
Sensors 2011, 11, 2505-2524; doi:10.3390/s110302505 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

W-MAC: A Workload-Aware MAC Protocol for Heterogeneous 

Convergecast in Wireless Sensor Networks 

Ming Xia, Yabo Dong * and Dongming Lu 

College of Computer Science and Technology, Zhejiang University, No. 38, Zhe-Da Road, Hangzhou, 

310027 Zhejiang, China; E-Mails: nmlab_xiaming@zju.edu.cn (M.X.); ldm@zju.edu.cn (D.L.) 

* Author to whom correspondence should be addressed; E-Mail: dongyb@zju.edu.cn;  

Tel.: +86-571-87952724; Fax: +86-571-87952724. 

Received: 30 November 2010; in revised form: 19 January 2011 / Accepted: 14 February 2011 / 

Published: 28 February 2011 

 

Abstract: The power consumption and latency of existing MAC protocols for wireless 

sensor networks (WSNs) are high in heterogeneous convergecast, where each sensor node 

generates different amounts of data in one convergecast operation. To solve this problem, 

we present W-MAC, a workload-aware MAC protocol for heterogeneous convergecast in 

WSNs. A subtree-based iterative cascading scheduling mechanism and a workload-aware 

time slice allocation mechanism are proposed to minimize the power consumption of 

nodes, while offering a low data latency. In addition, an efficient schedule adjustment 

mechanism is provided for adapting to data traffic variation and network topology change. 

Analytical and simulation results show that the proposed protocol provides a significant 

energy saving and latency reduction in heterogeneous convergecast, and can effectively 

support data aggregation to further improve the performance. 

Keywords: wireless sensor network; heterogeneous convergecast; MAC protocol; TDMA 

 

1. Introduction 

A wireless sensor network (WSN) consists of a large number of low cost, low power sensor nodes 

that perform data sensing tasks. Convergecast is a typical communication pattern in WSNs, where 

sensor nodes in the network send data to the sink node periodically. Currently existing MAC protocols 

for convergecast in WSNs are mostly based on the assumption that each sensor node generates exactly 

the same amount of data at the same rate. However, in real deployment, this assumption frequently 

OPEN ACCESS 



Sensors 2011, 11           

 

2506 

does not hold. Sensor nodes may sense different amounts of data (e.g., they may be equipped with 

different types or numbers of sensors), or they may have different data reporting frequency 

configurations. This type of convergecast can be formulated as heterogeneous convergecast, where 

each sensor node generates different amounts of data in one convergecast operation. In this occasion, 

existing convergecast MAC protocols can not effectively adapt to variable data traffic on sensor nodes, 

and cause a great degradation in the overall performance of the network. 

This paper presents W-MAC, a workload-aware MAC protocol for heterogeneous convergecast in 

WSNs. W-MAC employs a subtree-based iterative cascading scheduling mechanism, and a  

workload-aware time slice allocation mechanism to minimize the power consumption of nodes, while 

offering a low data latency. In addition, W-MAC provides an efficient schedule adjustment mechanism 

to adapt to data traffic variation and network topology changes. Analytical and simulation results show 

that W-MAC outperforms existing protocols in both power consumption and data latency, and can 

effectively support data aggregation to further improve the performance. 

The rest of the paper is organized as follows: Section 2 outlines related work. Section 3 describes 

our scheduling algorithm and Section 4 provides detailed descriptions on the schedule establishment 

and adjustment. Section 5 presents the evaluation results and Section 6 concludes the paper. 

2. Related Work 

MAC protocols for WSNs mostly provide wakeup/sleep schedules for sensor nodes to reduce power 

consumption, and can be roughly categorized as either contention-based [1] or TDMA-based [2]. 

Although TDMA-based protocols frequently tend to pose a heavier burden on schedule maintenance, 

they do not suffer from collisions. This is in agreement with recent research showing that TDMA is 

preferred for the communications in WSNs [3]. There are also other MAC approaches such as CDMA 

and multi-channel; we will not discuss them in this paper as they typically pose higher requirements on 

node capability. 

In convergecast, if not considering their special data flow direction from sensor nodes to sink nodes, 

wakeup/sleep schedules will cause the “data forwarding interruption problem” and bring about a high 

data latency [4]. Therefore, a number of MAC protocols specially designed for convergecast in WSNs 

have been proposed to alleviate the problem. 

