Thus, we 
can compare coefficients β and α of the multiple linear regression generated from consecutive readings 
gathered by a sensor node to β and α coefficients from its neighbor sensor nodes at a given time. The 
sensor node checks if there is correlation between itself and its neighbor sensor nodes (Step #3), before 
sending a packet containing β and α coefficients of the multiple linear regression function. If the 
Euclidian distance is close to 0  (zero), then it means that a packet with the same content was 
previously sent by any other neighbor sensor node (Step #4). 

In our proposed solution, the sensor node detects if there is multivariate spatial correlation between 
itself and its neighbor node by tree-based routing. This is similar to the compression mechanism 
adopted by Li et al. [8]. The sensor node checks the relationship degree of coefficients β and α by 
calculating the value of ,  [Equation (5)].  

The sensor node does not send coefficients β and α of the current readings to the sink if the 
Euclidian distance is 0 (zero). It eliminates the overlapping of information between neighbor sensor 
nodes. Thus, some sensor nodes do not send data packets at a given time. Therefore, it reduces the 
broadcast between neighbor sensor nodes and also the data forwarded by the relays. 

5.3. Multivariate Temporal Correlation 

The temporal correlation happens due to the fact that the sensor node gathers correlated data from 
one or more variables at a given time. This type of correlation is observed due to the nature of physical 
phenomena [2] (e.g., the environment temperature changes slowly according to time). The simple 
linear regression function is able to work over temporal correlation, but it is not able to work over the 
multivariate temporal correlation (more than one variable). We propose the use of multiple linear 
regression function to work over the multivariate correlation. 

Our data reduction solution occurs in a distributed way, where each sensor node calculates 
coefficients β and α from the multiple linear regression function (Step #2). Then, it only sends β and α 
if there is no multivariate spatial correlation with other neighbor sensor node. 

Coefficients β and α are not calculated by the simple linear regression as the amount of independent 
variables is greater. The multiple linear regression is described below: 

β βββ , 

1 1 1
, 

111  and Y yyy  

with: β X X X Y (6)

where β represents the vector of coefficients of the multiple linear regression function. We use β α 
for simplicity and compatibility with β and α coefficients of the simple linear regression.  is one 
multidimensional vector, which represents the samples window of the independent variable, together 
with its transpose vector .  is the one-dimensional vector, which represents the samples window of 
the dependent variable. 1, … ,  and  is the number of samples, and 1, … ,  where  is the 
dimension of vector . 
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5.4. Data Recovery 

The sink receives β and α coefficients, or the correlated packet for data recovery by means of 
prediction. It distinguishes this based on packet size. Thereafter, the predictor calculates the values of 
the missing readings based on β and α coefficients of the multiple linear regression function  
[Equation (6)]. However, if the correlated packet arrives at the sink instead of coefficients, it uses β 
and α coefficients of the correlated sensor node stored in the coefficients table of the sink. 

In our approach, we decided to adopt a statistical technique to be the predictor due to two main 
reasons: (1) we are initially developing studies to assess the effects of multivariate correlation and its 
advantages over univariate correlation; and (2) we intend to adopt computational intelligence 
techniques to identify its benefits over statistical techniques in further works. 

The prediction of variables using multiple linear regression is calculated according to Equation (7): β β , … , β (7) 

where  represents one one-dimensional vector, which contains the values of predictions made for 
one dependent variable  and  represents the multidimensional vector, which contains values 
history of the samples from more than one independent variable . , … ,  and  , … , , with 1, … , , where  is the number of samples, and 1, … , , where  is the 
dimension of the vector . β and α respectively represent the coefficients calculated using  

Equation (6). As a reminder, β α due to compatibility with the notation of β and α coefficients used 
in this paper. 

The prediction by simple linear regression is calculated by Equation (4), but our proposed solution 
uses a multivariate correlation, instead of a univariate one. Then, our solution uses Equation (7) to 
perform predictions of the values of the variables. 

6. Methodology 

We used simulation to prove the performance of our solution. The simulation tool adopted was 
Tossim (http://docs.tinyos.net/tinywiki/index.php/TOSSIM), because we have the device kits of 
Crossbow (http://www.xbow.com) to later perform testbeds on field and improve our solution. This 
kind of device supports TinyOS 2.x and Tossim is the default tool to do the simulations. 

