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Abstract: In this paper, we describe guided-mode resonance biochemical sensor 
technology. We briefly discuss sensor fabrication and show measured binding dynamics 
for example biomaterials in use in our laboratories. We then turn our attention to a 
particularly powerful attribute of this technology not possessed by competing methods. 
This attribute is the facile generation of multiple resonance peaks at an identical physical 
location on the sensor surface. These peaks respond uniquely to the biomolecular event, 
thereby enriching the data set available for event quantification. The peaks result from 
individual, polarization-dependent resonant leaky modes that are the foundation of this 
technology. Thus, by modeling the binding event and fitting to a rigorous electromagnetic 
formalism, we can determine individual attributes of the biolayer and its surroundings and 
avoid a separate reference site for background monitoring. Examples provide  
dual-polarization quantification of biotin binding to a silane-coated sensor as well as 
binding of the cancer biomarker protein calreticulin to its monoclonal IgG capture 
antibody. Finally, we present dual-polarization resonance response for poly (allylamine 
hydrochloride) binding to the sensor with corresponding results of backfitting to a simple 
model; this differentiates the contributions from biolayer adhesion and background 
changes.  
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1. Introduction 

There is an urgent, growing need to develop cost-effective, reliable sensor technologies for a host of 
applications in homeland security, biomedicine, drug development, food safety and environmental 
monitoring. For example, increased concerns with the effects of toxins (mutagens, bacteria and 
hazardous chemicals) in the environment require monitoring of pollutant levels at industrial, 
wastewater, urban and agricultural sites. Portable, low-cost, quick-responding sensors with sufficient 
sensitivity and reliability are needed for continuous, accurate monitoring of environmental pollution in 
the field. Most biosensor technologies currently available employ fluorescent or absorption labeling to 
register a specific biomolecular reaction. For reasons of expense and expediency, there is increasing 
demand for improved sensor techniques that do not require labeling. They must allow a wide range of 
molecules to be selectively screened with minimal assay development using readily available  
antibody-antigen, nucleic acids and other highly selective biomaterials. For environmental monitoring, 
miniature, self-contained, battery- or solar-powered sensors may be required where other sensor 
probes may not be useable. These sensors may form sensor networks using wireless modules for data 
transmission, communication and alarm. Photonic sensor technologies are advantageous as they are 
immune to outside electromagnetic interference, permit compact format and some types enable 
effective light input and output. With aim to meet many of these requirements, in this paper we 
provide sensors based on a unique photonic resonance concept. These sensors are broadly applicable in 
biomedicine and other application areas; our focus presently is on biosensors. 

Resonant leaky modes can be induced on dielectric, semiconductor and metallic periodic layers 
patterned in one or two dimensions. Among potential applications are ultrasensitive biosensors that 
can be realized in a wide range of geometries and system architectures. Thus, we invented and 
implemented highly accurate, label-free guided-mode resonance (GMR) biosensors that are being 
commercialized. In 1992, Magnusson and Wang [1] suggested application of the GMR effect for 
sensor applications and disclosed GMR filters that were tunable on variation in resonance structure 
parameters including thickness and refractive index [2]. Tibuleac et al. and Wawro et al. presented 
new GMR biosensor embodiments as well as new possible applications of these sensors when 
integrated with optical fibers [3,4]. Following this work, Kikuta et al. [5], Cunningham et al. [6,7] and  
Fang et al. [8,9] also discussed the use of these resonant elements as biosensors.  

