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Abstract: This paper develops a dielectrophoretic (DEP) chip with multi-layer electrodes 

and a micro-cavity array for programmable manipulations of cells and impedance 

measurement. The DEP chip consists of an ITO top electrode, flow chamber, middle 

electrode on an SU-8 surface, micro-cavity arrays of SU-8 and distributed electrodes at 

the bottom of the micro-cavity. Impedance sensing of single cells could be performed as 

follows: firstly, cells were trapped in a micro-cavity array by negative DEP force 

provided by top and middle electrodes; then, the impedance measurement for 

discrimination of different stage of bladder cancer cells was accomplished by the middle 

and bottom electrodes. After impedance sensing, the individual releasing of trapped cells 

was achieved by negative DEP force using the top and bottom electrodes in order to 

collect the identified cells once more. Both cell manipulations and impedance 

measurement had been integrated within a system controlled by a PC-based LabVIEW 

program. In the experiments, two different stages of bladder cancer cell lines (grade III: 

T24 and grade II: TSGH8301) were utilized for the demonstration of programmable 

manipulation and impedance sensing; as the results show, the lower-grade bladder cancer 

cells (TSGH8301) possess higher impedance than the higher-grade ones (T24). In 

general, the multi-step manipulations of cells can be easily programmed by controlling 

the electrical signal in our design, which provides an excellent platform technology for  

lab-on-a-chip (LOC) or a micro-total-analysis-system (Micro TAS). 
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1. Introduction 

Bladder cancer is reported as the fourth most common type of cancer in men and the eighth most 

common one in women. During the diagnosis of bladder cancer, the identification of the grade needs to 

be taken into account when deciding the treatment. Cystoscopy is the surest way to examine the grade 

of bladder cancer from a biopsy of the lining of the bladder; however, the patient may need anesthesia 

for this procedure. In addition to cystoscopy, a few biomarkers have been developed for urine tests, yet 

their sensitivity and selectivity remain unsatisfactory. Therefore, a high accuracy, non-invasive and  

in vitro method for the determination of the stage of bladder cancer is necessary to help bladder cancer 

patients. Recently, there has been considerable and growing interest in an electrical detection method 

and dielectrophoretic (DEP) manipulations for cell-based biochips because both are intrinsically 

electrical and microfluidic compatible. In 1999, Milner et al. [1] proposed an impedance technique for 

detecting a dielectrophoretic collection of microbiological particles by two coplanar microelectrodes. 

They found that the impedance depended on the number of particles captured by DEP force. Similarly, 

a chip with an interdigitated array microelectrode (IDAM) was most frequently utilized for  

dielectrophoretic impedance measurement (DEPIM) methods, such as for determination of the 

viability of E. coli by Suehiro et al. in 2003 [2], the death of yeast cells by Markx et al. in 2008 [3] and 

separation and detection of different-size microparticles by Ahn et al. in 2008 [4]. The DEPIM method 

can capture bioparticles either at the edge of the microelectrodes or in the gap between a pair of 

interdigitated electrodes by positive and negative DEP force, respectively, and simultaneously measure 

the impedance of captured bioparticles. Although DEPIM represents a fast and sensitive way for  

cell-based detection compared with conventional fluorescent detection, the impedance signal usually 

depends on the number of cells captured by DEP force, which is difficult to control with the IDAM 

design. In addition, the AC signal for DEP manipulations needs to be applied to the IDAM as an 

impedance measurement; according to the results, DEPIM is not suitable for long-time monitoring of 

living cells due to the effects of joule heating and the high intensity electric field which could cause 

cell damage in a short time. In 2007, Zhang et al. [5] proposed a different design for impedance 

measurement with single-cell resolution; he separated the electrodes for individual purposes of  