DMAC [4] gives the schedule of a node an offset that depends upon its level (the number of hops to 

the sink node) on the tree. However, DMAC is not collision-free, since nodes in the same level own 

the same slot to transmit data. To reduce collisions, DMAC requires the node to perform random 

backoff before trying to transmit data. If the channel is unavailable, the node must wait for 5 slots to 

retry. MERLIN [5] and QDMAC [6] adopt a similar scheduling rule as in DMAC. As a result, they 

also suffer from collisions. 

In contrast to DMAC, LL-MAC [7] adopts a level-by-level scheduling scheme. It divides the data 

transfer period into several non-overlapping uniform divisions, and assigns each level of sensor nodes 

one division. It then allocates each node a set of unique slots from the division to enable collision-free 

data transfer. Because the data traffic in each level is different, part of the slots are wasted. At the same 

time, LL-MAC makes the node cache all data records from its children before relaying, thus causes a 

high memory usage. LL-MAC also considers the scheduling for network control packets (e.g., time 



Sensors 2011, 11           

 

2507 

synchronization and route discovery) transfer. However, the control interval of LL-MAC is long and 

requires all nodes to keep awake in the whole control interval, thus consuming excessive energy. 

The above protocols do not work well in a heterogeneous convergecast scenario. For DMAC, an  

extra-large data record must be divided into multiple segments to be transmitted in multiple slots, and 

the node can only perform transmission once every 5 slots. LL-MAC does not provide extra slots if the 

data record generated by a node is too long to be transmitted in one slot, as a result, the uniform slot 

assigned by LL-MAC must be larger than the longest data record and the nodes which have shorter 

data records cannot fully use their slots. In addition, none of the above protocols can effectively 

support data aggregation. DMAC will immediately forward the data once received, thus no time is 

spared for data aggregation. The traffic reduction brought by data aggregation will not benefit the 

performance of LL-MAC, since its slots allocation is only based on the number of descendants of  

the node. 

There are some other similar works that focus on the data transmission time scheduling in 

convergecast. They can be divided into two categories: (1) works that aim to minimize the 

convergecast time or energy cost [8-14]. These methods only realize collision-free transmission in the 

case that each node generates the same amount of data at the same rate; (2) works that aim to 

maximize data aggregation efficiency. Some of them [15,16] employ the similar idea as that in DMAC, 

thus they also suffer from collisions. Some researchers have tried to avoid collisions in data 

aggregation [17-19], however, these TDMA scheduling approaches restrict the nodes to have to 

aggregate received packets into one packet to be transmitted in one time slot. As a result, these 

scheduling approaches are eventually not designed for heterogeneous convergecast, and at the same 

time, many aggregation methods, especially those lossless aggregation functions such as packing 

aggregation [20], will be not applicable. 

3. Scheduling Algorithm for Heterogeneous Convergecast 

As mentioned before, level-by-level data transfer as in LL-MAC wastes slots and brings extra data 

latency. We alternatively took a subtree as the unit, and designed a collision-free iterative cascading 

scheduling mechanism, which makes nodes perform network control and data delivery operations 

subtree-by-subtree. The scheduling algorithm is divided into control interval scheduling and data 

interval scheduling. For the control interval scheduling, the control packet disseminations are 

performed from the sink node to the furthest sensor nodes (i.e., nodes with the largest number of hops) 

subtree-by-subtree, as in Figure 1(a); for the data interval scheduling, the data packet deliveries are 

performed from the furthest sensor nodes to the sink node subtree-by-subtree, as in Figure 1(b). 

Typically, the control packet disseminations are performed first, and then the data packet deliveries 

will be performed. Another key technique in the scheduling algorithm is the workload-aware time slice 

allocation mechanism for minimizing the active time of nodes. In our scheduling, the workload of a 

node is essentially the communication workload of the subtree which is rooted at the node. 

The workload W of a node is defined as [WO, WR, WT]. WO is the time required for the control 

packet from the node to reach all its descendants, WR is the time required for the node to collect data 

from all its descendants and WT is the time required for the node to transmit all data generated by its 



Sensors 2011, 11           

 

2508 

descendants and itself. WO is referred to as control workload; WR and WT are referred to as  

data workload. 

Figure 1. Scheduling sequence in W-MAC: (a) control packet delivery and (b) data  

packet delivery. 

