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Abstract: This study develops an approach to improve the quality of infrared (IR) images 

of vein-patterns, which usually have noise, low contrast, low brightness and small objects 

of interest, thus requiring preprocessing to improve their quality. The main characteristics 

of the proposed approach are that no prior knowledge about the IR image is necessary and 

no parameters must be preset. Two main goals are sought: impulse noise reduction and 

adaptive contrast enhancement technologies. In our study, a fast median-based filter 

(FMBF) is developed as a noise reduction method. It is based on an IR imaging mechanism 

to detect the noisy pixels and on a modified median-based filter to remove the noisy pixels 

in IR images. FMBF has the advantage of a low computation load. In addition, FMBF can 

retain reasonably good edges and texture information when the size of the filter window 

increases. The most important advantage is that the peak signal-to-noise ratio (PSNR) 

caused by FMBF is higher than the PSNR caused by the median filter. A hybrid cumulative 

histogram equalization (HCHE) is proposed for adaptive contrast enhancement. HCHE can 

automatically generate a hybrid cumulative histogram (HCH) based on two different pieces 

of information about the image histogram. HCHE can improve the enhancement effect  

on hot objects rather than background. The experimental results are addressed and 

demonstrate that the proposed approach is feasible for use as an effective and adaptive 

process for enhancing the quality of IR vein-pattern images. 

Keywords: noise removal; noise detection; adaptive contrast enhancement; hybrid 

cumulative histogram equalization 
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1. Introduction 

Because the cost of IR cameras has declined in recent years, especially those that are not cooled,  

the number of applications based on IR images captured by un-cooled IR cameras has increased 

substantially. Many new applications of IR imaging have been developed and deployed in fields that 

include the military, medicine, industry, and biometric verification. Among the most important 

biometric verification applications is the capture of IR images of palm-veins [1-3] and faces [4,5]. 

However, IR images frequently have noise, low contrast, low brightness and small magnification  

of objects of interest, so that the images must be preprocessed to improve their quality for  

biometric verification. 

However, the low signal-to-noise (S/N) ratio [6,7] is the inherent limitation of IR images that affects 

their quality and hinders their deployment. The low S/N ratio results in low signal and high noise that 

degrades the quality of IR images. This is significant for an un-cooled IR camera, which is much less 

expensive than a cooled camera and has been used more prevalently to capture IR images in recent 

years. The high noise is caused by the sensors and read-out circuits of IR cameras, and the low IR 

signal detected by IR sensors is caused by the degradation of the IR signal radiating from objects in 

bad atmospheric weather. To enhance image quality and improve the adoption of IR-based applications, 

some form of image preprocessing is necessary. Improvements in impulse noise removal and contrast 

enhancement are the crucial tasks of IR image preprocessing. 

The standard median filter (MF) [8] has been prevalently used for noise removal in image 

preprocessing. However, the MF has an inherent limitation, which is its high computation load. The 

weighted median filter and the center-weight median filter (CWMF) [8,9] are modified to alleviate the 

inherent limitations of the MF at the expense of reduced noise removal performance. In addition, many 

methods [10-17] that combine the MF with impulse detection have been proposed to remedy the  

limitations of MFs. Their performance inherently relies on the performance of the impulse detector.  

Mean-based filters [18-20] are an alternative approach to remedy the limitations of the MF. These 

filters usually perform well at the cost of increased computational complexity. In recent years, some 

literature [21-24] has proposed impulse noise removal based on fuzzy technologies. However, all the 

previously mentioned literature considered visual images.  

In this study, a FMBF to IR images based on an IR imaging mechanism to detect impulse noise and 

that is median-based to remove impulse noise with low computational load is developed. It can be 

performed without any prior knowledge about the IR image impulse noise, and no parameters must  

be preset. 

