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Abstract: This paper describes the design and calibration of a thimble that measures the 

forces applied by a user during manipulation of virtual and real objects. Haptic devices 

benefit from force measurement capabilities at their end-point. However, the heavy weight 

and cost of force sensors prevent their widespread incorporation in these applications. The 

design of a lightweight, user-adaptable, and cost-effective thimble with four contact force 

sensors is described in this paper. The sensors are calibrated before being placed in the 

thimble to provide normal and tangential forces. Normal forces are exerted directly by the 

fingertip and thus can be properly measured. Tangential forces are estimated by sensors 

strategically placed in the thimble sides. Two applications are provided in order to facilitate 

an evaluation of sensorized thimble performance. These applications focus on: (i) force 

signal edge detection, which determines task segmentation of virtual object manipulation, 

and (ii) the development of complex object manipulation models, wherein the mechanical 

features of a real object are obtained and these features are then reproduced for training by 

means of virtual object manipulation. 

Keywords: thimble; end-effector; normal and tangential forces; manipulation forces; force 

estimation; contact force sensors; virtual object manipulation  
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1. Introduction 

The capacity to measure forces exerted by a person during manipulation is highly valuable in 

relation to the performance of real manipulations [1] or virtual object manipulation [2]. The aim of the 

project described in this article is to show the capabilities of contact force sensors in estimating forces 

exerted by a person in both real and virtual manipulation tasks. 

Force/torque transducers or load cells are usually used to obtain these types of measurements [3]. 

These devices are very precise; however, they have inconveniences, mainly related to their weight, 

volume, and high cost. The project developed in this paper focuses on using contact force sensors to 

estimate manipulation forces. Specifically, the contact force sensors referred to in this paper are 

FlexiForce model A201 by Tekscan Inc. This type of sensor acts as a force-sensing resistor, such that 

when the force sensor is unloaded, its resistance is very high, and when force is applied to the sensor, 

this resistance decreases. Several types of material show this kind of behavior, from metals to 

semiconductors [4]. The principle drawbacks of these sensors relate to low repeatability and hysteresis. 

Nevertheless, contact force sensors and piezoresistive sensors provide an effective solution for varying 

kinds of applications. Examples include: the detection of collisions in human-robot interaction [5], the 

measurement of manipulation forces [6-8], biomedical applications [9,10], and minimally invasive 

surgery [11] due to the sensors’ highly reduced size, weight, and cost. This paper proposes the design 

of an end-effector for haptic devices that incorporates contact force sensors in order to estimate 

manipulation forces when interacting with virtual or real environments.  

Haptic interfaces are force feedback devices that enable bidirectional human-system interactions 

and provide the operator with force information from this interaction while simultaneously capturing 

the operator’s motion or force input [12]. These devices can be used to interact with virtual (virtual 

telepresence) or real (telepresence) environments. The principle applications of these systems concern 

teleoperation in remote environments such as tele-surgery or tele-manipulation, and virtual applications 

for advanced manual training techniques such as medical procedures or rehabilitation exercises. 

It is widely accepted that haptic devices benefit from force measurement capabilities in terms of the 

reduction of device dynamics or an increase in the fidelity of the forces exerted to the user [13]. 

However, the use of load cells in haptic devices is limited as a result of inertia and cost considerations. 

Katsura et al. [14] note that the limited bandwidth and high cost of force sensors hinder their widespread 

acceptance in such applications. Previous studies use expensive, high precision, and high weight 

force/torque sensors attached to haptic devices to provide more reliable forces in complex tactile 

simulation applications [2] or for measuring and recording the material properties of soft objects [15]. 

Moreover, in the case of the aforementioned complex tactile simulation applications, the authors [2] 

recognize the importance of force sensing in haptic devices and point out that the use of force sensors 

significantly increases the price of their applications. Nonetheless, previous projects using haptic 

interfaces do not take into consideration the use of cost-effective thimble-like sensors as contact force 

sensors for estimating normal and tangential forces. Our work aims to develop a lightweight end-effector 

that provides force measurement capabilities to commercially available haptic devices. 

