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Abstract: This paper addresses an autonomous navigation method for the autonomous 

underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous 

localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay 

(Shangdong Province, P.R. China). Weak links in the information matrix in an extended 

information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm 

(SEIF-SLAM). All the basic update formulae can be implemented in constant time 

irrespective of the size of the map; hence the computational complexity is significantly 

reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for 

the underwater vehicle, and a compensation method based on feedback of the AUV pose is 

presented to overcome distortion of the acoustic images due to the vehicle motion. In order 

to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was 

conducted in Tuandao Bay. Experimental results and analysis show that the proposed 

navigation approach based on SEIF-SLAM improves the accuracy of the navigation 

compared with conventional method; moreover the algorithm has a low computational cost 

when compared with EKF-SLAM. 
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1. Introduction 

Autonomous Underwater Vehicles (AUVs) have portable energy and self-control ability which 

make them different from remote operate vehicles (ROVs). They are suitable for commercial and 

military tasks underwater, under-ice or in other environments [1,2]. In the past few decades, the world 

plans to build or has built about 200 AUVs, such as the well-known REMUS by WHOI [3] or MIT Sea 

Grant’s Odyssey [4]. As the applications of AUVs are spreading to deeper seas and longer distances, 

high accuracy navigation capability will play a vital role. Inertial navigation systems (INS) are widely 

used in AUVs, but the navigation errors accumulate over time and waves and currents exacerbate this. 

Though the errors can be reduced periodically by using GPS, electromagnetic signals decay very 

quickly in the water, so the navigation of underwater vehicles cannot rely on GPS. As acoustic signals 

decay extremely slowly in seawater, acoustic navigation is widely used in three ways: long baseline, 

short baseline, ultra short baseline. However, deployment and recovery of the baseline is time-consuming 

and expensive, which limits acoustic navigation in large-scale environments [5]. In addition, it is very 

difficult to obtain prior maps of large-scale complex underwater environments. For all the reasons 

mentioned above, autonomous underwater navigation is considered one of the most challenging issues 

for AUVs [6]. 
Simultaneous localization and mapping (SLAM) does not require the aid of a priori information 

about the underwater environment, as when the vehicle moves in the water, its onboard sensors 

perceive the external environment and extract useful information, then form a map of the environment 

incrementally while positioning itself [7,8]. SLAM has attracted immense attention since the 1990s as 

the solution for true autonomous navigation [9], and a handful of algorithms have emerged for this 

purpose such as EKF-based SLAM, PF-based SLAM and IF-based SLAM. Using a parametric model, 

EKF-SLAM can be described as a posterior probability distribution parameterized by a state vector 

and covariance matrix. The algorithm consists of two main steps: prediction and update, which can be 

summarized as an iterative estimate and calibration process [10,11]. However, the map in EKF-SLAM 

comprises a covariance between the vehicle state and environmental features which must be processed 

in each estimate and correct step. As a result, It achieves O(n2) (the number of environmental features) 

computational complexity. To deal with the limitations, people divide the world into a handful of 

sub-maps; each containing l features [12-15]. Thus, computational complexity can be reduced to O(l2), 

but the tradeoff is sacrificing the convergence speed.  

Particle filtering (PF) is different from KF, which solves SLAM problem by the particles based on 

the conditional independence. Fast SLAM, proposed by Montemerlo [16,17], is a very popular SLAM 

algorithm based upon particle filters. Fast SLAM decomposes SLAM into estimation of the robot path 

and estimate of the location of the features in the map. Once the vehicle path is established, the 

features are only related with the vehicle pose [18]. The particle filter is efficient in computation and 

can represent non-linear, non-Gaussian motion modes, but the more complex the environment is, the 
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more particles are required to describe the posterior probability distribution. As a result, the algorithm 

complexity increases. In addition, the re-sampling will lead to loss of validation and diversity of 

particles which results in sample depletion. 