The whole code was developed for simulation by nesC to TinyOS 2.x. They can be embedded 
within the sensor nodes of the Tossim simulator and also within the real sensor nodes. This ensures 
that the same code used to simulate the experiments is able to perform tests in real scenarios in the 
future.  

The simulation scenarios involve different situations of network density, data application values 
(gathered variables, correlated or not) and way of node deployment. Thus, we check possible real word 
scenarios by simulation. 

Application versions were created to check the improvement of our solution. The first version is the 
baseline to compare the energy consumption. The aim of this version is to measure the energy 
consumption without prediction and to check how much each prediction solution will waste when data 
reduction is used by simple or multiple linear regressions.  
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The second version is a version adopted by Matos et al. [7] to perform data reduction by using 
simple linear regression. It is a basic prediction version in which we check the prediction errors and 
energy consumption. This version is based on the time variable, which is not highly correlated with the 
gathered variables. Therefore, we believe that prediction error tends to increase.  

The third version is a way to check if it is possible to improve prediction accuracy by changing only 
the independent variable. We used the temperature variable instead of the time variable, because it is 
more correlated with other variables. The best way to improve prediction accuracy is by decreasing 
prediction errors, using the same energy amount than the second version, but there is a trade-off 
between prediction accuracy and energy consumption.  

The last version is our solution which uses the time and temperature variables together in the 
prediction. The correlation between gathered variables is higher than the time variable, and then we 
believe that prediction error will decrease, even though it wastes more energy. Each application 
version has different packets length, which determines how much energy will be wasted in data 
communication, i.e., the larger the packet, the greater the energy consumption. 

7. Performance Evaluation 

The performance evaluation was done through four application versions, which we used to simulate 
and compare multiple linear regression to simple linear regression and to the original version of a 
monitoring application. This monitoring application simulates the gathering of three variables from the 
environment: temperature, humidity and light. The application versions to achieve the simulations are: 

(a) First version: original application version, which sends temperature, humidity and light 
readings periodically every 1,024 clock shots from the sensor node, without performing 
prediction. This version was created to serve as a reference application for us to compare the 
energy consumption in the later versions, which uses prediction for data reduction. 

(b) Second version: enhanced version of the original application through a simple linear regression 
model. It sends only β and α coefficients for each dependent variable. It uses a counter (time 
variable) as independent variable to predict temperature, humidity and light. This version was 
designed to verify the energy consumption when simple linear regression is used to reduce data 
sent to the sink. It was also implemented to calculate SSerr and R2 to compare to the next 
versions. The counter is used as time variable, so it does not send any variable samples to the 
sink. This version is based on the method proposed by current works as Matos et al. [7]. 

(c) Third version: enhanced version of the original application through a simple linear regression 
function, but using the temperature as independent variable, instead of time variable. It sends 
reading samples of the temperature variable and the β and α coefficients for each dependent 
variable (except temperature) to predict the dependent variables humidity and light. This 
version was designed to verify the impact of this model on energy consumption when simple 
linear regression was sending an independent variable to reduce data communication. It was 
also created to check SSerr and R2 compared to the second and third versions. The temperature 
was chosen as independent variable due to the results obtained from coefficient , which can be 
seen later in the next section. 
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(d) Fourth version: enhanced version of the original application through a multiple linear 
regression function, using counter and temperature as independent variables. It sends reading 
samples of temperature and β and α coefficients for each dependent variable (except 
temperature) with , ,  where . It predicts the dependent variables light and 
humidity. This version was designed to verify SSerr and R2 compared to the second and third 
versions. Our proposed method is based on this version. 

7.1. Implementation 

For each application version, we used different types of packet according to each situation.  
TinyOS 2.x provides, by default, packets up to 28 bytes to be sent by WSN applications, where only 
20 bytes can be used by user data and route information. Therefore, we designed application messages 
with sizes that fit the maximum acceptable size and each version has to be well worked out. The 
features of each application version are: 

(a) First version: for this version there is only one type of application packet of 14 bytes (Figure 5) 
containing readings of temperature (Temp), humidity (Humid) and light (Light) variables. The 
field size of variables is 16 bits due to the fact that data packet in TinyOS does not support float 
values. Then, to set some variables, such as temperature, the value is converted in integer. In 
addition to that, this packet contains information to be manipulated by the network layer, such 
as source node (Origin), route estimation metric (Etx), route value (Lr_value) and next hop 
(Lr_addr). At each round (cycle) of gathering, a ten readings packet is sent by sensor nodes to 
the sink, i.e., in the total 140 bytes/round/node. 