DEP trapping and impedance measurement; thus, long-term monitoring of dynamic process of  

endothelin-1-induced cardiomyocyte hypertrophy could be achieved. In the meanwhile, Chuang [6,7] 

demonstrated a DEP chip with multilayer electrodes and a micro-cavity array for trapping single cells 

in a micro-cavity by negative DEP force and sequentially sensing their impedance. In Chuang’s work, 

the impedance measurement of trapped cells in a micro-cavity did not have to apply DEP force due to 

the enhancement of the positioning and immobilization by the microstructure effects. Recently, Yun [8] 

and Jang [9] also continued using separation of DEP manipulations electrodes and impedance sensing 

electrodes for breast cancer cells (MCF7) and HeLa cells. Although the concept of single-cell 

impedance sensing has been demonstrated by several researchers, only a single cell can be measured in 

a time experiment on a chip that makes the advantage of rapidly sensing without meaning due to the 

fact the number of examined cells is small. In this study, we propose a system-level biochip for cell 
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manipulations and impedance sensing in a 3 × 3 array by PC-based programming control and data 

acquisition. This biochip can trap cells in a micro-cavity array with single-cell resolution for 

impedance sensing, and then individually release the identified cells back to the flow chamber for 

recollection. As mentioned before, the most specific (90%) diagnostic test for bladder cancer is 

invasive (cystoscopy) in conjunction with cytology, however, the sensitivity is rather low (40–60%) 

particularly in the detection of low-grade, low stage bladder cancer cells. In order to detect the  

low-grade bladder cancer cells, two different-grade bladder cancer cell lines, (TSGH8301, grade II and 

T24, grade III) were utilized to detect them by an impedance measurement method. The second grade 

bladder cancer cells look like normal cells therefore missjudgments can frequently happen in cytology. 

Consequently, we tried to provide a more rapidly and noninvasive way for differentiation of  

different-grade bladder cancer cells. 

2. Theory and Simulation 

2.1. Theory of Dielectrophoresis and Impedance Measurements 

The time-averaged dielectrophoretic force acting on a spherical particle was immersed in a medium 

and exposed to a spatially non-uniform electric field [10]. The dipole component of the DEP force is 

expressed as: 
23 )](Re[2 rmspmDEP EKR  F  (1) 

where m  is the electrical permittivity of the surrounding medium, Rp is the radius of the particle, 
2222
zyxrms EEEE  is the gradient of the square of applied electric field magnitude, and K )( is the 

frequency dependent Claussius-Mosotti (CM) factor for a dielectric uniform sphere, such as a bead; it 

is expressed as: 
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where ε is the permittivity of the medium or particle, σ is the conductivity of the medium or particle, 
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DEP. Furthermore, as 
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 =0, the DEP force will be equal to zero, which means the 

suspended particles will not be affected by the DEP force (the corresponding frequency of the AC 

signal is called the cross-over frequency). Thus, in a non-uniform electric field, whether a positive or 

negative DEP force acts on the particles depends on the sign of the CM factor. Furthermore, the 

magnitude of the DEP force is determined by the imposed gradient of the square of applied electric 

field magnitude at the particle position, as well as by the radius of the particle. Usually, DEP force is 
only valid for a certain range, due to the fact that E2 decreases rapidly away from electrode. 

Therefore, the gradient of the square of the applied electric field, E2, will be evaluated by a 

simulation method in the next section. 

Regarding of impedance measurement, impedance (Z) is an important parameter of electronic 

components defined as the total opposition of device or component offers to the flow of an alternating 

current (AC) at a given frequency. For the total impedance of an undetermined object, the total current 

is usually measureable by a specific instrument, therefore, the total impedance could be further 

calculated by IVZ / , where V is the applied voltage and I is the total current. In addition, the total 

current could be calculated by integration of current density, J, as  s
JdSI , where current density J is 

defined as the distribution of flow of charge and S is defined as a surface area of the current passing 

through. As a result, the total current density could be regarded as being inversely proportional to 

impedance if the applied voltage and surface area are constant. In the simulation section, the current 

density for the impedance measurement of cells will be investigated.  

2.2. Simulation of Nonuniform Electric Field 

The 3D model of the present multi-electrode DEP chip was simulated by the CFD-ACE+ software 

(ESI Group, France) and the parameters for medium, SU-8 and cell are listed in Table 1. The structure 

of the DEP chip consisted of an ITO top electrode, flow-chamber, middle electrode on the SU-8 

surface and the 3 × 3 bottom electrode array under the SU-8 micro-cavities. There were three layers of 

metal electrodes for three individual purposes; one is to trap cells in the micro-cavity array by negative 

DEP force generated by the top and middle electrodes, another is impedance measurement by the 

middle and bottom electrodes separated by the SU-8 layer, and the final one is to release single cells by 

negative DEP force generated by top and bottom electrodes, as shown in the Figure 1. 

Table 1. Material Properties for Simulation. 