Extended Information Filter (EIF) is the information form of EKF, parameterized by the information 

matrix and information vector corresponding to the EKF [19]. The time projection is efficient as it is 

quadratic in the number of measurements and not the size of the map. However, recovering the mean 

from the information matrix and information vector requires a costly O(n3), matrix inversion, so the 

computational complexity is even higher than for EKF. It is found that the vast majority of the 

information matrix elements are close to zero, while the information matrix is dominated by a small 

number of diagonal elements [20]. If the elements are made approximately close to zero, that is 

pruning weak links in the information matrix, an approximate representation which is the so-called 

Sparse Extended Information Filter (SEIF) proposed by Thrun et al. is obtained [21,22]. All the basic 

update formulae can be implemented in constant time, irrespective of the size of the map, which 

greatly improves computational complexity. There are a variety of new information filter-based 

algorithms such as TJFT [23], Treemap [24], ESEIF [25,26], but theoretical analysis and experimental 

evidence show that SEIF-SLAM is computationally efficient and consistent in the relative map, so the 

SEIF-SLAM algorithm is preferred in our work. 

The C-Ranger AUV was developed in Underwater Vehicle Laboratory in Ocean University of 

China. It is equipped with a variety of onboard equipment for sensing vehicle pose and environment. 

In this paper we mainly address the autonomous navigation method for the C-Ranger AUV. To verify 

the advantages of SEIF-SLAM, the application of SEIF-SLAM in AUV navigation via sea trial 

experiments has been studied; also the data processing approach of sonar had been presented in this 

work. For the mechanical scanning imaging sonar chosen as the principal sensor for active sensing of 

undersea obstacles, a compensation method based on feedback of the AUV pose had been used to 

overcome distortion of the acoustic images due to the vehicle motion. Sea trials in Tuandao Bay were 

carried out to verify the feasibility of the proposed methods. The experimental results and analysis 

show that the proposed navigation approach based on SEIF-SLAM improved the accuracy of 

navigation when compared with conventional method; moreover the algorithm has a low computational 

cost when compared with EKF-SLAM. 

The remainder of the paper is organized as follows: in the next section, the SEIF-SLAM algorithm 

for our C-Ranger AUV is presented, including the main processing steps. Section 3 describes the 

C-Ranger AUV and on-board sensors employed in the SLAM module. Further, sonar data processing 

is discussed in Section 4, including point-feature extraction and motion-distortion compensation. The 

sea trial experiments is described in Section 5, and the performance of the proposed navigation method 

is evaluated; then the results and possible future improvements are discussed in Section 6. Finally, we 

summarize the results and draw the fundamental conclusions. 

2. A SEIF-SLAM Algorithm for the C-Ranger AUV 

AUV travels undersea at a certain depth in most cases, so the bidimensional vehicle-landmark 

model was adopted to represent the AUV and landmarks (also called features) in the undersea 
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environment. The vehicle pose , ,  and the set of map features , 1  

are stored in the state vector:  

( )TTT
tt Mxξ ,=  (1) 

Like in Smith et al. [27], a first-order linearization of the motion and measurement models is 

employed considering the uncertainty in the data as independent, white Gaussian noise. Corresponding 

to the Gaussian distribution in Appendix, SEIF-SLAM can be presented as the following posterior 

probability distribution: 
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where,  is the mean of the state vector and  is the information vector, Σ  and Λ  denote the 

covariance and information matrix respectively, Z  and U  are the history of observational data and 

motion control inputs. To calculate the probability distribution, the algorithm mainly includes motion 

update, measurement update, sparsification, mean recovery and other steps. Figure 1 shows the 

structure of the algorithm. 