(b) Second version: we created two types of application packets: one packet of 20 bytes (Figure 6) 
containing coefficients β (bT—temperature, bH—humidity and bL—light) and α  
(aT—temperature, aH—humidity and aL—light) calculated for each dependent variable; and 
one reduced size packet of 10 bytes (Figure 7) to send the message that the sensor node is 
spatially correlated to a neighbor sensor node (Correlated). Moreover, the two packets above 
contain information to be manipulated by the network layer, such as source node (Origin), route 
estimation metric (Etx), route value (Lr_value) and next hop (Lr_addr). At each round (cycle) of 
gathering, one coefficients packet or correlation packet is sent by sensor nodes to the sink, i.e., 
totaling 20 bytes/round/node or 10 bytes/round/node. 

Figure 5. Readings packet length (version 1). 

Origin Temp Humid Light Etx Lr_value Lr_addr Unused 

16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits (48 bits) 

Figure 6. Coefficients packet length (version 2). 

Origin aT bT aH bH aL bL Etx Lr_value Lr_addr 

16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 
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Figure 7. Correlation packet length (version 2). 

Origin Correlated Etx Lr_value Lr_addr Unused 

16 bits 16 bits 16 bits 16 bits 16 bits 80 bits 

 

(c) Third version: three types of application packets were created in this version: one packet of 16 
bytes (Figure 8) containing coefficients β (bH—humidity and bL—light) and α (aH—humidity 
and aL—light) calculated for each dependent variable (except the temperature variable); one 
reduced size packet of 10 bytes (Figure 9) to send the message that the sensor node is spatially 
correlated to a neighbor sensor node (Correlated); and one packet of 18 bytes (Figure 10) 
containing 10 readings of temperature (T1 to T10) in sequence to be used in the prediction of 
the humidity and light variables. In addition, the three packets above contain information to be 
handled by the network layer, such as source node (Origin), route estimation metric (Etx), route 
value (Lr_value) and next hop (Lr_addr). The temperature variable is sent in sequence in a 
single packet, because it is no longer predicted by the sink and is also used to predict the other 
two variables. The number of readings sent depends on the maximum packet size of the 
TinyOS. At each round (cycle) of gathering, one coefficients packet and one readings packet, or 
only one correlation packet is sent by sensor nodes to the sink, i.e., totaling 34 bytes/round/node 
or 10 bytes/round/node. 

Figure 8. Coefficients packet length (version 3). 

Origin aH bH aL bL Etx Lr_value Lr_addr Unused 
16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits (32 bits) 

Figure 9. Correlation packet length (version 3). 

Origin Correlated Etx Lr_value Lr_addr Unused 
16 bits 16 bits 16 bits 16 bits 16 bits 80 bits 

Figure 10. Readings packet length (version 3). 

Origin T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Etx Lr_value Lr_addr Unused 
16 bits 10 × 8 bits = (80 bits) 16 bits 16 bits 16 bits (16 bits) 

 

(d) Fourth version: three types of application packets were created in this version: one packet of  
20 bytes (Figure 11) containing coefficients β (b1H—humidity and b1L—light, and  
b2H—humidity and b2L—light) and α (aH—humidity and aL—light) calculated for each 
dependent variable (except the temperature variable), with , ,  where ;  
one reduced size packet of 10 bytes (Figure 12) to send the message that the sensor node is 
spatially correlated to a neighbor sensor node; and one packet of 18 bytes (Figure 13) containing 
10 temperature readings (T1 to T10) in sequence to be used in the prediction of the humidity 
and light variables. In addition, the three packets above containing information to be 
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manipulated by the network layer, such as source node (Origin), route estimation metric (Etx), 
route value (Lr_value) and next hop (Lr_addr). The temperature variable is sent in sequence in a 
same packet as in the third version, because it is no longer predicted by the sink and is also used 
to predict the other two variables. The number of readings sent depends on the maximum packet 
size of the TinyOS. At each round (cycle) of gathering, one coefficients packet and one readings 
packet, or only one correlation packet is sent by sensor nodes to the sink, i.e., totaling 38 
bytes/round/node or 10 bytes/round/node. 