The GMR sensor is based on the high parametric sensitivity inherent in the fundamental resonance 
effect. As an attaching biomolecular layer changes the parameters of the resonance element, the 
resonance frequency (wavelength) changes. A target analyte interacting with a bio-selective layer on 
the sensor can thus be identified without additional processing or use of foreign tags. As the 
fundamental GMR element is a superior sensor with promising commercial applications, the interest in 
this technology has skyrocketed worldwide with numerous attendant publications appearing. 
Additional representative example papers [10-13] and book chapters [14,15] showcase this interest. 
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A great variety of optical sensors for bio- and chemical detection has been reported in the literature. 
Key label-free sensor technologies include surface-plasmon resonance sensors, MEMS-based sensors, 
nano-sensors (rods and particles), resonant mirrors, Bragg grating sensors, waveguide sensors, 
waveguide interferometric sensors, ellipsometry and grating coupled sensors [16-19]. Other methods 
include immunomagnetic separation, polymerase chain reaction and standard immunoassay 
approaches that incorporate fluorescent, absorptive, radioactive and luminescent labels [18,19]. 
Although dramatically different in concept and function, the surface-plasmon resonance (SPR)  
sensor [16,17] comes closest in features and operation to the GMR sensor applied in this work. The 
term surface plasmon (SP) refers to an electromagnetic field charge-density oscillation that can occur 
at the interface between a conductor and a dielectric (e.g., gold/glass interface). An SP mode can be 
resonantly excited by TM-polarized incident light but not TE-polarized light. Phase matching occurs 
by employing a metallized diffraction grating or by using total internal reflection from a high-index 
material such as in prism coupling or from a guided wave in an optical fiber. When an SPR surface 
wave is excited, an absorption minimum occurs in a specific wavelength band. While angular and 
spectral sensitivity is very high for SPR sensors, the resonance linewidth is rather large. Since only a 
single polarization (TM) can physically be used for detection, changes in refractive index and biolayer 
attachments cannot simultaneously be resolved in one measurement. This is a particularly significant 
problem in portable diagnostic applications where thermal variations are probable. 

2. Experimental Section  

2.1. Guided-Mode Resonance Biosensors: Background 

This research addresses the development of compact, high-performance GMR biosensors [1-4]. The 
heart of the sensor is a periodic dielectric waveguide (sometimes referred to as photonic crystal) in 
which resonant leaky modes are excited by an incident optical wave [20-33]. Most commonly, the 
input light is efficiently reflected in a narrow spectral band whose central wavelength is highly 
sensitive to chemical reactions occurring at the surface of the sensor element. In high-index media, 
such as silicon, interesting mode-mixing effects enable operation in narrow spectral or angular 
transmission bands [34,35]. This mode of operation is also of interest for sensor development, 
although it is not specifically addressed here.   

The sensor’s operating spectral region, neighboring the resonance wavelength λ, is conveniently 
determined by the chosen grating period Λ. Interaction of a target analyte with a bio-selective layer on 
the sensor surface yields measurable spectral/angular shifts that directly identify the binding event 
without additional processing or foreign tags. A bio-selective layer (such as antibodies) is incorporated 
on the sensor surface to impart specificity during operation. Sensor designs responsive to thickness 
changes from the nanoscale (<~10−2 nm) to several μm have been analyzed. These studies indicate that 
the proposed sensor technology can be used to detect binding events at the molecular level as well as 
bacterial analytes with micron-scale dimensions.   

The fact that GMR sensors operate without foreign tags or labels is very significant, enabling 
expedient sample preparation in practice. This attribute implies detection methods that do not require 
the use of chemical indicators for read-out, such as fluorescent, luminescent or radioactive tags. The 
key point is that with GMR sensors, the reaction is optically monitored directly. In contrast, in  
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label-based methodologies, the monitoring proceeds via the label, for example, by measuring emitted 
radiation under fluorescence. 

When a broadband light source illuminates GMR sensors, a specific wavelength of light is reflected 
or transmitted at a particular angle. Figure 1(a) schematically shows the binding interaction of an 
immobilized receptor with an analyte; it can be monitored, without use of chemical tags, by following 
the corresponding resonance wavelength shift with a spectrometer as denoted in Figure 1(b). Since the 
resonance layer is polarization-sensitive, separate resonance peaks occur for incident TE (electric 
vector normal to the plane of incidence) and TM (magnetic vector normal to the plane of incidence) 
polarization states. The sensor element can be prepared with standard surface chemistries to covalently 
attach a selective detection layer (such as antibodies or aptamers). The sensor is multifunctional as 
only the sensitizing surface layer needs to be chemically altered to detect different species. This sensor 
technology is broadly applicable to medical diagnostics, drug discovery and development, industrial 
process control and environmental monitoring.  

Figure 1. (a) Schematic of a guided-mode resonance sensor. (b) Binding events occurring 
at the sensor surface produce resonance-peak shifts that can be tracked in real time. 