Figure 1. The flow chart of the SEIF-SLAM algorithm. 
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(A) Motion Update Step 

The motion update step predicts the distribution over the new robot pose from time t − 1 to time t 

and subjects it to a Markov model, in general, a nonlinear function f of the previous pose xt−1 and the 
control inputs . Equation (3) is the first-order linearization about the mean robot pose ,  
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F denotes the Jacobian matrix about the state vector at time t − 1 and the term vt ~ N(0,Qt) represents 

the white Gaussian noise in the model, Qt is the noise covariance:  

( ) ( ) ( ) txttxtttt tt
vμxuμvuxx +−+≈+=

−− −− 11 11 F,f,f  (3) 

Figure 2. The evolution of the information matrix: (a) The evolution of the information 

matrix without a sparsification step. (b) The evolution of the information matrix when 

breaking weak links. 
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(b) 

 

The motion update step can be implemented in two sub-steps. First, as in Figure 2(a), the  

state vector is grown to include the new robot pose ( )TTT
t

T
tt Mxxξ ,,ˆ

1−= . According to the work by 

Eustice et al. [25,26], the augmentation of the information matrix and vector are given in Equations (4) 

and (5):  
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Secondly, tx  is marginalized from the posterior probability distribution to achieve the desired 

distribution over ( )TTT
tt Mxξ ,=  according to Appendix. The predicted information matrix tΛ  and 

information vector tη  are:  

( ) 121112122 Λ̂Λ̂Λ̂Λ̂Λ ttttt

−
−=  (6) 

( ) 1111212 ˆΛ̂Λ̂ˆ ttttt ηηη
−

−=  (7) 

(B) Measurement Update Step 

Sonar senses environment features actively in the experiment and observations of features are the 

key to reduce the uncertainty in the estimates for the robot pose and the map. The measurement step is 

also subject to a Markov model which is a nonlinear function h of the state vector tξ . Equation (8) 

shows the first-order linearization about the mean state vector tμ  and observed features with the 

Jacobian H evaluated at this mean. The term ( )tt N R,0~w  represents the white Gaussian noise in 

the model, tR is the noise covariance: 

ttttttt wμξμwξz +−+≈+= )H()h()h(  (8) 

When a feature is observed repeatedly, it will be used to update the state estimation. According  

to [19] by Thrun et al., the information matrix tΛ and the information vector tη can be obtained:  
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The observation model is only a function of the vehicle state tx and the observed features im

( )Ni ≤≤1  at time t , so H  is zero everywhere except at positions associated with tx , im . The 

measurement update step only strengthens the links between vehicle pose and features to be updated, 

so the sparseness of information matrix can never be changed.  
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(C) Sparsification Step 

To make information sparse, SEIF’s strategy for sparsification is based on partitioning the map into 

a union of three disjoint sets: 

{ }0,, MMMM −+=  

where +M  is the current active features that will remain active after sparsifying, −M denotes the passive 

features that will remain passive, 0M  comprises the active features that will be made passive [28]. So 

the SLAM posterior can be factored into: 
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Due to the conditional independence between the pose and −M of the vehicle, hence we can set 
−M to an arbitrary value. Here, it is simply chosen as 0. The evolution of information matrix is shown 

in Figure 2.  
Figure 2(a) illustrates the situation before sparsification: according to the partition, 

},,,{ 4321 mmmmM =+ , }{ 4mM =−  at time t , the information matrix tends to be dense after 

time-projection step (state augmentation and marginalization) which is the main reason for creating 

weak links. 

By eliminating the weak links between the features and vehicle pose in the information matrix, a 

sparse approximation that allows for efficient SLAM can be achieved. As shown in Figure 2(b), 1m  

is made passive before state augmentation and marginalization. It is obvious that the information 

matrix is sparse. To sparsify the information matrix, the posterior is approximated by dropping the 

dependence on 0M  in the first term of Equation (11): 
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The information matrix for the distribution ( )0|,, 0 =−+ MMMx tp  is:  

T
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where 0,,S MMx +  denotes a projection matrix, used to extract the submatrix of all state variables except 

0M . Let 321 ,, ttt ΛΛΛ  denote the information matrices for the terms )U,Z,0|,( tt
tp =−+ MMx , 

)U,Z,0|( ttp =−+ MM  and )U,Z|,,( 0 ttp MMM −+  respectively, so the sparse information matrix can 

be obtained as Equation (14) by putting these matrices together according to Equation (12): 
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The resulting information vector is now obtained by the following simple consideration: 

ttttttttttt μημμη )()( Λ−Λ′+=Λ′+Λ−Λ=Λ′=′  (15) 
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(D) Mean Recovery 