Figure 11. Coefficients packet length (version 4). 

Origin aH b1H b2H aL b1L b2L Etx Lr_value Lr_addr 
16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 

Figure 12. Correlation packet length (version 4). 

Origin Correlated Etx Lr_value Lr_addr Unused 
16 bits 16 bits 16 bits 16 bits 16 bits 80 bits 

Figure 13. Readings packet length (version 4). 

Origin T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Etx Lr_value Lr_addr Unused 
16 bits 10 × 8 bits = (80 bits) 16 bits 16 bits 16 bits (16 bits) 

7.2. Simulations Settings 

Implemented applications have been run in Tossim. We have used traces (Intel Berkeley Research 
Lab on http://db.csail.mit.edu/labdata/labdata.html) containing temperature, humidity and light 
readings gathered by multisensors in a building. Thus, the data gathered for our simulation comes from 
a scenario close to reality. It contains readings of 54 sensor nodes deployed in laboratories at intervals 
of 31 seconds. These readings were held during the day, between 28 February and 5 April 2004. 

We embed all four application versions within the sensor nodes in the Tossim. Then, the 
performance of prediction accuracy of the different applications was measured. Also, the energy 
consumption of data communication in an original application version was tracked. The energy 
consumption of the original version with three enhanced versions was compared, with two using 
simple linear regression and one using multiple linear regression (our proposed solution). 

The two parameters used to reveal the overperformance or underperformance of prediction accuracy 
of our solution compared to current works are the Residual Sum of Squares (SSerr) and coefficient of 
determination (R2). SSerr [Equation (8)] is the sum of power of prediction errors for each dependent 
variable using simple or multiple linear regression. R2 [Equation (9)] represents the improvement of 
the sum of the power of prediction errors. More details about these parameters can be found in  
Hair et al. [9]: 

(8) 
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Let:  ;  

(9) 

where  represents an one-dimensional vector, which contain the values of the predictions made by 
one dependent variable . , … , , where 1, … ,  and  is the number of samples.  is an 
one-dimensional vector, which represents samples window of the independent variables, with  , … , , where 1, … ,  and  is the number of samples.  represents the average of samples of 
the vector. SSreg is the regression sum of squares and SStot is the total sum of squares. 

The performance evaluation of our solution was also measured by ranging the sample amount. This 
shows how much our solution is affected by the trade-off between prediction accuracy and energy 
consumption. We repeated the scenario that had the best results among the scenarios simulated to 
check the behavior of our solution. 

7.3. Evaluation Metrics 

The evaluation metrics adopted for this work are: (1) efficiency of the energy consumption metrics; 
(2) and efficiency of the predictor metrics. Efficiency of energy consumption metrics are defined  
as—the total average of energy consumption in the network in Joule from the transmission of 
application packets (Etrans); the total average of energy consumption in the network in Joule from the 
reception of application packets by broadcast of the neighbor sensor nodes—gossiped (Erecp);  
the number of times that the multivariate spatial correlation was detected by sensor nodes (Cspatial); and 
the percentage of saved energy in the versions with linear regression (versions 2 to 4) in face of the 
original version (Esaved). Predictor efficiency metrics are defined as—the prediction error rate (SSerr); 
and the predictor improvement based on the coefficient of determination (R2). 

Energy waste in data communication is addressed by the energy consumption metric. According to 
each application version, the packet length is smaller in initial versions and is bigger in final versions. 
Thus, the energy consumption tends to be higher in the final version.  

The spatial correlation is measured by the amount of times it is detected, showing how an 
application version saved energy by not sending a large data packet. Perhaps there are no significant 
differences between the applications versions, since this mechanism has not been modified, but only 
adapted for each other. 

SSerr shows how many errors each application version has over the other. Probably, the initial 
versions has a higher prediction error than the last versions, because the use of correlated variables in 
prediction ensures fewer errors. 

Coefficient of determination measures the improvement of predictor in relation to its error. Unlike 
SSerr, the improvement tends to be better in final versions. 

