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Abstract: We demonstrate a silicon gratings-based biosensor to detect functionalized 

protein binding on its surface. The designed silicon gratings have sensitivities  

up to 197 nm/RIU in detecting refractive index change and 1.61 nm per nanometer of 

thickness change of bio-material on the surface of silicon gratings. Functionalizing proteins 

on gratings surface by eliminating unspecific binding makes this device more selective and 

efficient. Streptavidin at a concentration of 0.016 µmol/mL was functionalized on silicon 

substrate and biotin of 12 µmol/mL concentration was used as a target molecule in our 

detection experiments. Normal transmission measurements of gratings are made in air at 

different stages of immobilization, bare silicon grating, after attaching streptavidin and 

after trapping biotin. Total shifts in resonant peak wavelength of ~15 nm in normal 

transmission were observed after immobilizing biotin with ~7 nm of shift in resonant peak 

wavelength after functionalizing streptavidin to silicon substrate.  
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1. Introduction 

A grating is an optical component with a periodic dielectric pattern in one dimension, which when it 

consists of sub-wavelength features and has thin-film layers, shows resonance spectral characteristic [1]. 

More generally a grating is a dispersive element commonly used in monochromators and spectrometers. 

Apart from these applications, on-chip gratings are also used for spectral shaping [2], mode converters 

in optical communications [3], narrow band optical filters [4] and chemical/biological sensors [5-14]. 
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Resonant gratings, being highly sensitive to the refractive index of the material in its surroundings, 

have attracted many researchers to explore their sensing applications. These sensors are typically 

coated with materials of nano-scale thicknesses to observe the spectral changes [6-14]. Gratings are 

compatible with building fluid chambers for biosensing purpose, where the device response to the  

bio-material with respect to time measurement can be investigated [10]. 

In this paper, we demonstrate gratings on silicon for streptavidin-biotin detection by eliminating 

unspecific bindings which makes this device more selective and efficient. These gratings are built on-chip, 

which makes it more compact, results in faster response and is easy for immobilization compared to 

gratings on optical fibers [5-9,11-13]. It has been shown that the sensitivity of fiber grating sensors is 

around three times higher when measurements are made in air rather than in liquids [12] using a fluid 

chamber over gratings to detect analyte in fluid media [10]. Specific binding on the sensor surface is a 

key feature in sensor applications since this avoids spectral shifts due to unspecific binding as in the 

case of simple physical absorption or coating of analyte on the surface of gratings [5-8]. Here, we 

demonstrate a sensor using silicon gratings with streptavidin immobilized on its surface through ionic 

bonding which has greater affinity towards biotin. By detecting only specific binding, the sensor 

measurements can be done in air rather than in fluid chambers for sensitive detection. Shifts in 

resonant peak wavelengths in normal transmission were estimated through simulations using a 3-D  

finite-difference time domain (FDTD) method with non-uniform mesh. Gratings were fabricated by 

standard e-beam lithography. Wei Zhang et al. have demonstrated polyester gratings with TiO2 

nanorods incorporated to increase sensitivity, but fabrication of these structures is complicated and 

they have issues with repeatability [14]. Here, we have selected the design in such a way that these 

silicon gratings are simple to fabricate and repeatable. The small footprint of the silicon grating and 

small quantity and concentration of analyte required, make these silicon gratings an attractive sensor 

with high sensitivity. Normal transmission of these devices were recorded at different stages—bare 

silicon gratings, after functionalizing the surface with streptavidin and after biotin binding—to observe 

shifts in resonant peak wavelength. Characterization on this bio-material layer was done for its 

uniformity, thickness and for the uniform distribution of proteins on grating surface using AFM 

imaging, ellipsometer and confocal imaging to locate proteins.  

2. Simulations  

Lumerical’s FDTD solution software was used to numerically simulate our grating structure. The 

gratings were constructed on a 425 µm thick silicon slab with periodicity of 630 nm, groove width and 

height of 300 and 400 nm, respectively. In order to avoid huge computations due to the dimensions of 

these devices, the FDTD method was used with periodic boundary conditions in the X, Y directions. 