The information form of the Gaussian is parameterized by its information vector and information 

matrix. However, the linearization, sparsification, measurement update steps require the mean of the 

state vector. According to the duality of Gaussian distribution in Appendix, we can get the mean vector: 

ttt ημ 1−Λ=  (16) 

Due to the great cost of full state recovery and the steps that require the mean of state vector 

oftentimes only require a subset of the state mean, the mean vector can be recovered by dividing it into 

two sets: 
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where lμ  is the “local portion” that needs to be recovered and bμ  is the “begin portion” of the map. 

If current estimation for bμ  is kept fixed, an estimate of lμ  can be obtained as: 

)ˆ(ˆ 1
blbllll μημ Λ−Λ= −  (18) 

3. The C-Ranger AUV and On-Board Sensors 

3.1. C-Ranger AUV 

The C-Ranger is an open-frame AUV with dimensions of 1.6 m × 1.3 m × 1.1 m (length, width and 

height), as shown in Figure 3. There are two electronic cabins and five underwater propeller thrusters. 

The control architecture of C-Ranger is illustrated in Figure 4. The AUV has good maneuverability 

due to its five DOFs, including surge, heave, roll, pitch, and yaw. The thrust system of this platform 

consists of five propeller thrusters, where two thrusters are parallel to the bow direction, and installed 

in the abdomen to provide horizontal thrust for mainly controlling the surge and roll, The other three 

thrusters are employed to provide vertical thrust to control the heave, roll, and pitch, two of which are 

installed on both sides of the bow, and the remaining one is installed on the rear of the vehicle. The 

upper hull of the C-Ranger is the instrument compartment housing sensors, two industrial computers, a 

communication module, internal monitoring module and other equipment, while the lower hull is the 

power and thrust system composed of lithium-ion batteries, power management module, motor-driver 

module, etc. The maximum speed of the C-Ranger is 3 knots, and it can operate for up to 8 hours when 

fully charged (tested at speed of one knot).  

3.2. On-Board Sensors 

A number of sensors are installed on the C-Ranger, some of them are explicitly related to SLAM. 

These sensors are basically divided into two groups: the internal and the external. Internal sensors 

include digital compass, gyro, Attitude and Heading Reference System (AHRS) and pressure sensor. 

External sensors include mechanical scanning sonar, Doppler Velocity Log (DVL), altimeter, CCD 

camera and GPS. 
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Figure 3. C-Ranger in deployment. 

 

Figure 4. Control architecture of the C-Ranger. 

     

 

(A) Mapping-Related Sensor: Active Imaging Sensor 

A mechanical-scanning forward-looking sonar (Super Seaking DST, Tritech) used for active 

sensing of environment features is installed at the front top of C-Ranger. It is the principal sensor of 

the C-Ranger AUV. The operating frequency of the sonar is 675 kHz, and its maximum range is  

300 meters. Generally the scanning rate of this kind of sonar is slow, which would make the acoustic 

image distorted. A compensation for motion-induced distortion will be addressed in the next section.  
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(B) Velocity Sensor: DVL 

The DVL (NavQuest600, LinkQuest) is used to provide the velocities of the vehicle relative to the 

seabed. In addition, the NavQuest600 can provide other information: pitch angle, roll angle, heading, 

altitude, depth, temperature and velocities relative to the ocean currents.  

(C) Angular Sensors: AHRS and Gyro 

The AHRS (M2, Innalabs) is used to produce attitude information, and the gyro (VG951D) is used 

to measure angular velocity in the process of AUV navigation. AHRS M2 is a low-cost 

high-performance inertial navigation system, and magnetic interference will not affect the accuracy of 

headings over short times. 