This article is organized as follows: Section 2 describes the principal characteristics and requirements 

that a sensorized thimble must comply with in virtual manipulation applications that measure the force 

exerted by a user. These requirements are comparable to those used for the manipulation of real 
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objects. Section 3 describes the mechanical design of the thimble and the location of the contact force 

sensors. Section 4 focuses on the calibration of the contact force sensors by means of a load cell and 

the calibration of the thimble with the four contact force sensors. The proper calibration of the sensors 

does not guarantee in and of itself the correct performance of the thimble as a whole, since finger 

deformations occurring as a result of an increase in the grip force need to be taken into account. 

Section 5 provides various examples of applications in which the sensorized thimble has been used 

with positive results. Finally, in Section 6 some conclusions about this project are provided.  

2. Principle Requirements for a Thimble-Like End-Effector for Haptic Devices 

In some cases, the thimble-like device has opposing compliance requirements for manipulation 

applications. Therefore, it is necessary to establish which objectives are most important and take into 

account that other objectives may be compromised. In haptic applications, the thimble represents the 

end-effector of the device. This means that the size and weight of the thimble must be as light as 

possible. When manipulating real objects, similar conditions exist given that, as the thimble increases 

in size the distortions in the forces applied become greater. Ideally, the thimble should not interfere 

with the user more than that of a medical glove. In sum, the principle requirements for a thimble-like 

device are as follows: 

1. It must be adjustable to different-sized fingers, 

2. The thimble must be as light as possible, 

3. The user must feel comfortable using the device, and 

4. The force securing the unit to the user’s finger must not affect the user’s perception. 

The first requirement concerns whether to choose a thimble that can be adjusted to the user or to 

have a set of thimbles of different sizes thereby allowing each user to wear a more adequate thimble. The 

availability of different-sized thimbles initially appears advantageous. However, this is only advisable 

if the thimble is mainly used by the same person. For applications having several users who require 

different thimble sizes, the constant changing of thimbles is inconvenient and results in the deterioration 

of mechanical and electrical connections. The resulting loose connections and malfunctions in the 

electrical contacts lead to poor performance of the device. Thus, it is preferable to use a thimble that 

can be adjusted to the user’s finger. More components must be added in order to achieve such 

adjustments and is a drawback to the abovementioned second requirement. Nonetheless, the adaptability 

of the thimble to different users has priority. 

The second previously mentioned requirement refers to the design of a thimble that is as light as 

possible. As we mentioned earlier, the thimble is located at the end-point of the device; therefore a minor 

additional weight could significantly increase the inertia (proportional to the square of the distance).  

In haptic interfaces, high inertia can lead to a dynamic distortion of the user’s perception [16,17]. This 

is the main reason why contact force sensors were considered in this design as opposed to traditional 

load cells. A load cell consists of a gauge inside a metal case, which results in a heavy and bulky design. 

The third and fourth requirements relate to ergonomic considerations in order to achieve the least 

possible deterioration in the user’s perception. The force to which the thimble is adjusted in relation to 

the user’s finger is a critical factor in the performance of the thimble. This force must be minimal in 
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order to avoid causing discomfort to or distortion in the user’s perception. However, the attachment 

must be sufficiently firm in order to ensure that the thimble is not dislodged from the finger during 

manipulation. Therefore, depending on the task performed and the force capabilities of the haptic 

device, the tightening mechanism between the thimble and finger may be adjusted.  

3. Design of a Thimble-Like Device with Force Measurement Capabilities 

3.1. Sensorized Thimble Configuration 

The thimble is designed to fit different-sized fingers by means of a screw system that adapts to the 

sides of the finger. Velcro is also used to hold the finger to the thimble. The thimble has a cone-shaped 

design, narrow at the top and a little thicker at the bottom at the point at which the distal phalanx joins 

the beginning of the middle phalanx. This geometry is similar to the human finger, thereby allowing 

natural human-object interaction during manipulation. The thimble design is shown in Figure 1.  

Figure 1. (a) Thimble: two screws allow the thimble to be adapted to different finger sizes. 

