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Abstract: Carbon dioxide (CO2) is produced by living organisms as a byproduct of 

metabolism. In physiological systems, CO2 is unequivocally linked with bicarbonate 

(HCO3
−
) and pH via a ubiquitous family of carbonic anhydrases, and numerous biological 

processes are dependent upon a mechanism for sensing the level of CO2, HCO3, and/or pH. 

The discovery that soluble adenylyl cyclase (sAC) is directly regulated by bicarbonate 

provided a link between CO2/HCO3/pH chemosensing and signaling via the widely used 

second messenger cyclic AMP. This review summarizes the evidence that  

bicarbonate-regulated sAC, and additional, subsequently identified bicarbonate-regulate 

nucleotidyl cyclases, function as evolutionarily conserved CO2/HCO3/pH chemosensors in 

a wide variety of physiological systems. 

Keywords: soluble adenylyl cyclase; cAMP; second messenger; cyclic nucleotides; 

bicarbonate; carbon dioxide; pH 

 

1. Introduction 

Carbon dioxide (CO2) and water are the major end products of energy producing pathways in living 

organisms (Equation (1)). As such, in non-photosynthetic organisms, CO2 and water represent the most 

fundamental catabolites. 

Glucose (or other energy sources) + O2 -----> CO2 + H2O (1)  
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CO2 + H2O <-----> H2CO3 <-----> HCO3
−+ H

+
 

 

(2) 

In unicellular organisms, CO2 gas can simply diffuse away, but once multicellular organisms 

evolved, they had to devise methods for safely dealing with CO2. In solution, CO2 combines with 

water to form carbonic acid (H2CO3), which dissociates to liberate a proton and a bicarbonate ion 

(HCO3
−) (Equation (2)). CO2, bicarbonate and pH equilibrate on their own within minutes, but in 

biological systems, equilibrium is reached nearly instantaneously due to the ubiquitous presence of 

carbonic anhydrases [1]. This equilibrium is used to buffer pH inside cells and in intercellular fluids; 

for example, intracellular pH is regulated via an interplay between CO2 diffusion, and bicarbonate and 

proton transporters and/or exchangers. In mammals, and terrestrial vertebrates in general, this 

equilibrium is tightly controlled in two ways; the kidneys regulate the bicarbonate concentration and 

the breathing frequency determines the concentration of carbon dioxide. Each of these processes 

requires a „sensor,‟ i.e., an exquisitely sensitive and rapid way to measure the precise concentration of 

either CO2 and/or bicarbonate and/or pH and elicit an appropriate response. Many other physiological 

processes, in addition to diuresis and breathing rate regulation, are modulated by CO2 and/or 

bicarbonate and/or pH (i.e., sperm activation, blood flow, aqueous humor in the eye and cerebrospinal 

fluid formation), and they also require a CO2/HCO3/pH sensor. For many years, the effects of CO2 and 

pH had been ascribed to undefined chemoreceptors, and the effects of bicarbonate were traditionally 

thought to be mediated by changes in cellular pH [1]. In 2000, our research group demonstrated that 

HCO3
− directly modulates the activity of soluble adenylyl cyclase (sAC), a novel form of the enzyme 

generating the ubiquitous second messenger, cAMP [2], revealing that physiological CO2/HCO3/pH 

could be sensed via second messenger signaling. 

Cyclic AMP was discovered more than 50 years ago by Earl Sutherland to act as a „second‟ or 

intracellular messenger which mediated cellular responses to extracellular signals in organisms as 

diverse as bacteria and mammals [3]. Still, our understanding of cAMP signaling has  

recently undergone two transformative changes: cAMP signaling is organized into multiple,  

independently-regulated microdomains within a cell [4-6], and in addition to its role mediating cellular 

changes, cAMP can affect cellular physiology by modulating the amplitude or duration of other 

signaling cascades [7]. 