We implemented a full 3-D FDTD simulation based on square non-uniform mesh since a major part of 

this device is a silicon substrate with shallow gratings on its surface. Based on this technique, the 

default grid size used to mesh the structure was set at 18 nm with a finer 10 nm mesh over the gratings 

pattern region. In this way, the accuracy and convergence of the simulations are both guaranteed, 

while the computational resource requirements are reasonable enough to run the simulation. The light 

source was placed at the bottom of the silicon slab and normal transmission was recorded at the top of 

the gratings. Figure 1 shows the simulation model built with the Lumerical FDTD simulation software. 
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Figure 1. Gratings structure model used in the Lumerical FDTD simulation software. 

 

The resonant peak was observed at 1,135 nm. There are two reasons for designing the resonant peak 

at this wavelength. First, silicon has a strong absorption in the visible and near infrared region up  

to 1,000 nm, so any grating designs on silicon for transmission measurements must have a 

transmission resonance peak greater than 1,000 nm. Secondly the InGaAs detector used in the 

measurements has a maximum spectral response this region. 

Figure 2. Simulation results: (a) Shifts in resonant peak due to bio-material coatings of 

different thickness on silicon gratings; (b) Shifts in resonant peak wavelengths with respect 

to thickness of bio-material. 

 

Once the bare grating structure was successfully simulated, a thin film of material with refractive 

index 1.502 was simulated on top of the gratings with different thicknesses ranging from 3 to 10 nm. 

The material was set to have same optical properties as the biochemicals used in the experiment. 

Grating structures with different bio-material thickness were simulated to estimate the shifts in 
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resonant peak wavelength. Normal transmission spectra for thickness of 3–10 nm of bio-material on 

top of the gratings were simulated. As seen in Figure 2(b), the resonant peak wavelength red shifts as 

the thickness of the bio-material increases. When the estimated thickness of the bio-material layer was 

≈10 nm, the resonant peak wavelength shift in the simulated data was observed to be 16 nm, with a 

sensitivity of 1.60 nm per nanometer of thickness change of bio-material of refractive index 1.502 on 

the grating surface, which is higher compared to photonic crystal micro-cavity bio-sensors [15].  

Zhiyong Wang et al. have reported similar sensitivity for optical fiber gratings, but for detecting a higher 

refractive index material [9].  

3. Fabrication 

The gratings were fabricated on a double side polished silicon wafer of 425 µm thickness. The 

grating pattern was written on ZEP-520a resist on a silicon substrate using e-beam lithography. The 

samples were developed in ZED-N50 and the silicon was etched using a deep silicon plasma etcher 

with an etch rate of 12.5 nm/s for 32 s. After successful etching, the samples were cleaned in an 

oxygen plasma asher to remove hydrocarbon contaminants and any resist remaining during fabrication 

and gratings depth was measured to be ~400 nm. The dimensions of the fabricated gratings were 

chosen to be 200 × 200 µm (length × width) and the period of the grating was fixed at 630 nm.  

Figure 3 shows the SEM image of the gratings fabricated on double sided polished silicon wafer. 

Figure 3. SEM image of silicon gratings fabricated using e-beam lithography. 

 

Gratings with different groove width were fabricated by varying the e-beam dose. The groove 

widths of silicon gratings were later measured accurately using an AFM and found to vary  

from 359 to 480 nm. Normal transmission through the gratings with different groove widths are 

expected to have resonant peaks at different wavelengths as the gratings resonant peak is highly 

sensitive to the grating width, grating depth and periodicity [16,17].  
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4. Immobilization and Characterization 

4.1. Immobilization of Streptavidin and Biotin on Grating Surface 

The immobilization technique used in this work was adapted from a previously published process 

on photonic crystal fibers for labeled antibody detection [18]. In our experiment the immobilization 

technique was modified with biotin as a target molecule instead of antibodies to make it a label free 

sensor. Prior to immobilizing the streptavidin on gratings, a biochemical coating of poly-L-lysine and 

glutaraldehyde is deposited to ensure trapping of the streptavidin on the gratings. Between each step of 

the coating procedure, the gratings were rinsed in a pH neutral solution of Phosphate Buffered Saline 