Four mechanically isolated contact force sensors are used for measuring the contact forces, 

(b) User wearing the thimble; the finger is secured by means of the screws and Velcro. 

  
    (a)      (b) 

 

The thimble was made out of an epoxy resin in order to reduce its weight. A technique known as 

stereolithography rapid prototyping (or stereolithography) was used in the manufacturing process [18]. 

Consequently, the thimble weighs 76 grams, which makes it ideal for virtual and real object 

manipulation. That is, lower weight implies lower inertia and, therefore, less interference with the 

user’s weight perception. 

The thimble includes four Flexiforce contact force sensors manufactured by Tekscan Inc. [19]. 

These sensors are used for estimating normal and tangential forces at the fingertip. Contact force 

sensors only provide the normal component force applied to its active area. Sensors are located in the 

thimble, thereby enabling the measurement of normal and tangential manipulation. Normal 

manipulation force is provided by the sensor located in the fingertip, as shown by the “Sensor 1” label 

in Figure 2. Three additional sensors are placed on the sides of the phalanx in order to estimate the 

tangential manipulation force. These sensors are labeled as “Sensor 2”, “Sensor 3”, and “Sensor 4” in 

Figure 2. This thimble is designed to fit a particular haptic device. Figure 2(b) shows how the thimble 

is attached to a two-finger haptic device called the MasterFinger-2 [20] by means of a screw system.  
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Figure 2. (a) Four piezoresistive sensors are used to estimate manipulation forces.  

Sensor 1 provides normal forces directly applied by the fingertip, and sensors 2, 3, and 4 

estimate the tangential forces. (b) The user inserts the thumb and index finger in the 

corresponding thimbles and the thimbles are firmly linked to the haptic device. (c) The user 

grasps a virtual box. Forces applied by the user are captured by the sensorized thimbles. 

    
(a)      (b) 

 

 
(c) 

3.2. Sensor Interaction Due to Finger Deformation 

In addition to the manipulation forces, the force used to secure the finger to the thimble affects 

sensors 3 and 4. That is, in addition to this clamping force, a small deformation in the finger appears 

when an object is grasped. This deformation significantly increases the pressure applied to the side 

sensors. Due to the symmetrical geometry of the thimble, finger deformations create the same force on 

either side sensor. These effects must be taken into account when estimating the real tangential force. 

The finger deformation effect appears when force is applied by the fingertip. For instance, when 

pressing a surface in a normal direction, the sensor located at the bottom of the thimble (sensor 1) 

should be the only sensor to detect such forces. Nonetheless, forces are also detected by sensors 2 and 

3 due to finger deformations. 
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Figure 3. Data provided by sensors 1, 2, and 3. (a) Forces when pressing an object;  

(b) Forces when grasping a cylinder. 

      

 
           (a)           (b) 

 

The effect is illustrated in Figure 3(a): a cylinder weighing 4.5 N was used to show forces caused by 

finger deformations within the thimble. The user applies a normal force to a rigid surface. 

Consequently, sensors 2 and 3 measure similar forces resulting from the symmetric deformation of the 

finger. In Figure 3(b), the cylinder is grasped horizontally using two thimbles. The sensor located 

under the fingertip measures the normal force that is applied to hold the cylinder, whereas the 

tangential force is estimated by the sensor located at the upper sides of the finger and equal half of the 

total weight of the cylinder, since two thimbles are used. The data provided by the sensors is shown in 

Figure 3(b). The highest force value is the one measured by sensor 1 (corresponding to the normal 

force exerted by the user). The subtraction of the two measurements from the lateral sensors represents 

the real tangential force. The total weight obtained is 4.3 − 2.0 = 2.3 N, which is a close approximation 

to half of the cylinder’s weight. Thus, the measurement provided by the contact force sensor with this 

configuration represents a close approximation to the expected value. 