Over the decades of studying cAMP signaling in mammalian biology, this single second messenger 

had been implicated in a wide variety of often-contradictory physiological processes, including 

different aspects of metabolism, proliferation, apoptosis, differentiation, migration, development, ion 

transport, pH regulation, and gene expression. This seeming conundrum was finally resolved with the 

appreciation that cAMP acts locally within independently regulated microdomains. The microdomain 

model posits that cAMP is generated at distinct locations within the cell by independently regulated 

adenylyl cyclases [8-10], where it modulates only nearby targets, including cyclic nucleotide gated ion 

channels, Exchange Proteins Activated by cAMP (EPACs), or Protein Kinase A (PKA). Ultimately, 

the cAMP is degraded by phosphodiesterases (PDEs) which serve two functions; they act as barriers to 

cAMP diffusion [11,12] preventing unregulated cross-communication between microdomains [13] and 

the more traditionally accepted role restoring cAMP levels to their basal level terminating the signaling 

cascade [14]. Individual microdomains can be wholly contained within an organelle, such as the 

mitochondria or nucleus [9,10,15] or can be defined by A-kinase anchoring proteins (AKAPs), which 
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tether PKA [16,17], and possibly adenylyl cyclases [18-20] and/or PDEs [21-28] to specific locations 

inside cells. Organization in microdomains enables this one second messenger to simultaneously 

mediate disparate processes throughout a cell. 

There were early hints that cAMP signaling was compartmentalized within a cell; for example, 

distinct hormones which have the same effects on cAMP levels in bladder epithelial cells do not have 

the same effect on osmotic water flow [29]. But a need for independently-regulated cAMP 

microdomains was best demonstrated in cardiomyocytes, where it was observed that two hormones, 

which both functioned via cAMP, elicited completely different responses [30]. Modern  

FRET-based [31-33] and biophysical methods [34,35] that enable measuring cAMP concentrations  

in situ revealed that cAMP levels are not uniform within cells (reviewed in [4,5]). The microdomain 

organization of cAMP signaling was definitively confirmed by the demonstration of independently 

regulated, membrane-proximal cAMP microdomains in neurons [36] and cardiomyocytes [37]; by the 

demonstration of the role of AKAPs [16,17]; and by the unique functions of artificial, localized 

production of second messenger within distinct subcellular compartments [38-40]. Among the 

implications for a locally acting second messenger is the realization that changes in cAMP levels do 

not have to be large (or even detectable in a whole cell context) to be physiologically relevant; 

meaningful cAMP fluctuations within a microdomain could be insignificant compared to the total 

cAMP content of a cell. Thus, even for a cAMP-mediated process, measuring a cAMP rise may prove 

difficult. The microdomain organization of signaling seems to be true for both cAMP and the other 

second messenger cyclic nucleotide, cGMP; in cultured hippocampal neurons, localized cAMP was 

shown to be essential for axonal determination while compartmentalized cGMP defined dendrites [41]. 

Figure 1. Mediator vs. Modulator. In the mediator pathway, sAC generated cAMP 

functions as part of “bucket brigade” being both necessary and sufficient to elicit a 

response. In the modulator pathway, where sAC-generated cAMP controls the magnitude 

or duration of a response, sAC activity could be regulated by a distinct extracellular signal, 

by intracellular signals (i.e., CO2/HCO3
−/pHi), or as a secondary effect of the primary 

signal mediating the cellular response (red arrow). 
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The concept of cAMP as an amplitude or frequency modulator of other signaling pathways derives 

from an idea posited 15 years ago by Ravi Iyengar [7]. In addition to its role as a signal mediator 

(Iyengar referred to this role as functioning as part of a “bucket-brigade” where cAMP is both 

necessary and sufficient to elicit a response), he suggested that cAMP might be functioning as a “gate” 

to regulate information flow through distinct signaling pathways. In his “gating” model, cAMP served 

a permissive role, turning a pathway on or off. Our studies of sAC have confirmed and extended this 

model for cAMP function; our studies identified a role for sAC-generated cAMP functioning like a 

rheostat, modulating intensity or frequency of a signaling pathway (Figure 1). 