Properties/Materials Medium Au SU-8 

Hela Cell [11] 

Cell 
Membrane 

Cytoplasm 

Density ρ (kg/m3) 1,000 19,320 1,194 997 997 
Viscosity η (kg/m·s) 8.92 × 10−4 - - - - 
Conductivity σ (S/m) 2 × 10−4 455 × 105 2 × 10−3 10 × 10−7 0.435~1.25 

Relative Permittivity ε 80 69 × 10−1 37 × 10−1 
2.5 (assumed as the 

same with latex bead) 
35~60 
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Figure 1. The 2D and 3D model of multilayer electrodes DEP chip; the height of the 

flow chamber is 90 μm, the thickness of SU-8 layer is 10 μm and the diameter of the 

cavity is 20 μm. 

 

Figure 2. (a) The contour of electric field as applied the AC signal to the middle and top 

electrodes for trapping cells; (b) The contour of electric field as applied the AC signal to 

the bottom and top electrodes for releasing cells. 

 

As the simulation results show, the highest electric field was near the top of the middle electrode 

surface, conversely; a weak electric field occurred in the SU-8 micro-cavity. Hence, cells would be 

moved into the micro-cavity by negative DEP force for further cell analysis, as shown in Figure 2(a). 

According to our experiments; the cells trapped in the micro-cavity could maintain viability and 

stability for at least 3 h in the micro-cavity without applied DEP voltage. When the cells were trapped 

in the micro-cavities upon the bottom electrodes, we could apply the AC signal to the top and bottom 
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electrodes to individually release trapped single cells by negative DEP force. In Figure 2(b), the 

contour of electric field, E, shows that the highest electric field density occurred near the edge of 

bottom electrode and the lowest one took place in the flow chamber; thus, programmable control of 

which trapped cell should be released can be done by switching the AC signal to the corresponding 

bottom electrode. As mentioned in the DEP theory, the DEP force directly depends on the gradient of 

the square of electric field, E2, Figure 3(a,b) show the contour of vertical component of E2 for 

trapping and releasing cells, respectively. Note that the arrows indicated in Figure 3 represent the 

magnitudes and vectors pointing in the direction of the steepest grade of E2 at that point. Consequently, 

the largest DEP force happened at the edge of middle electrode as trapping cells and the edge of 

bottom electrode as releasing cells. 

Figure 3. The vertical component of E2: (a) Trapping cells by applied AC signal to top 

and middle electrodes; (b) Releasing cells by applied AC signal to top and bottom electrodes. 

 

2.3. Simulation of Current Density 

The impedance sensing was conducted by applying a lower voltage (1V) to the middle electrode 

upon the SU-8 surface and grounding the bottom electrode under the SU-8 micro-cavity. The electric 

field under impedance sensing therefore differs from one of conventional planar counter electrodes. In 

order to investigate the impedance sensing within the micro-cavity structure, the same 2D model as 

indicated in Figure 1 was analyzed by the COMSOL software. Because the two impedance electrodes 

(the middle and bottom electrodes) were separated by an SU-8 insulator layer, the current could only 

pass through the medium between the two impedance electrodes. In our simulations, the total current 

density of the flow chamber area could be directly calculated by the simulation tool; hence, we took 

the total current density as the inverse index of the resulting impedance. 

In order to investigate the effects of cell size and its dielectric properties on the current density, we 

established three typical models, as illustrated in Figure 4: one is only medium without cell in the 

micro-cavity, the other two are single cells immobilized in the micro-cavities, but the cell sizes refer to 

the real cell sizes of T24 and TSGH8301 (15 μm and 20 μm, respectively). As far as we know, the 

dielectric properties of bladder cancer cells (T24 and TSGH8301) have not be explained in past studies; 
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therefore, we utilized the HeLa cell [11] as the reference of cell dielectric properties, as indicated in 

Table 1. Due to the fact a cell consists of a cell membrane and cytoplasm, the modeling of the cell was 

simulated as a layered spherical particle. The thickness of the thin outer layer of the cell membrane,  

50 nm, was limited by the element number as the finite element analysis operated in a personal 

computer (PC) though the thickness of the cell membrane is usually less than 5 nm; a similar issue was 

also mentioned by Malleo et al. [12]. From Figure 4, the distribution of current density, from applying 

an AC signal of 1V at 1 kHz, exhibits an obvious difference with and without the cell in the  

micro-cavity. In addition, the total current density for the case without a cell in the micro-cavity is 

lower than the other two cases with a cell in the micro-cavity. Furthermore, a higher current density 

can be calculated for the micro-cavity possessing a cell with smaller size. Consequently, the 
impedance values from large to small can be interpreted as Zwithout-cell＞Z20μm-cell＞Z15μm-cell. This result 

will be verified by experimental measurement.  