(D) Positioning Sensor: GPS 

To evaluate navigation performance of the C-Ranger, a high-precision and high-dynamic GPS 

receiver is employed. In the absence of SA, the positioning accuracy is up to 1.1 m (CEP), and the data 

update rate is up to 20 Hz. The GPS sensor can offer a benchmark to evaluate the estimation of robot 

trajectory.  

4. Data Processing of Sonar 

Raw data measured by sensors should be pretreated before it is used in the navigation algorithm. 

The amount of the raw data from most sensors is not very high, so they can be used in SLAM simply 

after denoising and synchronizing. Sonar is very essential for the environmental map building, but the 

large amount of sonar data constrains the real-time navigation. Furthermore, its long scan-cycle will 

lead to motion-distortion. For the reasons, it is vital to handle sonar data appropriately before being 

used in SLAM algorithm, thus the data processing of sonar is presented in this section.  

4.1. Feature Extraction of Sonar Data 

Currently methods based on image processing are popular ones applied to extract features from raw 

sonar data [29,30], but they are generally too slow for the applications such as AUV navigation using 

mechanical-scanning-sonar. A real-time data processing is proposed in the next paragraphs.  

Sonar transmits sound waves stepwisely and receives them after encountering obstacles; we call 

each sound wave beam one ping and every ping can be divided into several bins. The relative position 

of a bin reflects the distance between the sonar and the obstacle, the larger the intensity of bins are, the 

more obvious features there are, and vice versa [31]. As Figure 5 shows, sonar scans stepwisely in a 

given sector, and finds one obstacle in the k – th bin of the i – th and (i + 1) – th ping, respectively. 

Then the intensity and the relative position for every bin whose intensity is beyond a predefined 

threshold will be translated into corresponding feature information. 

Noise in raw data should be eliminated, and the number of features extracted should be as low as 

possible due to the demands of real-time navigation, in other words, we need to make the features 

sparse, Figure 6(a–e) show the process. In Figure 6(a) the sonar observes N1, N2 which are very close 
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to the sonar head (transducer), high-intensity features in two pings, i.e., ping : m = {F1, F2, F3, F4, F5}, 

ping : n = {F6, F7, F8, F9}, as well as any low-intensity features (not labeled in the figure). First, we 

eliminate the noise caused by the sonar itself: according to the distance relationship between sonar and 

the frame of AUV, we remove the noise close to the vehicle as Figure 6(b) shows. The second step is 

to eliminate background noise: removing features whose intensity is below the predefined threshold, 

we will retain features F1~F9 with high intensity in Figure 6(c). The third step is the processing of a 

single-ping: selecting local prominent points in each ping in order to ensure that the target-related 

information is retained, then removing redundant features near the prominent point by using a distance 

threshold. Thus we will get features in each ping and effectively ensure that one target will not match 

more than one feature. In ping m, F5 is within the sparsification threshold (a distance value) of the F4, 

so are F8 and F7 in ping n. Then because of F4 > F5, F7 > F8 in intensity, we will get the results 

shown in Figure 6(d). 

Figure 5. The schematic diagram of sonar scanning obstacles. 

 

Generally the retained features are still too dense, even after the above radial processing, so we need 

to conduct further sparsification between pings. The procedure is similar to the above step 3, whether 

one feature is retained or not depends on a threshold as well, but such operations are along direction of 

a circular arc. The results shown in Figure 6(e) can be obtained in this way. The above processing 

actually can cut off most redundant information, and greatly reduce the number of features without 

affecting positioning accuracy. The thresholds mentioned above depend on several factors, such as the 

distribution of environmental features and accuracy of features’ positions, moreover, the requirement 

by efficiency of SLAM is also taken into account if necessary. 
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Figure 6. The schematic diagram of sonar data sparsification. 