As described in more detail below, sAC is responsible for CO2-dependent regulation of oxidative 

phosphorylation in mitochondria [42]. In performing this role, sAC-generated cAMP does not elicit a 

response on its own, but functions as an „amplitude modulator;‟ it alters the rate of ATP production 

dependent upon the amount of metabolically generated CO2. sAC also has modulatory functions in the 

CO2-dependent regulation of beat frequency of cilia in airway epithelia [43] and the HCO3-induced 

activation of sperm motility [44-46]; in both cases, sAC-generated cAMP alters the frequency of an 

already existing beating response (in cilia or flagella, respectively). Interestingly, sAC in sperm 

exhibits both types of functionalities; sAC-generated cAMP acts as a „frequency modulator‟ to control 

the rate of flagellar beating for hyperactivated motility, but it also acts as an “on-off” pathway 

mediator, initiating swimming and the process of capacitation, the developmental program needed to 

enable sperm to penetrate and fertilize an egg [44,45,47]. Other examples where cAMP seems to serve 

a “gating” function included growth factor activation of the MAP Kinase pathway [48], long-range 

patterning induced by the diffusible morphogen, Sonic Hedgehog [49-51], long-term potentiation 

evoked by repeated stimulation in hippocampal CA1 region [52], and neurotrophin-dependent survival 

and growth of neurons [53]. Interestingly, these processes may also involve sAC [54-58]. 

„Amplitude or frequency modulation‟ provides a mechanism for cells to fine tune responses to a 

signal such that more (or less) signal is required to provide a consistent or maintained response. This 

property is particularly useful for a gradient morphogen or any diffusible signal that induces 

directional movement, such as a neuronal guidance cue, where a cell responds by moving up (or down) 

a concentration gradient.  

2. Discovery of sAC and Regulation by Bicarbonate 

G protein regulated, transmembrane adenylyl cyclases (tmACs) mediate intracellular changes due to 

extracellular signals such as hormones and neurotransmitters binding to G protein coupled receptors 

(GPCRs); for a long time, these were thought to be the predominant (if not only) sources of cAMP in 

higher eukaryotes. In 1999, our laboratory purified and cloned mammalian soluble adenylyl cyclase 

(sAC) [59] defining a unique signaling enzyme (Table 1; Reviewed in [60]). sAC is more closely 

related to (cyano)bacterial ACs than to tmACs or other metazoan cyclases providing a link between 

prokaryotic and eukaryotic signal transduction mechanisms. Isoform diversity for tmACs is generated 

via nine distinct genes; whereas for mammalian sAC, a single gene is alternatively spliced [61,62] and 

uses multiple promoters [63]. Unlike tmACs, sACs are not transmembrane proteins and are found 

distributed throughout the cytoplasm and in specific organelles [9,10,15] where they are thought to be 

the source of second messenger mediating the intracellular functions of cAMP [8,15]. As stated above, 
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tmACs are directly modulated by heterotrimeric G proteins which transduce extracellular signals into 

intracellular cAMP changes. In contrast, sAC isoforms are insensitive to heterotrimeric G proteins [59] 

but are instead regulated by intracellular signals, including bicarbonate [2,64-67], calcium [68,69], and 

ATP [69].  

Structurally, sAC and tmACs are quite similar [70]; both sAC [70] and tmACs [71] are active as 

dimers of two catalytic (C) units (Reviewed in [60,72]). However, structures (to a resolution of 1.9 Å) 

of various complexes of a bicarbonate- and calcium-regulated bacterial sAC-like cyclase with different 

substrate analogs provide a rationale for sAC-like cyclases‟ insensitivity to heterotrimeric G proteins 

and their lower affinity for substrate ATP. These structures also reveal how calcium increases sAC-like 

cyclases‟ affinity for ATP, and how bicarbonate stimulates catalytic rate. Bicarbonate regulation is 

conserved in sAC-like cyclases throughout evolution [2,73-76] as well as in yeast adenylyl  

cyclases [77-79] and a number of transmembrane (i.e., receptor-type) guanylyl cyclases [80-83]; thus, 

bicarbonate regulation of cyclic nucleotide synthesis is poised to be an evolutionarily conserved 

mechanism for physiological sensing CO2/HCO3/pH. In this review, we focus specifically on the 

functions of sAC (and other bicarbonate-regulated cyclases) where it functions as a physiological 

CO2/HCO3/pH chemosensor. Broader reviews, describing the various functions of mammalian sAC [84] 

and the variety of physiological CO2/HCO3/pH chemosensors [58], have recently been published.  