4. Calibration of Sensor and Thimble 

4.1. Sensor Assembly and Its Calibration 

A A201-25 Flexiforce sensor from Tekscan [19] with a range of 0 to 110 N was selected. The 

thickness of the sensor is approximately 0.2 mm and is very lightweight. According to the 

manufacturer specifications, the repeatability is ±2.5%. The active area of this sensor consists of an 

ultra-thin and flexible printed circuit located in a circle with a 9.53 mm diameter. Its behavior is 
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similar to a variable resistor. When the sensor is unloaded, its resistance is very high (greater than  

5 MΩ). This resistance decreases when force is applied to the active sensor area. The electronic circuit 

recommended by the manufacturer is shown in Figure 4. 

Figure 4. Electronic circuit for processing the contact force sensor signal. 

 
 

The applied force must be homogeneously exerted over the active sensing area in order to guarantee 

proper sensor repeatability. For this reason, a “sandwich configuration” mechanical assembly was used 

to properly transmit forces to the sensor’s active area. This mounting consists in placing the sensor in 

the middle of two cylindrical metal sheets that are located over the active sensor area, as shown in 

Figure 5(a). The cylindrical metal sheets must have a very flat surface in order to obtain proper 

repeatability. This “sandwich configuration” guarantees mechanical isolation between the finger and 

the thimble, since the user force is thoroughly transmitted to the sensor. This configuration has been 

successfully tested and used in many experiments.  

Figure 5. (a) Contact force sensor is placed between two metal disks in order to 

mechanically isolate the sensor, (b) various views of the sensors and disks. 

 
(a)       (b) 

 

The assembly previously described (disk+sensor+disk) was calibrated by means of a high accuracy 

six-axis force/torque sensor manufactured by ATI Industrial Automation, model Nano17 [21]. This 

sensor provides six-dimensional force components (forces/torques). It consists of a monolithic 

transducer with a silicon strain gauge. A set of different weights was used to perform the calibration of 

the “sandwich configuration” assembly. Signals provided by both sensors (ATI-Nano 17 and 

Flexiforce-A201-25 in ‘sandwich configuration’) were processed for the different weight sets. The 

calibration was carried out using the least square polynomial interpolation. A monotone increasing 
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polynomial was obtained that guarantees only one force value for each voltage provided by the contact 

force sensor. This polynomial interpolation improves manufacturer performance. The polynomial 

interpolation function obtained is as follows: 

f(v) = 0.0557v7 − 0.9616v6 + 6.5957v5 − 22.9525v4 + 42.9525v3 − 41.9706v2+ 22.0111v + 0.0648 (1) 

where “v” is the voltage provided by the contact force sensor and “f” is the estimated value of the 

exerted force. 

Figure 6. Contact force sensor assembly calibration. (a) Set-up for contact force sensor 

calibration using a Nano 17 ATI sensor, (b) Least square polynomial interpolation of the 

data, (c) Comparison between Flexiforce and ATI data. 

 
(a) 

 

 
   (b)       (c) 

 

As shown in Figure 6(c), the data provided by the contact force sensor and the Nano17 sensor is 

very similar and has a range of 0 to 20 N. This force range is usually sufficient for common 

manipulation tasks. 

4.2. Thimble Calibration 

The thimble requires a new calibration in addition to the calibration undertaken for each sensor. 

This calibration aims to determine the precision with which the thimble applies normal and tangential 

forces. Thus, it is important to compare anew the data obtained from the thimble sensors with the data 

from F/T sensor of ATI Nano 17. This comparison allows us to determine the quality of the estimated 
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normal and tangential forces. A new thimble containing both the ATI-Nano17 and the four contact 

force sensors was designed, as shown in Figure 7. This new thimble was specifically designed to 

compare information provided by the thimble sensors to the ATI-Nano17 [22]. Normal forces are 

provided by the sensor located at the fingertip of the thimble (sensor 1 in Figure 2), and correspond to 

the information provided by the ATI-Nano17 in the Z-Axis direction. The tangential forces are 

obtained from the data provided by three sensors in the thimble (sensors 2, 3, and 4 in Figure 2), and 

correspond to the data provided by the ATI-Nano17 in the X-Y plane. 

Figure 7. New thimble specifically designed for hosting the ATI-Nano17. This configuration 

enables thimble measurement calibration. 