 

4.2. Compensation on Motion-Induced Distortion for Mechanical-Scanning Sonar 

The transducer head of a mechanical-scanning imaging sonar usually needs a considerable period of 

time to perform a 360° rotation. This is an important issue that has to be taken into account when 

operating with such sonar mounted on an AUV, since the resulting acoustic images can get distorted as 

a consequence of the vehicle’s motion. Generally, this effect can be ignored for low velocities. For 

higher velocities, it has to be specially dealt with. In the case of the C-Ranger, we use position 

feedback to undistort the data. The principle of data undistortion is shown in Figure 7, where, 

superscripts ‘G’ and ‘S’ stand for the global coordinate frame and the sonar coordinate frame 

respectively; subscripts ‘R’ and ‘O’ denote variables for the vehicle and the features, respectively.  

Figure 7. Compensation of the motion-induced distortion. 
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Firstly, a global coordinate frame is built at the starting time of every circle of sonar scanning. In 

this global coordinate frame, the vehicle’s initial position is supposed at the origin (0, 0). Given the 

vehicle moves to point M after the scan interval t for one Ping. During this period, the vehicle’s 

velocities vx and vv and can offered by SLAM module, and the vehicle’s displacement ,  can be 

obtained as:  

G
R
G
R

x

y

x t

y t

ν
ν

 = ⋅
 = ⋅

 (19) 

Simultaneously, the vehicle’s rotation angle  can be provided by outputs of the SLAM module. 

Then, in the vehicle coordinate frame, the feature (marked as pentagram in Figure 7) is detected with a 

distance  from the vehicle (i.e., sonar) and the angle , where i stands for index of the Bin in the 

Ping. Finally, we need to transform the polar coordinates ,  to the Cartesian coordinates in the 

global coordinate frame and incorporate the motion displacement of the vehicle, thus the compensation 

formula can be presented as: 

( ) sin( )
( ) cos( )

G G S S G
O R i i R
G G S S G
O R i i R

x i x
y i y

ρ θ θ
ρ θ θ

•

•

 = + +
 = + +

 (20) 

By parity of reasoning, after the acquisition of every scanning Ping, the position of features will be 

corrected according to the above formula. Once the sonar completes one circle of scan, the undistorted 

image will be obtained without doubt. 

We use the data in the 49th circle of the Abandoned Marina Dataset [32] to verify the effect of this 

correction method. Figure 8(a) shows the acoustic image built from the raw sonar data. Since the 

vehicle’s motion has been ignored during the generation of the image, obvious distortion of the 

observed features appears when comparing it with the aerial image of the test scenario in Figure 8(c). 

Figure 8. Effect of the vehicle motion on acoustic images. (a) Raw sonar image.  

(b) Corrected sonar image. (c) Zenithal view of the Abandoned Marina [32]. 

 

(a) (b) 
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Figure 8. Cont. 

 
(c) 

 

The corrected image using the proposed method is shown in Figure 8(b). Obviously the distortion 

of the image is almost cancelled and a more accurate image is represented. The result demonstrates 

that our correction approach is effectual. 

5. Experiment and Results Analysis 

5.1. Experiment in Tuandao Bay 

The experiment was performed at Tuandao Bay in Qingdao (China). The satellite map (from 

Google Earth) and AUV trajectory measured by GPS are shown in Figure 9, where a starting point 

with direction is marked using a green arrow. The total travel in the experiment is up to 2,812 m with 

the sailing speed about 1 knot. The scan sector of the principal sonar was configured to 180° with a 

scanning range of 100 meters. 

Figure 9. The satellite map of Tuandao Bay and the trajectory of the C-Ranger by GPS. 
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5.2. Experimental Results 

In the experiment, the global coordinates measured by a GPS receiver in the C-Ranger, with a GPS 

antenna in a buoy connected to the AUV via a short cable, will be taken as the ground truth used for 

the evaluation of SLAM results. Figure 10 shows the features (marked with blue asterisk) extracted 

directly from sonar data without using sparsificaton. The point-features in the picture are very dense, 

and there are many “features” away from the possible objects such as vessels and sea bank, actually a 

large part of them are noise. As known, the large amount of point-features would increase the 

computational cost of SLAM and limit the real-time performance of AUV navigation. So the approach 

presented in Section 4 is necessary to eliminate redundant ones and reduce the number of features. 