Sink node Sensor node

 

1 2

4

6

5

3

3 4

2

6

5

1

              

1 2

4

6

5

3

1 2

3

4

5

6

 

(a)                                              (b) 

 

The scheduling is based on the workloads collected from the children, and the scheduling process 

only involves the node and its parent. The parent node first allocates a time pool B to each child 

according to the child’s workload W. The time pool B is defined as [B
S
, B

L
], in which B

S
 is the start 

time of B, and B
L
 is the length of B. The time pools are categorized as: control time pool BC, the time 

pool for control packet disseminations, and data time pool BD, the time pool for data packet deliveries. 

Then the node will calculate and acquire its time slices from the time pool obtained from the parent. 

The time slices can be categorized as: 

 RX: The time slice for receiving packet. RX is defined as [RX
S
, RX

L
], in which RX

S
 is the start 

time of RX and RX
L
 is the length of RX. RX can be further categorized as RX for control interval 

(RXC) and RX for data interval (RXD). 

 TX: The time slice for transmitting packet. TX is defined as [TX
S
, TX

L
], in which TX

S
 is the start 

time of TX and TX
L
 is the length of TX. TX can be further categorized as TX for control interval 

(TXC) and TX for data interval (TXD). 

Therefore, the active time of a node in one working cycle can be represented as  

RXC∪TXC∪{RXD}∪TXD. One node may have multiple RXDs, but will have, and only have, one each 

of the other types of time slices. The node will be kept in sleep in the rest of the time. We will then 

elaborate on the time pool allocation and time slice calculation algorithms in W-MAC. Other variables 

used are listed below: 

 Ci: The set of direct children of the node ui. 

 TC: The time required for transmitting one control packet. 

3.1. Control Interval Scheduling 

The control workload WO of a node is determined by the number of descendants of the node. For 

the node ui, its control workload WOi can be calculated from all its children’s control workloads by 

using Equation (1): 



Sensors 2011, 11           

 

2509 






ij Cu

Cji TWOWO  
(1)  

After getting all children’s control workloads, the parent can calculate the control time pool 

allocations for its children. For the node ui, the control time pool for the child node uj can be calculated 

using Equation (2), in which L

CkB  indicates the length of the kth node’s control time pool whose 

allocation is before the node ui: 

ij

j
L
Cj

j

k

L
CkC

S
Ci

S
Cj

Cu

WOB

BTBB












 



,

1

1
 (2)  

The node will calculate its RXC and TXC locally after obtaining the control time pool allocation from 

the parent. For the node ui, 
S
CiRX is equal to S

CTX  of its parent, and L
CiRX  is equal to TC. S

CiTX  is equal to 
S
CiB , and L

CiTX  is also equal to TC. 

An example of the control interval scheduling process is shown in Figure 2. Let the number of 

children of the node uP be n, and the control workload of the child node uj )1( nj   be WOj. Then 

WOP is 



n

j

Cj TWO
1

. In scheduling, TC amount of time at the beginning of the control time pool of the 

node uP is reserved for uP to transmit control packet, and the rest of the time is allocated to its children. 

It can be observed that the active time of a node in the control interval is a constant, and achieves the 

minimum value 2TC. 

Figure 2. Scheduling for the control interval. 

un

WOn

u2

WO2

u1

WO1

..
.

uP

...uP TC

WOP

TC TC

TC TC

TC TC

...

WO1 WO2 WOn

RXC TXC Unused BC

u1

u2

un

 

3.2. Data Interval Scheduling 

The data workload WR and WT of a node is determined by the number of descendants of the node, 

the amount of data generated by the node and the node’s descendants, and the data aggregation rate on 

the node. For the node ui, its data workload WRi and WTi can be calculated from all its children’s data 

workloads by using Equation (3), in which WTSi represents the time required for transmitting data 

generated by the node ui itself, and Ri represents the data aggregation rate on ui: 



Sensors 2011, 11           

 

2510 

ii

Cu

ji

Cu

jji

RWTSWTWT

WTWRWR

ij

ij

)(

)(












 (3)  

After getting all children’s data workloads, the parent can calculate the data time pool allocations 

for its children. For the node ui, the data time pool for the child node uj can be calculated using 

Equation (4), in which L

DkB  indicates the length of the kth node’s data time pool whose allocation is 

before the node ui: 

ij

jj
L
Dj

j

k

L
Dk

S
Di

S
Dj

Cu

WTWRB

BBB












 