Our work aims to improve prediction accuracy and is not more focused on saving energy than 
current solutions, but nevertheless we have checked the impact of our solution in face of current 
solutions to measure how feasible it is in a WSN.  
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7.4. Simulation Scenarios 

Three characteristics are important to set up scenarios in our simulation. The first one is the 
behavior of the light variable. Sometimes, the light variable changes easily and leads to different 
results in the prediction, due to the variation of correlation between gathered variables. It can be 
presented in two forms, constant and not constant. Temperature and humidity variables are usually 
correlated, i.e., when one increases the other decreases and vice versa. Therefore, their behavior is 
constant, with their values changing simultaneously and slowly. Application versions from 2 to 4 use 
prediction and can increase prediction error when one or more variables change their values quickly. 

The second one is the topology which can increase the energy consumption in random deployments. 
Usually, all application versions suffer the same effects on energy consumption, since the topology 
will not affect the prediction.  

The last one is the network density which also influences the energy consumption, but does not 
affect the prediction. When the network density is high, i.e., many nodes close to each other, the 
energy consumption increases due to packet reception by broadcast. The application versions from 2  
to 4 should suffer the same effects of network density, but it has to be checked whether the 
communication between sensor nodes with the lowest prediction error can optimize energy 
consumption. 

Table 2. Characteristics of the simulation scenarios.  

Features 

Scenarios 
Light variable Topology Network density 

Constant 
Not 

constant 
Grid Random 1 node/5 m Ranging Fixed 

1 X  X  X   
2  X X  X   
3  X  X  X  
4 X   X  X  
5  X  X   X 
6 X   X   X 

 
Then, in order to explain the simulation scenarios, we summarize the characteristics in Table 2. 

These characteristics try to emulate the circumstances of the real world so that we can simulate 
scenarios close to a deployment of sensor nodes for environment applications. We have defined six 
different scenarios that have been run 30 times each. All scenarios use four application versions and 
number of nodes ranging from 4 to 100 (to measure scalability). Scalability is important to check 
energy consumption in all application versions. All scenarios that obtained results from experiments 
have confidence interval of 95%. 

The Link Layer Model tool of TinyOS 2.x was used to create the grid and random topologies.  
In each scenario several nodes densities are used and summarized in Table 3. The energy consumption 
model adopted is the same of Jurdak et al. [18], where the radio spends 1.67 µJ/Byte sending and  
1.89 µJ/Byte receiving data by using micaz mote from Crossbow. 
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Table 3. Network density in the simulation scenarios. 

Density (nodes/m2) by scenarios 

Nodes #1 #2 #3 #4 #5 #6 
4 0.1600 0.1600 0.2500 0.2500 0.2500 0.2500 
9 0.0900 0.0900 0.1111 0.1111 0.2500 0.2500 

16 0.0711 0.0711 0.0625 0.0625 0.2500 0.2500 
25 0.0625 0.0625 0.0400 0.0400 0.2500 0.2500 
36 0.0576 0.0576 0.0278 0.0278 0.2500 0.2500 
49 0.0544 0.0544 0.0204 0.0204 0.2500 0.2500 
64 0.0522 0.0522 0.0156 0.0156 0.2500 0.2500 
81 0.0506 0.0506 0.0123 0.0123 0.2500 0.2500 

100 0.0494 0.0494 0.0100 0.0100 0.2500 0.2500 

8. Simulation Results 

8.1. Evaluation of the Correlation Analysis   

The coefficient r results (Table 4) show that there is a greater correlation between the temperature 
variable and other variables gathered by the sensor nodes (such as humidity and light) than with the 
time variable. The time variable is the usual variable used in state of art examples.  

Table 4. Results of the correlation analysis.  

 Temperature Humidity Light Time 
Temperature 1.0000 −0.7987 0.4550 −0.2681 
Humidity −0.7987 1.0000 −0.2489 0.1987 
Light 0.4550 −0.2489 1.0000 −0.1807 
Time −0.2681 0.1987 −0.1807 1.0000 

 
Given this, the temperature variable was used as independent variable for the application versions 3 

and 4. Application version 2 uses only the time variable as independent variable and application 
version 3 uses only the temperature variable as independent variable, instead of the time variable. On 
the other hand, application version 4 uses the time variable and temperature variable as independent 
variables. 

8.2. Energy Consumption 

The main goal of our proposed solution is not to reduce energy consumption compared to the 
existent approaches based on simple linear regression, but rather find the best trade-off between energy 
consumption and prediction accuracy. In our method we use samples of the temperature variable to 
predict the humidity and light variables. While we slightly increase energy consumption compared to 
simple linear regression, we improve the prediction accuracy caused by simple linear regression. 
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Figure 14. Average energy of the radio consumed by messages sent to the sink:  
(a) Scenarios #1, #2, #5 and #6. (b) Scenarios #3 and #4. 