In general, IR images consist of some objects of interest and many background areas. Not only is 

there a lack of prior information and much annoying noise, clutter, and stationary non-target  

objects [6,7], but it is also difficult to enhance the objects of interest without also enhancing the 

background or the noise. Using manual manipulation to enhance the gray value of objects of interest 

may be one way to remedy this problem, but it is not practical, because it is time-consuming and  

labor-intensive. 

Many contrast enhancement technologies for IR images have been developed in the literature [25-29]. 

In [25], a self-adaptive contrast enhancement algorithm based on plateau histogram equalization was 

proposed, while [26] revealed that modeled histogram enhancement can considerably improve the poor 
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detection performance associated with natural images. In [27] the authors used histogram equalization 

(HE) to develop plateau histogram equalization, and [28,29] used histogram projection. These 

technologies are all based on histogram information. In addition, some non-histogram-based 

enhancement techniques were developed in [30-35].  

To enhance the IR images automatically, we have developed a novel adaptive contrast enhancement 

approach, which automatically generates a hybrid cumulative histogram (HCH) based on two different 

pieces of information about the image histogram. The proposed approach runs automatically, requiring 

no prior information about the IR images nor manually setting the parameters. This approach is called 

hybrid cumulative histogram equalization (HCHE). A reliable, robust and adaptive approach is based 

on FMBF, and HCHE is developed in this study. 

Figure 1 shows a block diagram of the proposed approach. It consists of four main parts, which are 

noise detection, noise removal, selecting an adaptive threshold and generating a hybrid cumulative 

histogram. They will be described in detail herein. 

Figure 1. Demonstrates the block diagram of the proposed approach. 

 

The rest of the paper is organized as follows. The FMBF approach with a lower computation load to 

reduce noise is addressed in Section 2. Section 3 describes the HCHE which generates a HCH for 

adaptive contrast enhancement to IR images. HCHE can remedy the shortcomings of the HE. 

Experimental results are demonstrated in Section 4 to verify the validity of the proposed approach, and 

concluding remarks are given in Section 5. 

2. Fast Median-Based Filter (FMBF) 

2.1. IR Imaging Mechanism 

MF does not distinguish noisy pixels from regular pixels and processes every pixel in images, 

which results in increased computational load to process the signal pixels that do not need to be 

processed. Therefore, a good deal of computational load can be saved by performing noise reduction 

only on noise pixels. One of the ways to alleviate computing overload is to detect the noise pixels 
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before performing any noise removal. The key point is how to detect noise pixels intelligently. To 

detect noise pixels in IR images, one must consider the imaging mechanism of IR images. The imaging 

mechanism is derived based on the heat radiation law and heat conduction law. The details have been 

described in [1]. 

According to the heat radiation law, the gray-level of pixels has a positive relationship with the 

temperature of the object surface. In addition, the heat conduction means that the temperature of the 

object varies monotonically on a surface. As a result, the crucial property of the IR imaging mechanism 

is that the gray-level of signal pixel of an object changes monotonically in IR images. On the contrary, 

the gray-level variations of noise pixels do not follow the IR imaging mechanism. FMBF is developed 

based on this crucial property of the IR imaging mechanism to detect noisy pixels. 

2.2. Noise Detection 

A number of impulse detection methods [11-17] have been proposed that combind with MF to 

reduce the impulse noise. They include several different types of methods. All of these methods detect 

impulse noise in visual images. In this study, a noise detection algorithm has been developed based on 

IR imaging mechanism to detect the noise in IR images. 

In order to explain how to perform the noise detection, some parameters of image pixels must be 

defined first. The terms x and y represent the horizontal and vertical coordinates of a pixel, 

respectively. p(x,y) is the pixel with coordinates x and y. g(x,y) is the gray-level of the pixel p(x,y). Sxy 

is the set that includes g(x,y) and its neighbor pixels. gm is the median gray-level of the Sxy, g(x,y) 

represents the gray-level of the central position pixel that will be processed, (s,t) denotes the coordinates 

of the pixels belonging to Sxy, and g(s,t) represents the gray-level of the pixels belonging to Sxy. 