Figure 11 illustrates the result after denoising and sparsifying, the remained features are basically the 

most representative ones needed to describe the undersea objects. 

Figure 10. The features extraction without sparsification. 

 

Figure 11. The features extraction with sparsification. 
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A comparison of the trajectories for GPS (the red line), EKF (the light blue line) and the 

SEIF-SLAM algorithm (the blue line) as well as the features (blue points) is shown in Figure 12. 

Obviously, the deviation of SLAM relative to GPS is smaller than that of EKF, and the deviation of 

EKF tends to increase gradually. On the other hand, the location of the features obtained by SLAM 

approach match the actual environment landmarks quite well. 

Figure 12. Comparison of the trajectories for GPS (red line), EKF (light blue line) and the 

SEIF-SLAM algorithm. 

 

Figure 13 presents the estimation errors of SEIF-SLAM (the red line) and EKF (the blue line) 

relative to GPS, respectively. In this figure we can see that the error of SEIF-SLAM is always smaller 

than that of EKF for the whole experiment except for a few tens of seconds in the beginning. The 

maximum error of SEIF-SLAM is 26.1 m which is only about 7.3‰ of the whole course, and appears 

at the time of 4,800 seconds after starting off. As shown in Figure 9, the corresponding point at this 

time is at the position marked as a yellow star. That is because there were many moving targets present 

such as little boats during the experiment which would impact the sonar observations. 

Figure 13. Plots of the error of conventional extended-Kalman-filter and SEIF-SLAM 

relative to GPS. The GPS data has been used as ground truth. 
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For more clarity, area A marked in Figure 12 is zoomed, as shown in Figure 14, in which the black 

and blue ellipses denote the uncertainty of vehicle pose and features separately. It is obvious from 

Figure 14 that the vehicle’s uncertainty increases for some time and then becomes very small suddenly. 

In fact, we note that the change of the uncertainty is cyclical: at the starting stage, the uncertainty for 

the pose is small and will increase gradually in one sonar-scanning-cycle because of error 

accumulation; at the ending point (i.e., the end of one sonar-scanning-cycle), the pose estimation 

uncertainty becomes small because of the update step in the SEIF-SLAM algorithm. On the other hand, 

due to the sonar scanning noise, the features uncertainty in Figure 14 seems to not follow any rules. In 

fact, when some of the features are revisited, their uncertainty will become gradually smaller relative 

to other features. In general, the more accurate the pose estimation is and the more times the feature is 

re-observed, then the smaller the feature uncertainty is. 

Figure14. The uncertainty of vehicle pose and environment features (area A). 

 
 

The sparsity of information matrix is the key to the lower computational complexity of SEIF-SLAM. 

Figure 15 shows the statistical results of the information matrix elements.  

Figure 15(a) is the statistical result of the elements magnitude of the information matrix. We can 

find that the overwhelming majority of information matrix elements is close to zero while only a small 

number of them are far from zero. Figure 15(b) shows where these elements locate in the information 

matrix and the blue dot represents the non-zero elements which mainly locate in the diagonal and the 

two ends of the counter-diagonal of the information matrix. The diagonal elements are the respective 

variance of the pose and features while the counter-diagonal is the covariance of the last observed 

features, the links of which are not yet marginalized and approximated to zero. 

To compare the performance of computational efficiency, 50 Monte Carlo experiments are carried 

out. Figures 16 and 17 present the comparisons of average CPU time and memory usage between 

EKF-SLAM and SEIF-SLAM.  
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Figure 15. The statistical results of information matrix. (a) Statistical result of the elements 

magnitude of the information matrix; (b) Location of elements in the information matrix. 

 
       (a)           (b) 

Figure 16. The comparison of average CPU time between SEIF-SLAM and EKF-SLAM. 