  
    (a)       (b) 

Figure 15. Average energy of the radio consumed by messages received for gossip 
routing: (a) Scenarios #1 and #2. (b) Scenarios #3 and #4. (c) Scenarios #5 and #6. 

  
      (a)         (b) 
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Figure 15. Cont. 

 
          (c) 

 
Figures 14 and 15 show the energy consumption results obtained from simulations of the four 

application versions. They describe the performance of energy consumption for transmission (Etrans) 
and reception (Erecp) of data by sensor nodes. We observed the impact of our method by comparing the 
energy consumption of the multiple linear regression (our solution) to the simple linear regression 
(current works). 

Under all conditions, the energy consumption is greater in the application versions that use simple 
or multiple linear regression based on the temperature variable instead of the time variable. This 
happens because when using the independent variable gathered by the sensor nodes, their reading 
samples have to be sent to the sink. Hence, they consume more energy than the application version that 
uses time (the counter) as independent variable. 

The energy consumption due to message exchanges between sensor nodes in scenarios #1, #2, #5 
and #6 is presented in Figure 14(a). The Etrans relation between the approaches remains constant, even 
when scalability changes and the approaches which use gathered variables consume twice as much 
Etrans than approaches which not use it. The relation between the Etrans of the original application and 
approaches with gathered variable is about 0.17 and with the current approach is about 0.08. In 
scenarios #3 and #4, the communication failure affected the energy consumption [Figure 14(b)] of all 
application versions when density falls below 0.0278 (from 36 to 100 sensor nodes).  

We checked that the energy consumption of the data sent by sensor nodes in the second application 
version (a.k.a. SimpleCount) is the lowest [Figure 14(a,b)], due to the fact that this application does not 
send reading samples to the sink. This application is the one adopted by current approaches.  

Nevertheless, we can also see that the energy consumptions of the third and fourth application 
versions (a.k.a. SimpleTemperature and Multiple, respectively) are the closest to the SimpleCount in 
face of the first application version (a.k.a. Original). Thus, it appears as stated before that our solution 
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uses double the energy of the current solutions, but its energy consumption is still low when compared 
to the version without prediction (original version). 

The amount of energy spent to receive messages (Erecp) from application broadcast on the 
transmission of neighbor sensor nodes (routing gossip) is observed in Figure 15. In some scenarios 
[Figure 15(c)], the Erecp of our approach is about three times smaller than the original application, but 
still consuming more energy than the current approach. We can see more details of the percentage of 
energy saving from the three application versions that use simple or multiple linear regression in face 
of the original application version in Table 5.  

Table 5. Percentage of the energy saving for sending and receiving data in face of the 
original application version. 

App. 
version 

Scenario #1 Scenario #2 Scenario #3 Scenario #4 Scenario #5 Scenario #6 
Sent Gossiped Sent Gossiped Sent Gossiped Sent Gossiped Sent Gossiped Sent Gossiped

2 0.93 0.93 0.93 0.93 0.93 0.89 0.93 0.92 0.92 0.87 0.92 0.87 
3 0.87 0.87 0.87 0.87 0.87 0.82 0.87 0.85 0.86 0.82 0.86 0.82 
4 0.86 0.86 0.86 0.86 0.86 0.81 0.86 0.84 0.85 0.79 0.85 0.80 

 
The results of spatial correlation (Cspacial) showed no differences between our approach and current 

approaches, but it points to the fact that is essential to save energy. The amount of times that the 
correlation was detected is greater in the scenarios where there is fixed density of 0.25 sensor  
nodes per m2, i.e., in scenarios #5 and #6. It shows that in higher density situations the packets will not 
be sent twice to the sink. Thus, we avoid overlapping and save more energy. 

8.3. Performance Evaluation of the Prediction Accuracy 

Figure 16 shows the prediction performance of the three application versions which use linear 
regression over one day of data gathering from the Intel Research Lab’s trace. The error and 
improvement performance to the humidity and light variables ensures that our solution is better than 
current solutions. 