According to the imaging mechanism of IR images, the gray-level of an object varies 

monotonically, which results in an important property: if the gray-level g(x,y) is equal to the maximum 

gray-level gmax or the minimum gray-level gmin inside a filter window, the central position pixel p(x,y) 

will be a noisy pixel and should be replaced. Otherwise, it is considered as a signal pixel and should 

not be changed. Hence, this paper proposes the noise detection algorithm to find noisy pixels inside the 

filter window in IR images based on two steps. First, the noise detection method employs  

Equations (1a) and (1b) to find the maximum and minimum gray-level inside the filter window. Next, 

the algorithm checks the gray-level g(x,y) with gmin and gmax to consider whether the pixel p(x,y) is 

noise or signal. This noise detection can be performed in the following steps. 

Step 1. Determine the maximum and minimum gray-level inside the filter window. 

 gmax = Arg max{g(s,t)} (1a)

 (s,t) ∈ Sxy 

 gmin = Arg min{g(s,t)} (1b)

 (s,t) ∈ Sxy 

Step 2. Based on the IR imaging mechanism, check g(x,y) with gray-level gmin and gmax to 

determine whether the pixel p(x,y) is noise or signal. 

 

 
{ If g(x,y) = gmin or gmax p(x,y) is a noise  (2)

Otherwise p(x,y) is considered as a signal pixel 
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The proposed noise detection is based on the IR imaging mechanism. Therefore, FMBF can exactly 

identify the noisy pixels and replace them in IR images. The IR image’s edges, text information and 

details of objects are not damaged while being processed by the proposed FMBF. 

2.3. Noise Removal 

According to the property of IR imaging mechanism, the pixel with median gray-level inside the 

window is adopted replacing the noisy pixels. In the proposed approach, the procedure to find out 

median gray-level is performed by the sort algorithm with a low computation complexity. In addition, 

it only processes the noisy pixels, but not the signal pixels. 

Sorting is the main computation load of the noise removal, so in order to speed up the noise 

removal, reducing the computational load is critical. This study adopts a sort algorithm with low 

computational load. From an analysis of the properties of the versatile sort algorithms, a Radix sort 

with suitable parameters should run faster even than Quick sort or Heap sort [36]. The complexity of 

Radix sort is described as Equation (3): 

Complexity of Radix sort = O(n logd q) (3)

where n is the number of data, d is the number of digits, q is the range of the digit. 

Thus in the proposed approach, a Radix sort algorithm with suitable d and q is selected to sort the 

pixel gray-level. In order to reduce the computational load of the Radix sort algorithm further,  

a Bit-plane processing technique is utilized to perform the Radix sort algorithm. The Bit-plane 

processing is easily implemented by using hardware in parallelization [37]. It can be achieved by the 

Bit-plane decomposition method [38], which decomposes the IR image into m bit-planes, where m is 

the number of bits in each pixel. Then the Radix sort algorithm is performed on these bit-planes  

to select the pixel with the median gray-level gm inside a filter window. The selected pixel with  

gray-level gm is utilized to replace the noisy pixel in the central position inside the filter window and 

the noise removal is accomplished. 

FMBF does not act like the MF in sorting each pixel in a whole IR image; it only processes noisy 

pixels. In general, there are far fewer noisy pixels than signal pixels. FMBF has to expend extra 

computational load to determine the maximum and minimum gray-level in the noise detection 

procedure. The computation complexity of doing is O(n), which is still less than the computational 

complexity of Radix sort O(n logd q). Thus, the proposed FMBF can theoretically save time in  

noise removal.  