 
 

The difference between the data provided by both sensors (thimble and ATI-Nano17) is 

approximately ±1.43 N with a range of 0 to 20 N. Depending on the application, this deviation may or 

may not be deemed acceptable. For instance, in the case of training tasks in rehabilitation applications, 

it is acceptable because the forces applied between different practitioners vary significantly and do not 

require a higher level of precision [23]. For applications in which this resolution is insufficient, an 

adapted thimble can be used to which a high precision force/torque sensor can be incorporated. It is 

important to remember that this will significantly increase the price and inertia of the device. The 

signal variation was also checked. This comparison concerns precision in the detection of force flanks. 

In this case, the first derivatives of data provided by both sensors are compared. These derivative 

functions are calculated as follows: 

fi' = Δfi/Δt = (fi – fi-1)/∆t      (2) 

The standard deviation of the difference between both derivatives is equal to ±0.166 N/s. 

Consequently, the estimation of manipulation force flanks is much more precise than the estimation of 

normal and tangential forces. As shown in Figure 8, it can be observed that when forces vary,  

the flanks of the signals measured by the thimble and the corresponding signals provided by the  

ATI-Nano17 are very similar. This information may be useful for some applications such as task 

segmentation, event or contact detection, etc. 
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Figure 8. Thimble calibration. (a) Comparison between normal forces measured by ATI 

and Flexiforce sensors located at the finger base. (b) Comparison between tangential forces 

measured by ATI and Flexiforce sensors located at the finger sides. 

 
(a)       (b) 

5. Applications 

The estimation of both normal and tangential forces while performing advanced manipulation has 

proven to be useful for several applications including segmentation of manipulation tasks and fast 

modeling of virtual objects.  

• Task segmentation: Attention to the derivative of the force signal shows that the task can be 

segmented into different stages which may be useful for a range of applications including those 

that improve adaptive control architectures and those that bringing attention to an omitted step.  

- Control parameters can be optimized for different stages of the task at hand or for 

transmitting a unit of force whenever an event occurs, as opposed to transmitting the exact 

manipulation force which can be physically demanding for the operator in given situations.  

- Bringing attention to omitted steps in a previously defined task can increase safety in tele-

maintenance operations or to assist people to perform a daily living task, as in the 

performance of common tasks. 

• Modeling physical interactions: Information obtained in relation to the forces experienced by 

a user while manipulating a complex object can contribute to the design of a virtual model of 

this physical interaction. The physical modeling of the forces of a complex system in order to 

generate a virtual model with which the user can interact by means of a haptic device can result 

in complex equations that the system must solve in real time, hence requiring high performance 

computers and GPUs. In contrast, this proposed design shows that manipulation forces can be 

recorded and translated into a simulation model such as a look up table or a simple 

interpolation reduces the hardware requirements for haptic applications. 

The following section shows various applications of the sensorized thimble for segmentation and 

modeling virtual environments. 
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5.1. Segmentation of Real Tasks: Manipulation of a Bottle Containing Liquid  

Information provided by thimble sensors is more accurate for detecting flanks than absolute values. 

Therefore, certain experiments related to performance detecting flanks were undertaken. This 

subsection summarizes the results obtained in an experiment focusing on the manipulation of a 

recipient containing liquid. Given the available force information, the task can be segmented into 

different stages: approximation, contact, grasping, lifting, tilting, and releasing. An example of task 

segmentation is shown in Figure 9. This figure shows the different stages and the recorded forces when 

manipulating a bottle containing liquid. First, the user approaches the bottle (A). When the user is in 

the correct position, he or she grabs the bottle (B) by increasing the force until he or she is able to lift it 

(C). Then, the user holds the bottle vertically (D) and starts tilting it (E) until the bottle is in a 

horizontal state. The user continues by tilting the bottle and then tilting it back to the horizontal state 

(G). Finally, the user holds the bottle vertically again and releases it over the table (I). This information 

can also be used to create an approximate model of this system [22], and results in the reduction of 

complex model equations that the system must solve in real time and that require high performance 

computers and Graphic Processing Units (GPUs). 