Figure 2. Submicron resonant grating. (a) Atomic force microscope (AFM) picture of a 
~500-nm period grating contact printed in an optical polymer. (b) A picture of a submicron 
molded grating. The grating is coated with a thin high-index layer (TiO2 or HfO2) to 
realize a GMR sensor element. 
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We fabricate GMR filters and sensors in dielectric media such as moldable polymers, fused silica, 
silicon dioxide, hafnium dioxide, silicon nitride and other materials. In particular, in this paper, the 
GMR biosensors embody a single-layer filter design fabricated using low-cost submicron molding 
methods. We utilize polymers imprinted with submicron grating patterns (~500 nm grating periods) 
and coated with a high-index dielectric material (such as TiO2 or HfO2) to realize resonant sensors. 
Figure 2 shows an example of a GMR sensor. These sensors are designed to operate in the near-IR 
wavelength range (700–900 nm), where most biochemical materials have minimal absorption.    

Numerous characterization experiments have been performed for a variety of model biomaterials 
utilizing GMR sensors and the VidesTM bioassay spectroscopic reader system developed by Resonant 
Sensors Incorporated. Figure 3 illustrates the spectral resonance peak shift due to the binding of tumor 
necrosis factor alpha (TNFα) in various concentrations. TNF is an inflammatory mediator that is often 
measured in disease research and drug discovery applications. To impart selectivity, an antibody layer 
that specifically binds to TNF is immobilized on the sensor surface by adsorption. Unbound sites are 
subsequently blocked using a commercially available, immunoassay-blocking buffer. The standard 
high-TNFα (Rat, 17 kDa, R&D Systems) stock solution is set at 4 μg/mL (235 nM). Stepwise two-fold 
dilutions are prepared using phosphate buffered saline (PBS) to obtain the desired concentrations. PBS 
is used as a reference blank and subtracted from the results. Results are repeated in at least triplicates 
and averaged. The TM polarization resonance peak is tracked in this particular experiment, and 
binding is monitored for 1 hour.  

Figure 3. Sensor response (TM-polarization) for detection of TNF in buffer solution with 
immobilized anti-TNF antibodies bound to the sensor surface.  

 
2.2. Dual Polarization GMR Sensor 

Polarization is a fundamental property of light. As a beam of light can possess arbitrary polarization 
states, the incident beam polarization state can be engineered cost-effectively to improve sensor 
performance provided that the sensor is physically capable of responding to such states. The GMR 
sensor has this capability since the resonance response is sensitive to the incident light polarization. 
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Thus separate resonance peaks occur for incident TE and TM polarization states. This property 
provides enriched data sets useful for increasing detection accuracy in a given sensor element. The 
incident light excites photonic surface states shown as TE and TM modes. As schematically indicated 
in Figure 4, these modes interact differently with the surrounding media, enabling the  
polarization-based differentiation. The important point is that separate reference channels are not 
required to distinguish, for example, thermal background variations during data acquisition. This 
improves accuracy and reduces cost. Sensors arrays based on other concepts may apply a significant 
fraction of their sensor elements as reference monitors, which is not an efficient use of the chip. 

Figure 4. Schematic of a single channel in a label-free GMR sensor system operating in 
reflection mode. The collimated beam from a broadband source is incident on the sensor at 
normal incidence. The reflected spectral response is monitored in real time with an optical 
spectrum analyzer. As binding events occur at the sensor surface, resonance peak changes 
can be tracked. The resonance occurs at different wavelengths or angles for TE and TM 
polarization states of the input light, enabling high-accuracy detection. 

3. Results and Discussion 

3.1. Quantification of Biotin Binding 

Using dual polarization data collection, Figure 5 illustrates how the binding of the foundational 
attachment chemistries (such as silane, antibodies and biotin-avidin layers) can also be monitored in 
real time. When implemented in a flow-cell geometry, this approach can be used to monitor the full 
cycle of molecular binding dynamics to determine association and disassociation rates for applications 
such as proteomics. Since the present work is targeted at concentration analysis, we implement the 
GMR sensor in a static micro-well format. Monitoring of the association dynamics (such as shown in 
Figures 5 and 6) is used to determine when the reaction has stabilized to an approximate equilibrium. 
By monitoring the quality and uniformity of the functionalization chemistries in an assay, repeatability 
and accuracy from well to well can increase. In this example, a N-Hydroxysulfosuccinimide ester of 
biotin is deposited on a silane-coated sensor element. We use a biotin with a long chain spacer arm 
attached (Sulfo-NHS-LC-Biotin) that reacts efficiently with primary amines (such as silane groups) on 
the sensor surface. This Sulfo-NHS-LC-Biotin analyte has a molecular weight of 557 Da. Note that 
there are inherently separate peaks for each polarization (TE and TM) that shift in response to the 
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reaction. This distinguishing feature provides two concurrent sets of data that can be used to 
distinguish background index/density changes from the targeted antigen binding interactions, thus 
increasing detection accuracy and reducing false positive readings [36]. In this experiment, the TE 
resonance occurs near ~780 nm and the TM resonance occurs near ~795 nm. However, it is the relative 
peak shift that is most important, not the absolute resonance locations. 