3. Hybrid Cumulative Histogram Equalization (HCHE) 

Histogram equalization (HE) is the most popular method utilized to enhance images, but it has a 

limitation in that it enhances primarily the large area scene features with approximate gray-level, rather 

than the small area objects [25]. In our work, a HCHE is developed to adaptively and effectively 

enhance IR images. The most important property of HCHE is that the enhancement effect on hot 

objects is more than that on large area backgrounds. HCHE consists of two stages: the adaptive 

threshold selection and the HCH generation. The first stage adaptively selects a suitable threshold that 

divides the histogram into hot objects and backgrounds. The second stage is based on two different 
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kinds of information about the histogram to generate two different cumulative histograms. One 

enhances hot objects and the other enhances backgrounds. Then the two different cumulative 

histograms are combined into a HCH. Thus, HCHE can remedy the inherent limitation of HE. The 

details of how to perform HCHE are addressed in the following section. 

3.1. Selecting an Adaptive Threshold 

In order to automatically divide the histogram into hot objects and backgrounds for miscellaneous 

IR images, an adaptive threshold is needed. Abundant threshold selection methods have been described 

in [39] and have been categorized according to their information, such as entropy, histogram shape, 

spatial correlation, measurement space clustering, object attributes, and local gray-level surface. A 

fixed threshold is unsuitable to address the variations in different IR images. In order to conquer this 

real problem, this paper applies the iterative threshold selection method [40], based on the  

clustering-based thresholding method, to choose an adaptive threshold. The iterative threshold 

selection method has been effective in extracting adaptive thresholds from bimoded or non-bimoded 

histograms [1,41]. The procedures of the iterative threshold selection method are as follows: 

Step 1. Initialize the threshold Th(1) (0 < Th(1) < 255) with a random value to segment the image 

into background and object. 

Step 2. At the kth iteration, compute μB(k) and μo(k) as the means of background and object  

gray-level, respectively. The threshold Th(k) adopted in segmenting images into the 

background and the object is determined in Step 3 of the previous iteration (Equation (6)). 
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where NB and NO are the pixel numbers of the background and the object, respectively. 

Step 3.    Set Th(k + 1) = (μB(k) + μo(k))/2 (6)

Th(k + 1) is the new threshold for the next iteration. 

Step 4. If Th(k + 1) = Th(k), then terminate and name the selected threshold Th; otherwise return  

to Step 2. 

3.2. Generating a Hybrid Cumulative Histogram 

The enhanced effects caused by HE will be less obvious on hot objects than on large area 

backgrounds. In order to remedy this shortcoming of HE, this paper proposes a HCHE, whose main 

property is the use of two different enhancement effects on hot objects and backgrounds: a large effect 

on hot objects and a small effect on backgrounds. The details for constructing a HCH follow. 

In order to explain the generation of HCH, the cumulative histogram of HE, Equation (7), and its 

associated parameters are defined first: 


=

=
k

j

jrk rprT
0

)()( 
=

=
k

j

j nn
0

/       k = 0, 1, 2,…, L − 1 (7) 



Sensors 2011, 11 11453 

 

 

pr(rk) = nk/n      k = 0, 1, 2,…, L − 1 (8) 

sk = int ((L − 1) × T(rk)) (9) 

where rk is the gray-level in the histogram of the source image, k is the gray-level, n is the total number 

of pixels in an image, nk is the number of pixels with gray-level rk, pr(rk) is the probability of the pixel 

with gray-level rk, sk is the pixel gray-level in the histogram of processed images, L is the number of 

gray-levels, L = 256 in our case, T(rk) is the cumulative histogram of the HE generated by the source 

image, and int() is a function giving the integral part of a decimal number. 

Based on the selected threshold Th, the histogram is divided into two groups: the pixels with  

gray-level smaller than Th, which belong to the background, and the pixels with gray-level equal to or 

larger than Th, which belong to the hot objects. The cumulative histogram to enhance the background 

is constructed by using the probability density function (PDF) of the background histogram, which is 

expressed in Equation (10a). The intensity density function (IDF) is defined as Equation (10c). The 

cumulative histogram to enhance hot objects is generated by using the IDF of the hot object histogram, 

which is expressed in Equation (10b). The HCH is constructed by combining Equations (10a) and (10b): 

Thb(rk)={ 
ThkrprpArg Thr
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IDF = pr(rk) × log2 k 0 ≤ k≤ L-1 (10c)

where Thb(rk) is the HCH. 