 
 

As we can see that SEIF-SLAM is less efficient than EKF-SLAM when there are less than 1,000 

features in the map. The reason for this is that when there are only few features, the impact brought by 

computation in sparsification step is much greater than that brought by the sparsity property. When the 

number of features is more than 1,000, SEIF-SLAM is more efficient than EKF-SLAM. Figure 17 

demonstrates the difference between SEIF-SLAM and EKF-SLAM in storage. We can conclude that 

SEIF-SLAM need much less storage than that of EKF-SLAM and the gap increases when the number 

of features increases. In fact, it is because that SEIF-SLAM maintains information matrix which is 

sparse, which is far superior to the non-sparse matrix in storage. 
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Figure 17. The comparison of average memory usage between SEIF-SLAM and 

EKF-SLAM. 

 

6. Discussion 

Like EKF-SLAM, the consistency of the SEIF-SLAM algorithm is not perfect. There are two 

reasons for this: on the one hand, error accumulation caused by nonlinear model linearization will 

easily result in inconsistency, and this problem is the same as the EKF algorithm and exists in most of 

the SLAM algorithms based on the Gaussian linear filters; On the other hand, the sparsification, which 

marginalized out the weak links (i.e., the links between vehicle pose and further features), could affect 

consistency though it has been proved that SEIF-SLAM has relatively good consistency [26,28]. The 

ESEIF-SLAM algorithm [26] improves the consistency through the modification of the sparsification 

steps of the SEIF algorithm, but increases a little computation. The more efforts will be made to improve 

the consistency and reduce computational cost of the information-filter-based SLAM algorithm in our 

future work.  

Secondly, the mechanical-scanning sonar used on the C-Ranger usually has a quite low scanning 

rate, it needs about 27 seconds to scan a 360° sector. As a result, SEIF-SLAM filter updates happen 

approximately 13.5 meters apart, and the frequency of measurement update is very slow. Obviously 

the main reason is the usage of the mechanical sonar. Therefore, the mechanical sonar will be 

exchanged for a multi-beam sonar to obtain a high update frequency on the next generation platform. 

High update frequency should be helpful to improve the accuracy of navigation for AUV a lot. 

7. Conclusions 

In this paper, the autonomous navigation method for the C-Ranger AUV had been addressed. To 

verify the advantages of SEIF-SLAM, the application of SEIF-SLAM for AUV navigation had been 

studied, the approach for data processing of sonar had also been presented in this work. The 

mechanical scanning imaging sonar is chosen as the principal sensor for active sensing of the undersea 

obstacles, a compensation method based on feedback of the AUV pose has been proposed to overcome 
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distortions of the acoustic images due to the vehicle motion. Sea trial experiments in Tuandao Bay 

have been conducted to verify the feasibility of the proposed navigation methods for the C-Ranger. 

The experimental results and analysis demonstrated that the proposed navigation approach based on 

SEIF-SLAM improved the accuracy of navigation compared with conventional methods; moreover the 

algorithm achieves low computational cost when compared with EKF-SLAM. 
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Appendix  

The Duality of Gaussian Distribution 

Let tξ  be a multi-dimensional random variable which subjects to Gaussian distribution 

( ) ( )ttt Np Σ,~ μξ , where tμ  and tΣ  denote the mean and covariance. This representation is often 

called the covariance form of Gaussian distribution. Expanding this representation in the exponential 

form, the following equivalent representation can be reached: 
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The representation ( ) ( )ttt Np Λ∝ − ,1 ηξ  is the named information form of Gaussian distribution, and 

is parameterized by the information matrix tΛ  and information vector tη . The equivalence of the above 

two forms is called the duality of Gaussian distribution, that is: 
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Equation (A3) shows these two representations about the random variable tξ  that comprises two 

sub-vectorα andβ . The mean, covariance, information matrix and information vector are partitioned 

into their corresponding parts: 
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It is noteworthy that these two equivalent representations lead to very different computational 

characteristics with respect to calculating the probability of marginalization and conditioning. Table Al 

summarizes this difference where we can see the marginalization is relatively easy in covariance form 

while hard in information form and the opposite relation holds true for conditioning. 

Table A1. The duality of Gaussian distribution. 

 Marginalization 
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Conditioning 
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