(PBS, 10 mmol) for 5 min. The first layer was deposited on silicon by immersing the samples in an 

aqueous solution of poly-L-lysine (1:100 in H2O) acting as a positively charged substrate for 15 min, 

covered then by a negatively charged layer of glutaraldehyde (12.5%) for 45 min which then binds to 

the poly-L-lysine. The samples were then left in streptavidin (0.016 µmol/mL in PBS of neutral pH) 

for 30 min to bind to the glutaraldehyde sites. Finally, the empty sites of glutaraldehyde were blocked 

by positively charged ethanolamine molecules (40 mmol) by keeping the samples immersed for 20 min. 

A schematic of the biochemical layers holding the streptavidin and biotin is shown in Figure 4. A 

subsequent PBS washing eliminated the unspecific bindings and addition of ethanolamine molecules 

covered up the unbounded sites of glutaraldehyde preventing any unspecific binding. Streptavidin is a 

protein with an exceptionally high binding constant of 1015 M−1 with biotin. The biotin-streptavidin 

system serves as the bio-conjugate pair in this demonstration. Once the streptavidin was functionalized 

on to the silicon substrate, the samples were covered with biotin (12.27 µmol/mL in PBS of neutral 

pH) for 30 min and samples were rinsed with PBS solution to remove any unbound biotin from the 

silicon surface.  

Figure 4. Schematic of the immobilization process on silicon substrate. 

 

4.2. Characterization of Biochemical Layer with Streptavidin and Biotin on Gratings Surface 

The uniformity, thickness of bio-material on the grating surface were characterized using AFM 

imaging and ellipsometry. Figure 5 shows the AFM images of the bare silicon gratings and after biotin 

immobilization on the grating surface. The samples are uniformly covered with the bio-material and 
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uniformity of this layer was measured to be ±0.48 nm on the total bio-material layer thickness  

of 9.25 nm. The left image in Figure 5 shows the sharp edges of the silicon grating whereas the image 

on the right shows the biochemical layer with streptavidin and biotin uniformly covering the inner 

walls and the top surface of the gratings. Ellipsometry was used to measure the thickness of the 

biochemical layer along with streptavidin and biotin. In addition to thickness measurements, 

ellipsometry was also used to measure the refractive index of the layers coated on silicon surface. The 

thickness of the biochemical layer along with streptavidin and biotin was measured to be 9.25 ± 0.25 nm 

and the refractive index was found to be 1.502 at 1,137 nm. Ellipsometry measurements were done on 

bare silicon as a grating pattern can interact with the polarized light used for thickness measurements 

and refractive index measurement. AFM shows conformal coverage and hence ellipsometry on bare 

silicon should yield accurate results.  

Figure 5. AFM images of grating surface before and after immobilization. 

 

5. Experimental Measurement Results and Discussion 

Normal transmission measurements were performed on the gratings using 0.8 m high resolution 

spectrograph and InGaAs detector. As shown in Figure 6, the measurement setup consists of 

broadband light source from 360–2,000 nm which was passed through a collimator. The collimated 

beam was then passed through a series of optical components such as chopper, filters, polarizer and 

attenuator. Polarized light was then focused using an objective onto the sample. Transmitted light from 

the sample was collected by a spectroscopic microscope objective and then directed into the spectrometer 

and detector.  

Initially, normal transmission measurements were recorded from five bare silicon gratings with 

different groove widths. Transmission spectra of these bare silicon gratings, as shown in Figure 7, 

have different resonant peaks due to the different fabricated groove widths of these gratings. AFM was 

used to measure the groove width of these gratings which were as labeled in Figure 7. The resonant 

peak wavelength red shifts with increase in groove width of these gratings. Device 1, device 2, and 

device 5 [dev(1,2,5)] with groove widths of 359, 378 and 480 nm respectively were used to study the 

specific binding of biotin on the silicon grating surface while device 3 and device 4 [dev(3,4)] with 

groove widths of 390 and 445 nm were used to observe the effects of unspecific binding.  