Figure 5. Illustration of the use of GMR sensor polarization diversity to quantify biotin 
binding (0.5 mg/mL Sulfo-NHS-LC-Biotin) to a silane-coated sensor surface. The 
molecular attachment event is monitored as function of time. Results for both TE and TM 
polarizations are shown. The results are consistent and exhibit the differing sensitivities 
associated with differing polarizations. At the end of the binding, any loose or unbound 
biotin is rinsed away in PBS-Tween solution. 

 

 

 

 

 

3.2. Quantification of Cancer Biomarkers 

Prior research has identified potential indicators and screening targets for the early detection and 
diagnosis of ovarian carcinoma to monitor presymptomatic aspects of the disease and disease 
progression [37,38]. While there are currently no clinically established diagnostic tools using 
urinalysis or seranalysis, experimentally and clinically identified biomarker proteins include 
calreticulin, ryanodine receptor 3 and others. We have conducted experiments investigating the 
detection of several of these biomarkers, including calreticulin. Calreticulin has a molecular weight of 
~46 kDa and has an elliptical shape ~30 nm long and ~2.4 nm wide [39]. For detection of the 
biomarker protein calreticulin, the capture antibody used is a specific monoclonal IgG antibody (anti-
calreticulin). The sensor plates are initially coated with a commercially available silane (3-
Aminopropyltriethoxysilane) that provides means to covalently bond the calreticulin antibody to the 
sensor surface. It is chemically attached to the silane sensor surface using the homobifunctional cross-
linking agent disuccinimidyl suberate (DSS). The sensor element is then blocked with a 3% milk 
solution to minimize non-specific binding. Next, the plate is aspirated and washed with PBS/Tween in 
preparation for use. A known standard concentration of 68nM (3.75 μg /mL) calreticulin is used as the 
high standard. Stepwise two-fold dilutions of calreticulin are prepared using PBS to obtain the desired 
concentrations. PBS is used as a reference blank. A kinetic response of calreticulin binding to the 
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antibody-coated sensor element is shown in Figure 6. The sensors are incubated in calreticulin solution 
for 80 minutes and subsequently washed with PBS/Tween to remove unbound material. TE and TM 
resonance wavelength shifts are then recorded as shown in Figure 7. While the sensor operates in real 
time, the speed of detection is often limited by the biochemical binding dynamics, which can be 
affected by temperature, humidity and selective layer affinity.  

Figure 6. Resonance peak wavelength shift as a function of time for calreticulin binding to 
its matched IgG antibody. Solutions are monitored with calreticulin concentration range of 
8.5nM to 68nM. A PBS blank is used as a reference and subtracted from the data. At t = 0, 
the calreticulin solutions are introduced to the sensor element and monitored in real time 
for 80 minutes. At t = 80 minutes, the calreticulin solution is removed and the sensor 
element is washed thoroughly with PBS/Tween and monitored for another 40 minutes to 
establish a post-binding baseline. Results are repeated in triplicate and averaged. 

Figure 7. Dual polarization resonance response for calreticulin binding to the activated 
sensor element. These results are gathered after a post-PBS/Tween wash, indicating bound 
calreticulin remaining on the sensor surface. A PBS blank is used as a reference and 
subtracted from the data. Results are repeated in duplicate and averaged. Error bars shown 
indicate estimated uncertainty in each measurement. 
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3.3. Application to Determine Two Parameters Simultaneously 

A GMR sensor layer that supports N modes in a given wavelength band exhibits N resonance peaks. 
Suppose we design the sensor to support the fundamental modes TE0 and TM0. Then, an unpolarized 
interrogating beam will generate corresponding separate resonance peaks. These resonance peaks shift 
in response to the reaction, providing two sets of data. By backfitting this dual-peak response into our 
rigorous electromagnetic coupled-wave analysis [40] codes, we can determine two unknowns. This 
powerful backfitting approach can be used to distinguish background index changes, such as those that 
might occur due to thermal or sample background changes, from attaching biolayers; this provides the 
potential to significantly reduce false positives and testing errors.  