Equation (10a) accumulates the minimum of probability pr(rj) and pr(rTh) to generate the cumulative 

histogram for enhancing the background. Equation (10b) accumulates the IDF of probability pr(rj) to 

generate the cumulative histogram for enhancing hot objects. Combining Equations (10a) and (10b) 

generates the HCH of HCHE, which possesses two different enhancement effects on backgrounds and 

hot objects. 

The derivative of a function is defined as the ratio of Δy and Δx. The terms Δy and Δx represent the 

argument increment of a function in Y-axis and X-axis, respectively. In general, the argument in  

Y-axis is the output and the argument in X-axis is the input of a function. Thus, the derivative of 

cumulative histogram is large which reveals the enhancement effect of cumulative histogram is large. 

Similarly, the derivative of cumulative histogram is small which reveals the enhancement effect of 

cumulative histogram is small. Therefore, the derivative of cumulative histogram can represent the 

enhancement effect of cumulative histogram. 

Comparing Equations (7) with (10a), it is clear that the derivative of Equation (10a) is less than or 

equal to the derivative of the cumulative histogram of the HE when the gray-level rk belongs to the 

background. Then Equation (10b) constructs the cumulative histogram of the hot objects. Comparing 

Equations (7) with (10b), it is easy to observe that the derivative of Equation (10b) must be larger than 

or equal to the derivative of Equation (7) when the gray-level rk represents the hot objects. Thus, the 

hot objects’ enhanced effect caused by the HCH is larger, and the backgrounds’ is smaller. This result 

can be proven based on the backward difference approximation of the first derivative (BDAFD) [42]. 

According to the BDAFD, the first derivative of a cumulative histogram of the HE can be  

expressed as: 
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T’(rk) = (T(rk) − T(rk-1))/(rk − rk-1)  
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where T’(rk) is a first derivative of the cumulative histogram T(rk). 

In the same manner, the first derivative of the HCH can be expressed as: 

Thb’(rk) = (Thb(rk) − Thb(rk-1))/(rk − rk-1)  

={ 
Arg min{pr(rk), pr(rTh)}                               0 ≤ k < Th (12)
pr(rk) × log2rk                                              Th ≤ k < L − 1 

where Thb’(rk) is a first derivative of the HCH Thb(rk). If gray-level rk belongs to the background, i.e.,  

0 ≤ k < Th, it yields: 

Arg min{ pr(rk), pr(rTh)} ≤ pr(rk)  

So:  

Thb’(rk) ≤ T’(rk)                                   0 ≤ k < Th (13) 

Thus, the background’s enhancement effect caused by the HCH Equation (10a) is smaller than or 

equal to that caused by the cumulative histogram of the HE. When the gray-level rk belongs to the 

object, i.e., Th ≤ k < L − 1, it yields: 

pr(rk) × log2rk ≥ pr(rk)  

Thus:  

Thb’(rk) ≥ T’(rk)                                  Th ≤ k < L − 1 (14) 

meaning that the enhancement effect on objects caused by the HCH, Equation (10b) is larger than or 

equal to that caused by the cumulative histogram of the HE. 

As a result, the enhancement effect on hot objects caused by HCHE is larger than or equal to that 

caused by the HE. On the other hand, the enhancement effect on backgrounds caused by HCHE is 

smaller than or equal to that caused by the HE. This characteristic is especially significant when the 

hot objects are much smaller than the backgrounds. Consequently, HCHE proposed in this study can 

alleviate the limitation of HE. 

In addition, in order to avoid saturation of the equalized gray-level of transformed pixels, the 

maximum gray-level of transformed pixels must remain less than or equal to the maximum scale of the 

gray-level. A normalized version of HCHE is needed and is expressed as: 

Tn(rk) = Thb(rk)/Thb(rL-1)                0 ≦ k ≦ L − 1 (15)

where Tn(rk) is the normalization of Thb(rk). 