Figure 4. The distribution of current density as impedance measurement by applying 

voltage to middle and bottom electrodes; (a) without particle in the SU-8 cavity; (b) and  

(c) with 15 μm and 20 μm cell in the SU-8 cavity, respectively. 

 

Besides size effects, other important factors of impedance measurement are the dielectric properties 

of the cells. In order to evaluate the influence of the conductivity and permittivity of the cell membrane 

and cytoplasm, a series of parametric studies was performed, as listed in Table 2 and plotted in  

Figure 5. From the parametric simulation results, by increasing the conductivity of the cell membrane, 

the total current density is decreased, although its variation is smaller than that of the size effect. On 

the other hand, the permittivity of cell membrane seems independent with total current density as the 

vales varied from 0.1 to 9 [12]. Therefore, the impedance sensing of cells depends on its size and the 

conductivity of cell membrane, however, the influence of cell size is more significant than cell 

membrane conductivity. 
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Table 2. Parametric studies for simulation of cell impedance. 

Cell Membrane Cytoplasm 
Current Density 

(A/m2) 

Conductivity 
σ (S/m) 

Relative 
Permittivity ε 

Conductivity 
σ (S/m) 

Relative 
Permittivity ε 

 

10 × 10−7 2.5 1 
35 2.292 × 10−3 
47 2.292 × 10−3 
60 2.292 × 10−3 

10 × 10−7 2.5 
0.435 

47 
2.292 × 10−3 

1 2.292 × 10−3 
1.25 2.292 × 10−3 

10 × 10−7 
0.1 

1 47 
2.293 × 10−3 

2.5 2.292 × 10−3 
9 [12] 2.285 × 10−3 

10 × 10−7 
2.5 

1 47 2.292 × 10−3 
10 × 10−6 

  
1.919 × 10−3 

10 × 10−5 1.737 × 10−3 

Figure 5. The variation of total current density as changing the cell membrane 

conductivity and permittivity. 

 

3. Fabrication of DEP Chip 

The DEP chip with multilayer electrodes consisted of three parts, as shown in Figure 6. The bottom 

electrodes for individually releasing cells were patterned first on a 40 × 70 mm2 microscope slide, as 

shown in Figure 6(a). The glass slide was cleaned in acetone, followed by the use of a methanol solution, 

then an ultrasonic cleaning machine for 5 min, and finally dried with a N2 gun and dried for an additional 

30 min at 225 °C. The layout of 3 × 3 individual bottom electrodes is shown in Figure 7(c); the diameter 

of each bottom electrode was 20 μm. The middle part consisted of a cavity-type 3D microstructures 
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array and the middle electrode for DEP trapping; these comprised a thick photoresist layer, SU-8 and a 

metal layer, Au, respectively. The 3 × 3 micro-cavity array was first patterned on the SU-8 layer, as 

shown in Figures 6(b) and 7(a). The diameter, spacing and depth of the micro-cavity array were 

designed as 20 μm, 20 μm and 10 μm, respectively. Before depositing the metal layer onto the SU-8 

surface, the same photo-mask for the micro-cavity was used again for patterning the positive  

photo-resist S1813 in the micro-cavity for the later lift-off process. Then, 300 Å of chromium and  

700 Å of gold were evaporated sequentially onto the SU-8 microstructure by E-beam evaporator under 

temperature control for the avoidance of SU-8 reflow; finally, the metal layer at the bottom of the 

micro-cavity was lifted off by immersion in acetone, as shown in Figure 6(c). The last part was a 

rectangular flow chamber, with the dimensions of W × L × H = 7 mm × 50 mm × 100 μm, formed by 

double-sided tape attached to the ITO glass. The advantages of using double-sided tape were its ease of 

patterning and the good quality of bonding between the upper ITO glass and the SU-8 layer, as shown 

in Figure 6(d). The finished multilayer electrodes DEP chip is shown in Figure 7(b). 

Figure 6. The microfabrication processes of DEP chip. 