,

1

1
 (4)  

The node will calculate its RXD and TXD locally after obtaining the data time pool allocation from 

the parent. For the node ui, DijRX  (the time slice for ui to receive data from the child node uj) can be 

calculated using Equation (5), and TXDi can be calculated using Equation (6): 

ij

j

L

Dij

j

j

k

L

Dk

S

Di

S

Dij Cu

WTRX

WRBBRX












 


 ,

1

1
 (5)  











i
L
Di

i
S
Di

S
Di

WTTX

WRBTX
 (6)  

An example of the data interval scheduling process is shown in Figure 3. Let the number of children 

of the node uP be n, and the data workload of the child node uj )1( nj   be WRj and WTj. Then WRP is: 





n

j

jj WTWR
1

)( , 

and WTP is P

n

j

Pj RWTSWT



1

)( .  

In scheduling, WTP amount of time at the end of the data time pool of the node uP is reserved for uP 

to transmit data packet, and the rest of the time is allocated to its children. It can be observed that the 

active time of a node in the data interval achieves the minimum value required by the node’s workload, 

and there is no slots waste problem. 

It should be noted that concurrent transmission is not used in our scheduling. The rationale behind 

this decision is that collision-free concurrent transmission requires the nodes to know the interference 

relationship between each other, but the overhead of detecting and maintaining the interference 

relationship is too high in traffic and topology variable heterogeneous convergecast networks. As a 

result, we chose to let each node own its unique transmission time slice to completely avoid collisions 

while keeping the scheduling algorithm light-weight. 

Because the subtree-based iterative cascading scheduling mechanism makes the node transmit data 

after receiving all data from children, the data aggregation scheme can achieve the highest accuracy 

and efficiency. However, as in LL-MAC, this attribute may lead to buffer overflow because sensor 

nodes are typically equipped with limited memory space. In order to alleviate this problem, we can 



Sensors 2011, 11           

 

2511 

break a single convergecast operation into multiple rounds, and in each round, we transmit only part of 

the data records. To support multi-rounds convergecast, we extend the data workload of the node ui to 

a 2m  matrix ([WRi,1,WTi,1], [WRi,2,WTi,2],…[WRi,m,WTi,m]), where m indicates the number of rounds. 

Then, we will have m different schedules for one data interval according to the data workload of each 

round, and the data time pools of the sink node ur can be represented as: 

],[],...,,[],,0[
1

1

,,,,2,2,1,1,1,1, 





m

k

mrmrkrkrrrrrrr WTWRWTWRWTWRWTWRWTWR  

if we take the start time of the data interval as 0, as shown in Figure 4. 

Figure 3. Scheduling for the data interval. 

un

u2

u1

WR1, WT1

..
.

uP

...uP

WRP

...
WR2, WT2

WRn, WTn

WR1 WT1 WR2 WT2 WRn WTn

PP

n

j

j RWTSWT )(
1




WTP

RXD TXD Unused BD

u1

u2

un

 

 

Figure 4. Scheduling of multi-rounds convergecast. 

Control interval Data interval

WRr,2 + WTr,2 ...

Round m

Working period Sleep period Working period Sleep period

WRr,1 + WTr,1 WRr,m + WTr,m

Round 2Round 1
 

4. Schedule Establishment and Adjustment 

4.1. Schedule Establishment 

W-MAC makes two assumptions in establishing the schedule: (1) each sensor node knows its 

parent node; (2) each sensor node knows the amount of data it generates. 

Therefore, there are two preliminary actions before establishing the schedule:  

 Performing route discovery, then the sensor node can get the information about its parent from 

the routing layer.  



Sensors 2011, 11           

 

2512 

 Acquiring the amount of data generated by the node itself from the application layer. 

These two preliminaries do not have any special requirement to the routing and application layer, 

and thus our MAC scheduling can be directly applied to existing sensor networks. The schedule 

establishment can be divided into two steps: workload collection and time pool allocation. 

4.1.1. Workload Collection 

To initialize the workload collection, the sink node broadcasts a “workload collecting” message in 

the network. Sensor nodes that receive this message will report workloads to their parents. In order to 

achieve accurate workload calculation, the children must finish reporting before their parent. Therefore 

we adopted a mechanism similar to “cascading timeouts” [15] to arrange the workload reporting time 

of nodes, in which the node with larger hop number will report its workload earlier. 