Table 1. The two distinct classes of mammalian adenylyl cyclase. 

 sAC tmACs 

Evolutionary relatedness (Cyano)bacteria „First‟ Appearance: Dictyostelium 

Isoform variability 
One gene with multiple splice variants and an 

alternative start site 
Nine distinct genes 

Tissue distribution Ubiquitous Ubiquitous 

Subcellular localization 
Cytoplasm, nucleus, mitochondria, centrioles, 

mitotic spindle, mid-body 
Plasma membrane 

Physiological Modulators Bicarbonate, calcium, & ATP G proteins & other 2nd messengers 

Functions 

HCO3
- sensing in sperm 

pH sensing in acid/base sensing epithelia 

CO2 sensing in airway cilia and mitochondria 

Intercellular signaling (i.e., hormones, 

neurotransmitters, odorants) 

3. Physiological CO2/HCO3/pH Chemosensing via sAC 

3.1. Bicarbonate Activation of Sperm 

Morphologically mature epididymal sperm do not have the “capacity” to fertilize an egg [85]. They 

acquire fertilization-competence during ejaculation and transit through the female reproductive tract. 

Upon ejaculation, sperm acquire flagellar motility (i.e., swim) and begin a poorly defined maturation 

process called capacitation. Capacitation continues inside the female reproductive tract, where it 

includes hyperactivation of flagellar motility and attaining the ability to perforate the egg‟s zona 

pellucida via the acrosome reaction. These events lead to binding and fusion to the egg‟s plasma 

membrane and fertilization. At least two of these stages, motility and capacitation, are induced by 

bicarbonate [86-89] and dependent upon cAMP signaling [89-92]. 
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We originally purified sAC from testis [59] and sAC mRNA is highly expressed in male germ  

cells [93]. At least two isoforms of sAC are present in male germ cells [44]: a 187 kDa protein (“full 

length”, or sACfl) and a shorter, 53 kDa variant (“truncated”, or sACt) [59]. sACt has an approximately 

ten times higher specific activity than sACfl [94], and while both are found in testis and  

sperm [44,95,96], sACt appears to be responsible for the majority of cAMP production in mature  

sperm [44,45,47,97]. We (and others) demonstrated that the effects of bicarbonate on sperm are 

directly mediated by sAC [44,45,47,97]. Specifically, both motility [44,47,97] and capacitation [44,45] 

are abrogated in sAC knockout mice and by the sAC-specific pharmacological inhibitor, KH7 [44].  

3.2. pH Sensing 

Prior to ejaculation, sperm are stored in the cauda epididymis where they are maintained in a 

quiescent state by an acidic pH of 6.5–6.8 and a low bicarbonate concentration of 2–7 mM (compared 

to 25 mM in serum, prostate and other bodily fluids) [98]. In 2003, we demonstrated that sAC 

functions as a pH sensor in the clear cells of the epididymis to ensure that the luminal pH and 

bicarbonate concentration remain low [99]. sAC is highly expressed in clear cells, and apical 

membrane accumulation of the proton pumping vacuolar ATPase (V-ATPase) is triggered by a  

sAC-dependent rise in cAMP in response to alkaline luminal pH. The apical mobilization of the  

V-ATPase is also dependent upon carbonic anhydrase (CA), the enzyme responsible for the nearly 

instantaneous equilibration of pH and HCO3
−
, presumably facilitating sAC activation by bicarbonate in 

response to elevated pH. 

sAC [76], CA [100], and V-ATPase [101,102] are also instrumental in regulating the recovery from 

alkalotic challenge in the dogfish shark. In the shark gill, which is the main acid-base sensing organ of 

this ancient vertebrate, alkalotic stress induces a sAC- and CA-dependent translocation of V-ATPase 

into the basolateral membrane of the gill. The V-ATPase then pumps protons back into the body to 

counter the systemic alkalosis. Additionally, sAC forms a complex with the V-ATPase in acid-base 

transporting intercalated cells in mammalian kidney [103], and sAC, CA and V-ATPase are postulated 

to mediate proton secretion from acid (A-type) secreting cells into the renal collecting duct [104]. 