 

Figure 7. (a) the SEM image of the 3 × 3 micro-cavity array; (b) the photograph of  

the entire DEP chip; (c) optical image of bottom electrodes (resealing electrode) under  

micro-cavity array. 
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4. Experimental Setup 

The experimental setup is shown in Figure 8. We utilized a syringe pump (KDS-210, KD Scientific) 

to control the flow rate. The AC signal was generated by a function generator (AFG3022, Tektronix) 

for DEP trapping and releasing. A digital DV (HDR-XR350, Sony) was mounted on a biological 

microscope (BX51, Olympus) for monitoring the DEP force acting on the cells and capturing the  

in-situ image for post image processing. The impedance amplitude was recorded for frequencies from 

1 kHz to 100 kHz with continuously scanned spectra using the LCR meter (WK6420A, Wayne Kerr). 

In order to demonstrate the manipulation of the cells, two cell suspensions of human bladder cancer 

cell lines (T24 and TSGH8301) were utilized and immersed in a sucrose solution (8.63% in weight 

percentage) in this study. In addition, the conductivity of cell suspension was controlled in a proper 

range for DEP manipulation; we utilized a conductivity meter (SC-170, Suntex) to measure the cell 

suspensions. Furthermore, the isotonic sucrose solution can maintain the cells’ viability for at least 4 h. 

In this work, all of the procedures for DEP manipulation were performed by a PC-based LabVIEW 

programming system. The DEP chip includes nine independent bottom electrodes and one ITO top 

electrode, connected with the circuit board and the DAQ system for trapping and programmably 

releasing single cells. The DAQ system provides for the programmable release of single cells by the 

LabVIEW software program. The LabVIEW program can individually control ten switches for 

introducing the AC signals into 10 electrodes, including a middle electrode for trapping cells (No. 10), 

and nine individual bottom electrodes under the micro-cavities for releasing trapped cells (No. 1–9) as 

indicated in Figures 7(c) and 9(a). Another LabVIEW program for controlling the impedance sensing 

is shown in Figure 9(f); therefore, the impedance measurement for each micro-cavity in the DEP chip 

can be automatically recoded.  

Figure 8. The experimental setup for DEP trapping, releasing and impendence sensing of cells. 
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Figure 9. Optical micrographs demonstrating the trapping and programmable releasing of 

single cells: (a) LabVIEW program for manipulation of cells, (b) cells suspended in the 

micro-cavity array, (c) trapping cells in the micro-cavity array by switch on No. 10 with an 

AC signal in the negative-DEP range, (d) show the target (arrow) cell released by switch 

on No.1 button, (e) all other trapped cells were released by switch on No. 10 button with an 

AC signal in the positive-DEP frequency range, (f) LabVIEW program for impedance 

sensing of cells. 

 

5. Results and Discussion 

5.1. Cell Manipulation 

The frequency ranges of positive and negative DEP for cells suspended in a sucrose solution 

(8.63% weight percent crystalline sucrose in 2DI water) after a series of DEP experiments, are listed in 

Table 3. The negative DEP force occurred at a low frequency range and the positive DEP force was 

generated at a high frequency range. In addition, the cross-over frequency was measured by the 

observation on the pulled-out phenomena for a trapped cell. Firstly, by applying an AC signal under  

10 VPP and 50 KHz cells were trapped into the microcavities, then, tuned the frequency up gradually 

until the trapped cells began to move up. We took the corresponding frequency as the lower bound of 

cross-over frequency. Usually, the trapped cells could be seen moving up and down for a certain 

frequency range as the frequency kept increasing. Finally, the cells moved to the middle electrode 

surface upon SU-8, the corresponding frequency was denoted as the upper bound of cross-over 

frequency. Thus, the upper and lower bound of cross-over frequency can be identified based on the 

DEP chip with microstructure array.  
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Table 3. Frequency range of negative DEP, positive DEP and cross-over frequency for 

TSGH8301 (grade II) and T24 (grade III) cells suspended in the medium. 