4.1.2. Time Pool Allocation 

When the workload collection is finished, the sink node initializes the time pool allocation. Each 

node calculates its time slices, and allocates time pools to its children according to Figure 5. The 

overhead of the schedule establishment is quite low because: (1) in the workload collection, each node 

in the network (including the sink node and sensor node) only stores its children’s workloads, and 

reports its workload to the parent (if exists); (2) in the time pool allocation, each node only receives 

the time pool allocation message from its parent (the sink node can generate its time pool), and notifies 

its children their time pool allocations. All time slices are calculated locally on the nodes. Therefore, 

the overhead is almost equally distributed to each node in the network. 

Figure 5. Time pool allocation and time slice calculation. 

if (ui is sink){

    BCi = [0, WOi];

    BDi = [WOi, WRi,1+WTi,1],…,                                                            ;

}

else{

    Wait for BCi and BDi;

}

Calculate RXCi, TXCi, TXDi;

foreach (uj in children list of ui) {

    Calculate BCj, BDj, RXDij;    

    Notify uj BCj, BDj with TXCi;

}

],[
1

1

,,,,





m

k

mimikikii WTWRWTWRWO

 

4.2. Schedule Adjustment 

Parameters of a WSN system may vary during run time, and this variability will greatly affect the 

efficiency of the schedule. Variability of the system can be categorized as: (1) data traffic variation. 

For instance, when the model, number or configuration of the sensors equipped on the node changes, 



Sensors 2011, 11           

 

2513 

the workload of that node will vary; (2) network topology changes. The unstable nature of wireless 

communication makes the topology of a WSN prone to frequent changes. Obviously, node insertion or 

removal will affect the workload of the parent.  

If there is no schedule adjustment mechanism, then we have to reestablish the schedule once the 

workload of a node or a set of nodes changes. Because the energy consumption of schedule 

reestablishment is relatively high, the protocol will not be able to keep the node working on an  

energy-efficient manner. We will then proceed to discuss our schedule adjustment mechanism to 

ensure the efficiency of our protocol in data traffic and network topology variable scenarios. 

4.2.1. Data Traffic Variation 

The data traffic variation will only affect the data interval scheduling. In W-MAC, when the data 

traffic of a node varies, the node will stamp its data packet with a “data traffic varies” mark, which 

contains △WT (the change of WT). Parent node that receives the data packet with this mark will 

recalculate and record its △WR (the change of WR) and △WT. Then the parent node will stamp its 

data packet with a “data traffic varies” mark which contains both △WR and △WT. 

The process repeats until the data packet with the “data traffic varies” mark reaches the sink. Then 

the sink will perform schedule adjustment in the next control interval. The sink node will first adjust 

its time pool allocation according to Equation (7), in which m indicates the number of rounds to 

complete convergecast, and kDrB ,  indicates the data time pool allocation of the sink node ur for the kth 

round of convergecast:  

mk

WTWRBB

WTWRBB

krkr
L

kDr
L

kDr

k

l

lrlr
S

kDr
S

kDr












 


 1

1

1 ,
)(

,,,

'

,

,,,

'

,
 (7)  

Then, the schedule adjustment operation will be triggered from the sink node to leaf sensor nodes. 

Let the number of children of the node uP be n (uP’s children {uj | nj 1 } are ordered by the 

sequence in which they appear in the time pool allocation). If the data workload of the child node 

ut )1( nt  varies, uP will adjust the data time pool allocation according to equation (8), and notify the 

children in sending control packet: 

tjif
BB

WTWRBBBB

tjif
WTWRBB

BBBB

tjif
BB

BBBB

L
kDj

L
kDj

ktkt
S

kDp
S

kDp
S

kDj
S

kDj

ktkt
L

kDj
L

kDj

S
kDp

S
kDp

S
kDj

S
kDj

L
kDj

L
kDj

S
kDp

S
kDp

S
kDj

S
kDj





































,
)(

,
)(

,
)(

,

'

,

,,,

'

,,

'

,

,,,

'

,

,

'

,,

'

,

,

'

,

,

'

,,

'

,

 (8)  

The schedule adjustment process of a single round of convergecast is shown in Figure 6. 



Sensors 2011, 11           

 

2514 

Figure 6. Schedule adjustment for data traffic variation. 

un

ut

u1

..
.

uP

u1 (Before)

...