The SSerr and R2 results from prediction of humidity [Figure 16(a,c)] show, for all scenarios, that 
the lowest prediction accuracy was obtained when we compared simple linear regression based on the 
time and temperature variables as explanatory variable. The best prediction accuracy was obtained 
when multiple linear regression was used. However, energy consumption is higher in the versions that 
use simple or multiple linear regression based on the temperature variable instead of the time variable, 
although they still get better values than the original version. 

The SSerr and R2 results from prediction of the light [Figure 16(b,d)] show for all scenarios that the 
highest prediction error was obtained when we compared simple linear regression based on the time 
and temperature variables as explanatory variable. The lowest prediction error was obtained when 
multiple linear regression was used. 

We also observed that there are different behaviors in the results [Figure 16(b,d)] where the light 
variable is irregular. As per the previous section, the gathered readings of the light variable in the trace 
are irregular, i.e., the values in the trace do not follow a sequence (increasing or decreasing). This 
probably denotes noise or on and off procedures, and high sensitivity of the light sensor. Thus, the 
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results of the prediction of the light variable show the drawback of multiple linear regression, although 
it still gets better results than the current approach. When there is no correlation between the variables, 
prediction accuracy decreases or does not work properly. 

Figure 16. Performance evaluation of the prediction accuracy over one day from the trace 
to the application versions which use linear regression (app v2 to app v4): (a) Humidity 
error. (b) Light error. (c) Humidity improvement. (d) Light improvement. 

 
(a) 

 

 
(b) 
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Figure 16. Cont. 

 
(c) 

 

 
(d) 

 
Therefore, we suggest that by using prediction based on multiple linear regression, the sensor node 

checks the improvements in an adaptive way, as in Jiang et al. [11]. Tables 6 and 7 show more details 
of the results of SSerr and R2. 
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Table 6. Performance results of the SSerr and R2 from all versions in scenarios #1, #4 and #6. 

 Independent variable 
 Count (Time) Temperature Count and Temperature 
 version 2 version 3 version 4 
 SSerr R2 Sserr R2 SSerr R2 

Temperature 0.210300 0.296891 − − − − 
Humidity 9.355700 0.025813 2.033940 0.788210 0.203488 0.978811 
Light 2.121380 0.000000 0.073135 0.965525 0.054342 0.974384 

Table 7. Performance results of the SSerr and R2 from all versions in scenarios #2, #3 and #5. 

 Independent variable 
 Count (Time) Temperature Count and Temperature 
 version 2 version 3 version 4 
 SSerr R2 Sserr R2 SSerr R2 

Temperature 10.321800 0.290535 − − − − 
Humidity 4.964100 0.476813 8.583820 0.095316 0.185308 0.980470 
Light 140.150060 0.869629 794.135000 0.261311 1075.060000 0.000000 

8.4. Trade-Offs of Our Solution 

After the results above, we decided to repeat the simulation to evaluate the energy consumption and 
prediction accuracy performance and analyze the behavior of our solution. The trade-off between these 
two performances is intrinsic because, in order to increase prediction accuracy, our solution sends 
samples gathered from a variable. Therefore, our solution consumes more energy than current 
solutions. 

The relationship between energy consumption and prediction accuracy does not depend on the 
amount of sensor nodes, because prediction is done in a distributed and localized way. We learned that 
it depends on the amount of samples. Therefore, when we increase the amount of samples, energy 
consumption decreases, SSerr increases and R2 decreases, but the WSN cannot spend much energy, 
thus scenario #6 was simulated again, due to the fact that it had better performance results than the 
other scenarios. 

The amount of samples ranged from 6 (six), 8 (eight) and 10 (ten), which we respectively named 
Scenario #6C, Scenario #6B and Scenario #6A. The energy consumption results in these scenarios 
from messages sent by the sensor nodes show that, in order to decrease the amount of samples from 10 
(Scenario #6A with 100 sensor nodes) to 6 (Scenario #6C with 100 sensor nodes), the Etrans of the 
network increased from 1,834.32 µJ to 2,465.70 µJ. This happens because, by reducing the amount of 
samples, more packets will be sent. The Erecp results show that the energy consumption increased from 
489,567.40 µJ (Scenario #6A with 100 sensor nodes) to 578,866.80 µJ (Scenario #6C with 100 sensor 
nodes). 