Thus, sAC, CA and V-ATPase seem to form a functional unit for sensing, and responding to, 

alterations in pH [105]. Interestingly, the sAC-CA-V-ATPase mechanism is capable of moving the 

proton transporter to wherever it is needed; i.e., the V-ATPase translocates to the apical membranes in 

clear cells of the epididymis and A-type cells of the renal collecting duct while it moves to the 

basolateral membrane in the shark gill. Because sAC, CA, and V-ATPase are evolutionarily ancient, it 

is tempting to hypothesize that this functional unit for sensing pH and moving protons to correct pH 

imbalances will be found widely utilized throughout biology.  

3.3. CO2 Regulation of Beating Frequency of Cilia on Airway Epithelia 

Airway epithelial cells express motile cilia that are important for innate host defense; the beat of the 

cilia removes the mucous layer clearing toxins, pathogens, allergens, and debris [106]. To accomplish 

this feat, cilia beat faster during exhalation relative to inhalation. Exhaled breath has higher CO2 than 

inspired air. sAC „senses‟ this elevated CO2, and sAC-generated cAMP activates PKA which increases 

the frequency of ciliary beating during exhalation [43]. This represents an example where sAC-generated 
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cAMP acts as a pathway modulator; CO2 chemosensing via sAC controls the rate of ciliary beating, 

not whether or not the cilia beat.  

3.4. Krebs Cycle Generated CO2 Regulates the Rate of Oxidative Phosphorylation 

sAC resides inside mitochondria [9,15,107] where it coordinates the rate of ATP production via 

oxidative phosphorylation (OXPHOS) with nutritional availability. Mitochondrial sAC activity is 

stimulated by Krebs Cycle-generated CO2 in a carbonic anhydrase dependent manner [15]. 

CO2/HCO3
−
 stimulation of sAC activates intramitochondrial PKA which phosphorylates Complex IV 

of the electron transport chain, increasing its rate and capacity to handle electrons. Because the 

electrons feeding the electron transport chain also originate from the Krebs Cycle, this mitochondrial 

CO2-sAC-cAMP-PKA pathway couples nutrient utilization (i.e., Krebs Cycle activity) to ATP 

production. Once again, this pathway does not turn on or off the electron transport chain, it simply 

modulates the rate of ATP generation to ensure optimal utilization of electrons.  

3.5. Physiological Processes Dependent upon CO2/HCO3/pH which May Involve sAC 

There are a number of physiological processes where CO2/HCO3/pH chemosensing is known to 

play a role, but the chemosensor is not yet identified. Some are even thought to employ cAMP as a 

second messenger, but involvement of sAC has yet been demonstrated. For example, bone resorption 

by osteoclasts is thought to be mediated via V-ATPase dependent proton pumping [108]. And while 

sAC seems to regulate growth and differentiation of osteoclasts [109], there is only circumstantial 

evidence that sAC plays a role in bone formation. Human sAC was identified as a locus for absorptive 

hypercalciuria (AH), a kidney stone-forming condition frequently complicated by bone loss [110], and 

polymorphisms in the human sAC locus are associated with phenotypic variations in bone mineral 

density [111]. 

Cerebrospinal fluid formation (CSF) by the choroid plexus and aqueous humor formation by ocular 

ciliary processes are dependent on bicarbonate [112,113]. In ciliary processes and choroid plexus 

transport systems, carbonic anhydrase inhibitors decrease fluid secretion [114], and carbonic anhydrase 

inhibitors can be used to treat glaucoma, a fluid secretion defect in the eye. sAC seems to be present in 

choroid plexus [2] and in ciliary processes [115], but as yet, there have been no functional studies 

linking sAC to either process.  

Partial CO2 pressure (PCO2) is the main determinant of ventilation rate [1]. Elevations of PCO2 

increase breathing frequency, while decreased PCO2 slows breathing frequency. These rate changes 

are mediated by peripheral and central chemoreceptors which monitor changes in arterial PO2 and 

PCO2 blood gases. The peripheral chemoreceptors are in the carotid and aortic bodies, and their actions 

have long been thought to be due to alterations in intracellular pH (pHi). However, studies in the 

chemosensitive (glomus) cells of the carotid body reveal a direct role for CO2, independent of pHi [116]. 

These studies also demonstrated that elevations in PCO2 elicited an increase in glomus cell cAMP 

leading the authors to suggest involvement of sAC. PCO2 also plays a role in regulating blood flow. 