Sensors 2011, 11 11301 
 

 

Figure 6. Schematic of measurement setup. 

 

Figure 7. Normal transmission spectra of grating devices with different groove widths. 

 

The thickness of chemical layer of after coating poly-L-lysine and glutaraldehyde was found to be 

approximately half a nanometer with refractive index 1.35 and the transmission shift produced in 

normal peak of gratings is negligible. The thickness of the bio-material layer after immobilizing 

streptavidin on the silicon gratings is expected to be around 5 nm. After functionalizing streptavidin on 

the gratings surface, measurements were recorded and a shift of 7 ± 1 nm was observed in the resonant 

peak in all the gratings. Final measurements were recorded after biotin binding to streptavidin. 

Dev(1,2,5) were washed with PBS solution to remove the unbounded biotin where as dev(3,4) are 

unwashed samples. Figure 8 shows the shifts in the resonant peaks of the normal transmission spectra 

due to streptavidin and biotin binding in device 1, with the inset showing the confocal image of the device 
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after functionalization with biotin. Streptavidin was tagged with fluorescein with fluorescence signal  

at 514 nm confirms the presence of streptavidin binding on silicon grating surface.  

Figure 8. Measurements recorded on device 1 at different stages of immobilization with 

inset of confocal image of the device after functionalizing with biotin where the 

streptavidin was tagged with fluorescein. 

 

For dev(1,2,5), shifts of 8 ± 1 nm in resonant peak wavelength were observed due to specific 

binding of biotin to streptavidin, as shown in Figure 9. In comparison, for dev(3,4) shifts of 110 nm  

and 95 nm in resonant peak wavelength was observed, respectively, due to the physical adsorption of 

biotin along with biotin that was bonded to streptavidin. There is a difference of 1 nm in shifts among 

dev(1,2,5) after functionalizing with biotin as the immobilized layer after biotin varied by ±0.25 nm 

for these devices. Figure 9(a) shows the absolute shifts in wavelength with increasing groove width as 

well as wavelength response of dev(1,2,5) to streptavidin and biotin binding, while Figure 8(b) shows 

the relative shifts in resonant peak wavelength due to streptavidin and biotin functionalization on the 

grating surface. Though the streptavidin is bigger in size compared to biotin, due to the concentration 

difference between streptavidin and biotin, more binding sites for biotin on streptavidin are available 

and also one of the important factors is the refractive index of each bio-material layer, which produces 

the resonant peak shift. It is not possible to measure the refractive index of each and every layer 

individually. The measured refractive index of 1.502 is the effective refractive index after 

immobilizing streptavidin and biotin. It was observed from Figure 9(a,b) that the device resonant peak 

wavelength response to streptavidin and biotin binding remains constant and independent of original 

groove width differences. The simulation prediction matches closely with the measurement data and 

the immobilization technique in this experiment was designed so as to functionalize monolayers of 

streptavidin and biotin to have a better control of the thickness and distribution of streptavidin and biotin 

on the silicon surface. We used 12.27 µmol/mL of biotin for 0.016 µmol/mL of streptavidin for our 

experiment and sensitivity of 1.61 nm per a nanometer of thickness change of bio-material on the 

surface of silicon gratings was measured. This is a large concentration and there is probably still some 

non-uniformity as they are coated on the gratings and the optical measurement is averaged over a 
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larger area. So while the spectral shifts are confirmed repeatedly, the exact thickness of the added layer 

has some uncertainty (also due to refractive index changes mentioned earlier). Further measurements with 

different concentrations have to be investigated. 

Figure 9. (a) Shifts in resonant peak due to immobilization on different gratings sensors 

with respect to thickness of bio-material; (b) Comparison of simulation data with 

measurement results. 
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