4. Experiment 

A typical noise measure used is peak signal-to-noise ratio (PSNR) [8], defined as: 

PSNR = 10 log10(Max2/MSE) (16)

where MSE is the mean square error between the original and processed image and Max is the 

maximum gray scale of pixels, e.g., 255 for 8 bits. 
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4.1. Test Samples of the Vein-Pattern IR Images 

In order to verify the validity of the proposed approach, four life-time IR images of palm-dorsa are 

collected and used as the test samples for our study. Each IR image has 640 H × 480 V pixels and each 

pixel is represented by 256 gray-levels. As shown in Figure 2, the IR images all display low contrast 

and brightness. The vein-patterns are hard to observe in these images. They have to be preprocessed to 

improve the image quality for the future postprocessing. 

Figure 2. Images (a–d) demonstrate the thermal images captured from four different  

palm-dorsa. Images (e–h) show the corresponding histograms of (a–d). 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

4.2. Experimental Results 

Figure 3 shows the Figure 2(a–d) with impulse noise of 10%, 20%, 30% and 40%, and exhibit the 

results of performing FMBF to iteratively filter the noisy images. Considering Figure 3(a1–a4) as 

examples, Figure 3(a1) is filtered once, Figure 3(a2) filtered once, Figure 3(a3) is iteratively filtered 

two times, Figure 3(a4) is iteratively filtered three times, respectively. Figure 3(b1,b2) demonstrate 

how the impulse noise is filtered out and the edges, textures and detail information preserved 

simultaneously. Figure 3(b3,b4) demonstrate how the impulse noise is almost filtered out except for a 

few noise with large area. The other filtered images as shown in Figure 3 are quite consistent with the 

Figure 3(b1–b4). 

The PSNR is applied to assess the noise reduction performance of FMBF. The PSNRs of  

Figure 3(a–d) caused by FMBF are addressed in Table 1. Using Figure 3(a1) as an example, the PSNR 

caused by FMBF is 57.90 dB, meaning that the degree of noise reduced by FMBF is 20.82 dB. It is 

easy to observe, the noise in Figure 3(b1) is less than in Figure 3(a1), which shows the consistence 

with the PSNR. Table I also shows the PSNRs caused by FMBF of Figure 3(b2–b4) are 51.32 dB,  

53.28 dB and 52.60 dB, respectively. This shows that FMBF reduces noise by 17.26 dB, 20.98 dB  

and 21.52 dB for Figure 3(b2–b4), respectively. Compared to the MF, FMBF improves the PSNRs 

2.67 dB, 1.03 dB, 1.44 dB and 2.03dB for Figure 3(a1–a4), respectively. 
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Figure 3. Figure 2(a–d) with impulse noise filtered by FMBF. (a1–a4) show Figure 2(a) 

with impulse noise of 10%, 20%, 30% and 40%, respectively; (b1–b4) show the results of 

(a1–a4) filtered by FMBF once, once, two times and three times, respectively;  

(c1–c4) show Figure 2(b) with impulse noise of 10%, 20%, 30% and 40%, respectively; 

(d1–d4) show the results of (c1–c4) filtered by FMBF once, once, two times and three 

times, respectively; (e1–e4) show Figure 2(c) with impulse noise of 10%, 20%, 30%  

and 40%, respectively; (f1–f4) show the results of (e1–e4) filtered by FMBF once, once, 

two times and three times, respectively; (g1–g4) show Figure 2(d) with impulse noise  

of 10%, 20%, 30% and 40%, respectively; (h1–h4) show the results of (g1–g4) filtered by 

FMBF once, once, two times and three times, respectively. 

 
(a1) (a2) (a3) (a4) 

  
(b1) (b2) (b3) (b4) 

 
(c1) (c2) (c3) (c4) 

(d1) (d2) (d3) (d4) 

(e1) (e2) (e3) (e4) 
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Figure 3. Cont. 