We now take a concrete example of dual-peak resonance detection applying TE0 and TM0 leaky 
modes and backfit to a mathematical model. Using our in-house rigorous electromagnetic codes, we 
can accurately calculate the surface and bulk-change contributions to the resonance shifts during a 
biochemical binding experiment. Thus, we calculate and map the TE and TM resonance peak shifts 
over a range of added biolayer thicknesses (0 to 50 nm) and background index variations  
(n = 1.33 to n = 1.5). The resulting look-up table is applied to match the corresponding detection layer 
and background index when the two resonance peak shifts are known. We use the ionic polymer poly 
(allylamine hydrochloride) [41,42] to study binding interactions that involve biolayer adhesion and 
associated thickness change at the sensor surface. A baseline is taken with de-ionized (DI) water, and 
then the DI water is removed by pipetting (while the measurement is briefly paused), and the ionic 
polymer is dispensed on the sensor surface. Two resonance peaks are tracked as the ionic polymer 
attaches a monolayer of material as shown in Figure 8. After the polymer saturates, the sensor 
measurement is paused and the element is rinsed with DI water to remove any unbound polymer.  

Figure 8. Dual polarization resonance response for poly (allylamine hydrochloride) 
binding to the sensor showing resonance wavelength shift as a function of time. This 
medium has molecular weight of 56 kDa; we use a concentration of 1.3mg/ml and pH 9.0. 
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A final measurement is made in DI water. This data is fitted to a model assuming biolayer refractive 
index of 1.4 taking layer thickness and background liquid index as unknowns. The results in Figure 9 
show that the binding of the polymer layer to the sensor surface generates the most of the peak shift 
response. There is a slight drift in the background index as the fluid incubates on the sensor element, 
contributing to the sensor response. Viewed by itself, the raw peak shift data in Figure 8 does not 
distinguish between surface changes and bulk changes; this method differentiates the contributions. 
The fitted background drift is partially attributed to thermal changes in the liquid during the 
measurement and partly to imperfect model assumptions (such as polymer layer index). Improvements 
to the backfit model will further distinguish these contributions. 

Figure 9. Results of backfitting to a simple model, thereby differentiating contributions 
from biolayer adhesion and background changes. Thus, we estimate the final adhered layer 
thickness to be ~15 nm as noted by the scale on the left side of the figure. 

 

4. Conclusions 

In summary, the biosensor technology discussed in this paper is based on simple subwavelength 
waveguide gratings that are easy to fabricate and amenable to economic mass production. When these 
sensors are illuminated with a light source, the sensor undergoes a guided-mode resonance such that a 
specific wavelength of light is reflected (with a corresponding transmission minimum) at a particular 
angle. Interaction of a target analyte with a biochemical layer on the sensor surface yields measurable 
spectral shifts that directly identify the binding event without additional processing or foreign tags. 
The dielectric sensor chips are prepared with standard surface chemistries (such as silane) to 
covalently attach commercially available and validated specific antibody, aptamer or peptide layers. 
Commercial blocking agents are used to minimize non-specific binding effects in non-ideal 
backgrounds such as serum, food and environmental liquids. As the binding assay begins, the analyte 
binds to the detection layer target and a change in the resonance wavelength is measured with a 
spectrum analyzer. The amount of wavelength shift can be directly correlated to the quantity of analyte 
in a fluid or gas. The sensor is multifunctional as only the sensitizing surface layer needs to be 
chemically altered to detect different species.   
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In this contribution, we have specifically emphasized polarization-based parametric discrimination. 
Our resonant sensors can be designed to support two or more leaky modes in the spectral band of 
interest. These modes can be directly addressed with the interrogating beam of light and resonate in 
their respective polarization states. This property provides enriched data sets that can be used to 
calibrate simultaneously for variations such as temperature or sample background density, in the same 
identical sensor spot, increasing detection accuracy and reducing probability of false readings. Indeed, 
concurrent, co-localized data acquisition via such polarization and modal diversity eliminates errors 
associated with use of separate reference sites. GMR sensors can be arrayed into high-density  
(~10,000 sensors/cm2) platforms that are easily interrogated. Separate input/output waveguides to each 
sensor element are not required. Typical limits of detection are in the pM range. Therefore, this sensor 
technology will find increasing application in medical diagnostics, drug development, industrial 
process control, genomics and environmental monitoring.  
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