Blood flow is tightly coupled to tissue metabolism [1]; cerebral arterioles dilate in response to 

increases in metabolic activity, and CO2, protons, and adenosine function as vasodilators by relaxing 

smooth muscles. Cerebral arterioles are exquisitely sensitive to the vasodilatory action of PCO2; 
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however, the molecular nature of the vascular PCO2 receptor is unknown. Interestingly, cAMP was 

postulated to be downstream of the CO2 signal [117], but once again, functional studies assessing 

sAC‟s role in sensing circulating PCO2 have not yet been performed.  

4. Evolutionary Conservation of Physiological CO2/HCO3/pH Chemosensing via Nucleotidyl 

Cyclases 

4.1. Fungal Adenylyl Cyclases Integrate CO2 Sensing with cAMP Signaling and Virulence 

The CO2 concentration in mammals (5%) is more than 150 fold higher than in atmospheric  

air (0.033%). We identified this difference in CO2 as a physiological signal inducing the yeast-to-hyphal 

transition essential for virulence of the fungal pathogen, Candida albicans [77]. The C. albicans 

adenylyl cyclase (AC) is directly stimulated by HCO3, and it is responsible for „sensing‟ in a carbonic 

anhydrase dependent manner, the elevated CO2 inside infected hosts. CO2/HCO3 regulation of cAMP 

synthesis is conserved in other fungi. In the fungal pathogen Cryptococcus neoformans, capsule 

formation is essential for evading host immune detection. Once again, the signal inducing capsule 

formation is the higher CO2 concentration inside the infected host, and the C. neoformans cyclase 

serves as the pathogen‟s CO2/HCO3 chemosensor [78].  

4.2. CO2 Chemosensing via cGMP Signaling 

The nematode Caenorhabditis elegans also senses environmental CO2. In contrast to many parasitic 

nematodes, the free-living C. elegans avoids CO2 [118,119], and this response is dependent upon 

expression of the GCY-9 receptor-type guanylyl cyclase (along with cyclic nucleotide gated ion 

channels) in the CO2 chemosensing (BAG) sensory neurons [120]. Interestingly, C. elegans also avoid 

high levels (in excess of 12%) of oxygen; this response is mediated by a distinct subset of sensory 

neurons, but it also involves a receptor-type guanylyl cyclase (GCY-35) and cyclic nucleotide gated 

channels [121]. 

The fruit fly Drosophila melanogaster also avoids environmental CO2, and while this response 

requires two GPCR-like olfactory receptors [122], involvement of a cyclic nucleotide second 

messenger remains unclear [123]. In mammals, the question of sensing environmental CO2 via cyclic 

nucleotides also remains unresolved. A particular subset of olfactory neurons in mice seemed to be 

capable of sensing concentrations of CO2 approaching environmental levels [124]. These neurons 

express a transmembrane guanylyl cyclase, GC-D, which was subsequently demonstrated to be 

bicarbonate regulated [82,83]. A second transmembrane guanylyl cyclase, GC-G, which is also found 

in the olfactory system, has also been demonstrated to be directly modulated by bicarbonate [80]. 

Sensory detection of environmental CO2 in a number of organisms was recently reviewed in [125]. 

While these findings cement the linkage between CO2/HCO3/pH chemosensing and cyclic nucleotide 

signal transduction, their physiological significance remains unknown. 

5. Summary and Future Trends 

In physiological systems, CO2, HCO3
−
, and pH are intimately linked via carbonic anhydrases, and a 

variety of biological processes, in mammals and throughout evolution, depend upon a CO2/HCO3/pH 
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chemosensor. Bicarbonate-regulated sAC, which links intracellular CO2, HCO3
−
, and/or pH levels with 

cAMP signal transduction, serves as the CO2/HCO3/pH chemosensor in at least a subset of these 

processes. The future will reveal whether other CO2/HCO3/pH chemosensing functions are also 

mediated by sAC. Bicarbonate regulation is observed in other mammalian nucleotidyl cyclases and in 

adenylyl cyclases across evolution implying that cyclic nucleotide signaling is an evolutionarily 

conserved mechanism for CO2/HCO3/pH chemosensing. 
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