(f1) (f2) (f3) (f4) 

(g1) (g2) (g3) (g4) 

(h1) (h2) (h3) (h4) 

 

Table 1 also illustrates the sort time performance of applying FMBF to noisy images shown as 

Figure 3(a1–a4), (c1–c4), (e1–e4) and (g1–g4). FMBF performs a sorting algorithm for noisy pixels 

only, performing the sorting algorithm 204,500 times for Figure 3(a1). Hence, the computation load  

is reduced by the proposed FMBF by 33.4%. FMBF reduces the computation load 44.1%, 32.1%  

and 25.2% for Figure 3(a2–a4), respectively. These experimental results are quite consistent with the 

aforementioned theoretical analysis.  

Table 1. The improved performances of the images processed by FMBF. 

Noise  10% 20% 30% 40% 
 Filtered time 1 1 2 3 
Figure 2(a) PSNR (dB) Noisy image 37.08 34.06 32.30 31.08 
  Median Filter 55.23 50.29 51.84 50.57 
  FMBF 57.90 51.32 53.28 52.60 
  Improved (db) 2.67 1.03 1.44 2.03 
 Sort times FMBF 204,500 171,813 416,922 689,883 
  Improved (%) * 33.4 44.1 32.1 25.2 
Figure 2(b) PSNR (dB) Noisy image 37.03 34.10 32.28 31.06 
  Median Filter 55.29 51.60 52.22 50.97 
  FMBF 57.74 53.37 53.84 53.26 
  Improved (db) 2.45 1.77 1.62 2.29 
 Sort times FMBF 197,990 166,899 406,958 674,561 
  Improved (%) * 35.6 45.7 33.8 26.8 
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Table 1. Cont. 

Figure 2(c) PSNR (dB) Noisy image 37.07 34.02 32.28 31.04 
  Median Filter 54.73 50.56 51.91 50.24 
  FMBF 57.55 52.47 53.39 52.11 
  Improved (db) 2.82 1.91 1.48 1.87 
 Sort times FMBF 207,747 173,809 420,298 693,919 
  Improved (%) * 32.4 43.4 31.6 24.7 
Figure 2(d) PSNR (dB) Noisy image 37.08 34.10 32.28 31.08 
  Median Filter 55.01 51.34 52.27 51.19 
  FMBF 57.74 53.21 53.78 53.07 
  Improved (db) 2.73 1.87 1.51 1.88 
 Sort times FMBF 203,735 172,463 408,414 673,432 
  Improved (%) * 33.7 43.9 33.5 26.9 

* Compared to median filter sorts whole image which needs 307,200 times per filter time. 

In the same manner, Table 1 also illustrates the results of Figure 3(a1–a4) filtered by FMBF. All the 

Figure 3 and Table 1 show that the performances of the proposed FMBF can reduce impulse noise and 

computer load more effectively than MF. In addition, FMBF performs the Radix sort algorithm with 

bit-plane, so it is easily implemented by hardware in parallelization. Thus, FMBF can save further 

computational time when performed in a parallel hardware architecture. 

Figure 4 demonstrates the experimental results of Figure 3(b2) enhanced by the HE and HCHE with 

a threshold of 51. The image enhanced by HE is shown in Figure 4(e), and the histogram of Figure 4(e) 

is shown as Figure 4(g). Figure 4(e,g) reveal that the intensities of the backgrounds are increased, and 

the contrast is spread. Intensities of the hot objects, vein-patterns, are also increased to near-maximum 

gray scale, but their contrast is compressed to a narrow gray-level range. On the other hand, when one 

observes the derivative of the HCH of the HCHE, as shown in Figure 4(d), one can see that the 

derivative in the interval from gray-level 37 to 51 is less than that in the interval from gray-level 51  

to 74. The former represents gray-levels belonging to backgrounds, and the latter represents gray-levels 

belonging to hot objects. Thus, the enhancement effect on backgrounds induced by HCHE is less than 

that on hot objects, and the contrast of backgrounds is decreased, whereas the contrast of hot objects is 

increased. The enhanced image by the HCHE is addressed in Figure 4(f), and the histogram of  

Figure 4(f) is shown as Figure 4(h). The gray-levels of backgrounds in Figure 4(h) are decreased and 

the contrast is compressed, while the gray-levels of hot objects are increased and the contrast is spread. 