Figure 9. Task segmentation during the manipulation of a bottle containing liquid. Figures 

above show different segmented stages of the task and the figures below show the recorded 

forces. (A) Approaching the bottle. (B) Grabbing the bottle increasing the force. (C) 

Lifting the bottle vertically. (D) Tilting the bottle. (E) Holding the bottle in a horizontal 

state. (F) Tilting the bottle. (G) Holding the bottle upside down. (H) Tilting the bottle back. 

(I) Holding the bottle in a horizontal position. (J) Tilting the bottle back. (K) Holding the 

bottle in a vertical position. (L) Releasing the bottle.  
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5.2. Modeling Physical Interactions: Body-Joint Model for Medical Rehabilitation Simulators 

The sensorized thimble that is described here can be used for creating an approximate model of the 

characteristics of human joints, which are inherently multidimensional and non-linear [23]. The system 

developed characterizes the stiffness of the metacarpo-phalangeal joint, which is located at the  

index finger in the axes of rotation. Note that even though the finger can mainly move in the 

flexion/extension and abduction/adduction angles of rotation, for rehabilitation of the finger, the 

pronate/supinate degrees of freedom (DoF) should also be considered. The finger was mobilized in the 

whole range of movements and the force was saved for different angles of the finger; a minimal square 

polynomial interpolation was calculated to approximate the joint’s behavior in every rotational DoF, as 

shown in Figure 9. Equations (3)–(5) show the relationship between the angles and torques (force was 

applied at approximately 1.2 cm from the center of rotation): 

τ(α) = 2.2e-7·α3 + 1.24e-05·α2 +5.56e-04·α + 7.1e-3   (3) 

τ (β) = 2.04e-6·β3 + 1.44e-5·β2 +1.6e-3·β−5.9e-3    (4) 

τ (γ) = 1.68e-5·γ3 – 1.68e-4·γ2 + 7.8e-3γ + 1.1e-3    (5) 

where α represents the flexion/extension angle, β represents adduction/abduction angle, and γ represents 

the pronate/supinate angle, as shown in Figure 10. 

Figure 10. Data obtained for the metacarpal joint of the index finger. This data concerns 

the three possible rotations in the MCP joint. 

 
 

The minimum square error for these polynomial interpolations is 5.8e-3 Nm, 4.6e-3 Nm, and  

8.6e-4 Nm, respectively, which are less than the thimble’s error. These results are similar to those of 

previous found in the vitro study of flexion/extension stiffness using freshly frozen fingers from a 

cadaver [24]. This model was implemented in a simulator and potentially can be used by students to 

learn and practice rehabilitation procedures. 
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6. Conclusions 

Researchers agree that force sensing at the end-effector of haptic devices improves the performance 

of real and virtual object manipulation. However, current commercially available impedance-type 

haptic devices do not include force sensing capabilities due to the high price and weight of traditional 

high precision sensors. This paper describes the design and calibration of a lightweight and cost-

effective end-effector that can be adapted to anatomical variations among users and attached to 

commercially available haptic devices. Contact force sensors only measure forces applied in the 

normal direction to its active surface. As previously described, both normal and tangential contact 

forces can be estimated by strategically positioning four contact force sensors inside a thimble. 

The proposed end-effector has a measurement error of ±1.43 N, which is sufficient for certain 

applications that capture and model virtual scenarios such as object grasping or rehabilitation 

applications. In these applications, forces applied between different practitioners vary significantly 

while still resulting in correct practices. 

Also, we have shown that the proposed design is very precise in the performance of force signal 

edge detection (±0.166 N/s). Force edge information can be used for task segmentation, which is 

useful in the undertaking of a complex manipulation. This task segmentation allows us to determine 

which stage a user is at of an overall task. This segmentation can be useful for reminding the user if he 

or she skips a step of a task or for teleoperation by only transmitting to the user force information 

based on events.  

Moreover, segmentation can also describe an application for real object manipulation. This 

application focuses on modeling the mechanical features of finger joints; in particular, the stiffness of 

the metacarpo-phalangeal finger joint in the three directions. It demonstrates that information provided 

by the sensorized thimble can also be applied towards manipulation of real objects. The development 

of these kinds of models is useful for reproducing this type of manipulation in a more realistic manner. 
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