Sample 
Cell Size 

(Diameter/μm) 
Negative DEP 

(kHz) 
Cross-over Frequency 

(kHz) 
Positive DEP 

(kHz) 
TSGH8301 20 ± 3 10~50 140~180 180~1,000 

T24 15 ± 3 10~50 150~200 200~1,000 

The cell manipulations were demonstrated by sequential operation, as shown in Figure 9. First, the 

cells were injected into the flow chamber by syringe pump at a rate of 0.5 μL/min for about 1 min to 

fill the flow chamber, as indicated in Figure 9(b). Then, the AC voltage with 10 VPP at 20 kHz was 

applied to the top and middle electrodes. The cells moved into the micro-cavities by negative DEP 

force, as shown in Figure 9(c). Finally the target cells could be individually released from the  

micro-cavity by switching the AC voltage with 10 VPP at 80 kHz to the top and bottom distributed 

electrodes. After the recollection of target cells, other cells could be easily popped out by applying the 

AC voltage with 10 VPP at 200 kHz to the top and middle electrode by positive DEP force and flushed 

away for the next run, as shown in Figures 9(d,e). Consequently, this DEP chip provided a platform for 

the manipulation of cells and cell-examination purposes.  

5.2. Impedance Sensing 

The impedance measurement can be carried out by the middle and bottom electrodes after cells 

have been trapped in the micro-cavity. The cells were immersed in a sucrose solution and pumped into 

the flow chamber by a syringe pump. After these suspended cells flowed over the block upon the  

micro-cavities array in the flow chamber, the AC signal was applied for DEP trapping. When the cells 

were trapped in the micro-cavities upon the impedance electrodes, we flushed the suspended cells away 

from the cavity array to prevent parasitical effects during impedance measurement. Before the 

impedance measurement by LabVIEW program integrated with LCR meter, the syringe pump and the 

AC signal were stopped. Two different-grade bladder cancer cell lines (grade III:T24 and grade 

II:TSGH8301) were utilized for the impedance sensing. As the experimental results in Figure 10 show, 

the impedance decreased when cells were trapped in the micro-cavity array, which is consistent with 

simulation results. The impedance measurement results for different-grade bladder cancer cell lines are 

shown in Figure 11. The lower-grade bladder cancer cells (TSGH8301) possess higher impedance than 

the higher-grade ones (T24). Besides, the impedance magnitudes decreased as the frequency increased 

for all conditions, which indicated a capacitor characteristic of our DEP chip. Another impedance 

investigation on the human breast cancer cell lines [13] (MCF-7, MCF-MB-231, and MDA-MB-435) 

of different pathological grades also indicated similar tendency higher-grade breast cancer cell  

line possessed lower impedance magnitude. In addition, pathological change could induce a series  

of variations in membrane potential, ion channel as well as membrane protein, etc. Therefore, 

different-grade cancer cells could display different impedance. Although we know that grading in 

cancer is a measurement of the cell appearance in tumors and other neoplasms, but the impedance 

measurement method also has demonstrated differentiable variations between different-grade bladder 

cancer cell lines. Consequently, the impedance measurement method for the differentiation of 
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different-grade bladder cancer cells is promising, but still needs further calibration on the effects of cell 

size and contact resistance of electrode by an equivalent circuit model. In this study, not only cell 

manipulations but also the impedance data acquisition in a micro-cavity array were performed by the 

PC-based programming so that the examination time for one run can be reduced to 3 min. Thus, if the 

DEP chip integrates with a circulating pumping system, the total number of examined cells could be 

greatly improved with multi-run tests.  

Figure 10. Impedance measurement results for with or without TSGH8301 cell in the 

micro-cavity array; the applied voltage was 1 V and the frequency range was swept from  

1 K to 100 KHz. 

 

Figure 11. Impedance measurement results for difference bladder cancer cells (T24 & 

TSGH8301); the applied voltage was 1 V and the frequency range was swept from 1 K to 

100 KHz. 
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6. Conclusions  

We have designed and fabricated a DEP chip with multi-layer electrodes and micro-cavity array 

used for the trapping, programmable releasing and impedance measurement of cells at a single-cell 

level. All of the operations were integrated by a PC-based LabVIEW program; therefore, we have 

demonstrated a system-level biochip for cell analysis on a microchip. From the impedance measurement 

results, the impedance of low-grade bladder cancer cells is higher than the high-grade ones. 

Consequently, this microchip not only provides an efficient way to immobilize cells in the micro-cavity 

for a long period of time without applying DEP force, but also easily discriminates the different-grade 

bladder cell lines based on an on-chip impedance measurement, so that the cell identification and 

recollection can be achieved by this enabling technology. 
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