These figures show that the experimental results in the cumulative histogram and the HCH match well 

with Equations (8,9) and the proposed HCHE can remedy the limitation of the HE.  

Figure 5 demonstrates the performance of HCHE. The results of Figure 3(b1–b4) enhanced by 

HCHE are shown as Figure 5(a1–a4). Figure 5(b1–b4) show the histograms of Figure 5(a1–a4). 

Compared to Figure 3(b1–b4), the contrast of images enhanced by HCHE is better than original 

images and the vein-patterns are much clearer and easier to observe. Figure 5 exhibits the high 

performance of HCHE to enhance vein-patterns IR images. 
  



Sensors 2011, 11 11459 

 

 

Figure 4. The experimental results of Figure 3(b2) enhanced by the HE and HCHE.  

(a) A normalized cumulative histogram of the HE. Y-axis and X-axis represent processed 

gray-level and original gray-level, respectively; (b) The normalized HCH of the HCHE 

with the adaptive threshold 51. Y-axis and X-axis represent processed gray-level and 

original gray-level, respectively; (c) The derivative of the cumulative histogram. Y-axis 

and X-axis represent derivative value and gray-level, respectively; (d) The derivative of the 

HCH. Y-axis and X-axis represent derivative value and gray-level, respectively; (e) The 

Figure 3(b2) enhanced by the HE; (f) The Figure 3(b2) enhanced by the HCHE; (g) The 

histogram of (e). Y-axis and X-axis represent probability and gray-level, respectively;  

(h) The histogram of (f). Y-axis and X-axis represent probability and gray-level, respectively. 

(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

Figure 5. The results enhanced by HCHE. (a1–a4) show the results of Figure 3(b1–b4) 

enhanced by HCHE, respectively; (b1–b4) show the histograms of (a1–a4), respectively; 

(c1–c4) show the results of Figure 3(d1–d4) enhanced by HCHE, respectively;  

(d1–d4) show the histograms of (c1–c4), respectively; (e1–e4) show the results of  

Figure 3(f1–f4) enhanced by HCHE, respectively; (f1–f4) show the histograms of (e1–e4), 

respectively; (g1–g4) show the results of Figure 3(h1–h4) enhanced by HCHE, respectively; 

(h1–h4) show the histograms of (g1–g4), respectively. 

 
(a1) (a2) (a3) (a4) 

(b1) (b2) (b3) (b4) 
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Figure 5. Cont. 
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(h1) (h2) (h3) (h4) 

5. Conclusions 

This paper presents an approach to improve the quality of IR images of vein-patterns by using the 

FMBF and HCHE with HCH. The proposed approach has three main advantages. The first is that noise 
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reduction is achieved by utilizing FMBF with noise detection, and noise removal is performed by 

Radix sorting with bit-plane decomposition, which effectively decreases the computational load for 

noise reduction. In addition, FMBF speeds up the computation while preserving the benefits and 

remedying the shortcomings of the median filter. The second advantage of this approach is that HCHE 

with HCH, which is based on using information about the histogram to enhance IR images, has a 

greater enhancement effect on hot objects than on large backgrounds. This property can remedy the 

limitation of the HE. Finally, no prior knowledge about the IR images is necessary, and no parameter 

must be manually preset to perform the proposed approach. 

IR images often display low intensity, low contrast and high noise. It is a considerable challenge to 

provide a high enhancement effect on hot objects but not on backgrounds and to simultaneously reduce 

the noise. To overcome this challenge, this paper proposes an approach consisting of the FMBF and 

HCHE. Experimental results demonstrate that the proposed approach successfully meets this  

challenge and extends the IR image applications in the military, medicine, industry and biometric 

verification fields. 
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