The prediction improvement of humidity for the application version 4 (multiple linear regression) 
decreased from 0.995868 to 0.978811 [Figure 17(a)] and the SSerr of humidity increased from 
0.021840 to 0.203488 [Figure 17(b)]. It should also be noted that application version 4 always had 
better results than the others versions. 



Sensors 2011, 11  
 

 

10034

The results for light level prediction are a little bit different from the results for humidity, but they 
display the same behavior. The improvement of the light level prediction for application version 4 
(multiple linear regression) decreased from 0.999752 to 0.974384 [Figure 18(a)] and the SSerr of the 
light increased from 0.000384 to 0.054342 [Figure 18(b)]. 

Figure 17. Improvement and SSerr of the prediction performed by application versions for 
the humidity variable ranging sample amount (Scenario #6A—ten samples, Scenario 
#6B—eight samples and Scenario #6C—six samples): (a) Improvement for humidity.  
(b) SSerr for humidity. 

   
             (a)                (b) 

Figure 18. Improvement and SSerr of the prediction performed by application versions for 
the light variable ranging sample amount (Scenario #6A—ten samples, Scenario #6B—eight 
samples and Scenario #6C—six samples): (a) Improvement for light. (b) SSerr for light. 

   
             (a)                (b) 



Sensors 2011, 11  
 

 

10035

The results obtained from light variable prediction were different from the results obtained from 
humidity variable prediction. Then, we checked the behavior of the threes gathered variables and used 
them in our performance evaluation. Figure 19 shows epochs from a data collection day where the 
correlation between the variables is low. Note that in epochs ranging from 3,550 to 4,900, the light 
variable increases a lot. Consequently, the simple and multiple linear regressions tend to worsen 
prediction accuracy. This explains some abnormal results when we used the light variable as 
independent variable. 

Figure 19. Epochs from a collect day where the light variable is less correlated with the 
temperature and humidity variables. 

 

9. Discussion and Conclusions 

Several sensor boards are able to monitor more than one variable (multisensor), adding new 
challenges, such as increasing precision by reducing prediction error. In this paper, we propose a 
method to improve prediction accuracy in WSN data reduction by applying multivariate spatial and 
temporal correlations.  

Prediction accuracy of correlation mechanisms depends on the correlation analysis to determine 
which variable is highly correlated. The current approaches are not focused on the analysis of 
correlations and hence the prediction errors tend to be higher. The correlation analysis results of  
Table 2 show that the time variable is the least correlated of all others. Thus, predictions using weakly 
correlated variables can greatly increase errors. We recommend that all proposals contemplate the 
analysis of correlation to obtain better results in their predictions. Although energy consumption of our 
solution is twice that of the simple linear regression approach, it is still smaller than the original 
application. Table 5 summarizes the energy savings for the application versions that perform 
prediction and shows that the version using simple linear regression is the most economical and 
multiple linear regression is the one that consumes more energy. An important observation is that the 
simple linear regression, using the variable temperature as independent variable, is not the best option 
to improve prediction, although it spends a little more energy than the version with multiple linear 
regression, the first does not show better accuracy results than the second. 
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Related works use simple linear regression based on the time variable as independent variable, so 
that they are more susceptible to errors than our proposal. Although multiple linear regression spends 
more energy than simple linear regression, it may be the best choice, especially for accuracy-sensitive 
applications (e.g., precision agriculture). 

We conducted simulations involving simple and multiple linear regression functions (application 
versions from 2 to 4) to assess our prediction solution. The values of residual sum of squares (SSerr) 
and coefficient of determination (R2) show that prediction accuracy may be the lowest, where simple 
linear regression based on the time variable is used as explanatory variable. Also, these results show 
that the best prediction accuracy is obtained when multiple linear regression is used. The multivariate 
correlation method outperforms some current methods in about 50% to humidity prediction and 21% 
to light prediction. 

Table 6 shows that predictions were more accurate when our solution was used, because when more 
than one variable is used in the prediction, error decreased, but Table 7 shows the disadvantage of our 
solution, because when the variables are not strongly correlated, the prediction error tends to be higher 
than in solutions that use simple linear regression, e.g., when the light variable is not constant. 

Finally, we have done some works trying to improve WSN solutions [19-22] and intend to further 
reduce energy consumption considering sensing, processing and communication. Computer intelligence 
algorithms [23] and cluster routing solutions [19] may be helpful in better adapting our spatio-temporal 
correlation solution to improve network lifetime. 
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