..
.

...

...
u1 (After)

...

...

...

uP (Before)

uP (After)

ut (Before)

ut (After)

un (Before)

un (After)

RXD TXD Unused BD

 

 

The node will recalculate its time slices, and further adjust the data time pool allocations of its 

children when received the data time pool allocation adjustment notification from the parent. 

4.2.2. Network Topology Change 

The network topology change will affect both the control and data interval scheduling. The network 

topology changes include: node insertion, node removal and node changing parent. 

A. Node Insertion 

Because the scheduling in W-MAC eliminates the idle listening, it is quite hard to detect the node 

insertion event. Therefore we appended a very short “child admission” time to the end of TXC. After 

receiving a control packet, the new node will return a “node insertion” message, which contains its 

workload information, to the node that broadcasted the control packet. The node that receives the 

“node insertion” message will stamp its data packet with a “node insertion” mark, which contains the 

changes of workloads (△WO, △WR and △WT). The following adjustment process is quite similar to 

that for data traffic variation, and both the control and data interval scheduling will be adjusted. The 

new node will keep on listening on the channel after sending the “node insertion” message in this 

control interval. If a better parent node (mostly determined by routing metrics) is detected, the node 

changing parent operation will be triggered. 

B. Node Removal 

If a node does not receive any data from one child for several consecutive working cycles, it will 

stamp its data packet with a “node removal” mark, which contains the changes of workloads (△WO, 

△WR and △WT). The following adjustment process is similar to that for data traffic variation, and 

will also adjust both the control and data interval scheduling. 

C. Node Changing Parent 

When a node wishes to change parent, it sends a “node insertion” message in the “child admission” 

time of the new parent, and proactively sends data packet with the “node removal” mark to the old 



Sensors 2011, 11           

 

2515 

parent. By this proactive “node removal” notification, we can finish the node changing parent 

operation within one working cycle as two notification operations are done in one control and data 

interval, thus the schedule adjustment will not interrupt the data delivery. 

The overhead of the proposed schedule adjustment mechanism in W-MAC is very low because:  

(1) nodes will proactively report workload changes caused by data traffic variation or network 

topology change, thus no periodical detection is required; (2) when there is a workload change 

detected, the schedule adjustment process will be triggered, thus schedule reestablishment is never 

required; (3) most of the adjustment messages are piggybacked on control or data packets, thus the 

communication overhead brought by the schedule adjustment is minimized. 

5. Evaluation 

In this section, we first present the analysis result of performance of W-MAC, and compare it with 

LL-MAC to prove that W-MAC can outperform LL-MAC. After that, we test W-MAC on NS2 

simulator, and compare it with DMAC and LL-MAC to verify that W-MAC successfully achieves its 

design goals.  

The metrics used in evaluation are listed below:  

 Power consumption. For DMAC, the energy will only be consumed in data packet transfers; 

but for LL-MAC and W-MAC, the energy will be consumed in both the data and control packet 

transfers.  

 End-to-end latency. The time required for the data from the furthest sensor node to reach the 

sink node. This term will be referred to as latency unless otherwise stated.  

 Global latency. For DMAC, this term only includes the length of the data interval; but for  

LL-MAC and W-MAC, it includes the lengths of both the control and data interval. The global 

latency determines the maximum data sampling rate supported by the protocol. 

5.1. Mathematical Analysis 

In the discussion below, the data aggregation rate R is set to 1 (i.e., no data aggregation is employed) 

since LL-MAC does not support data aggregation. At the same time, we consider the case that each 

data interval contains only one round of convergecast for simplicity. We denote the number of sensor 

nodes in the network as N, and the data collection cycle (or working cycle) as TP.  

5.1.1. Power Consumption 

The power consumption of a sensor node spent on communication (P) can be calculated using 

Equation (9): 

P

TXRXPsleepTXTXRXRX

T

TTTPTPTP
P

)( 
  (9)  

In Equation (9), PRX, PTX and Psleep are the power consumption of a sensor node in receiving data, 

transmitting data, and sleeping, respectively; TRX and TTX are the time spent on receiving and 

transmitting data. Obviously, we can minimize P by minimizing TRX and TTX. 



Sensors 2011, 11           

 

2516 

For W-MAC, the time spent on receiving data (TRX(W-MAC)) and the time spent on transmitting data 

(TTX(W-MAC)) can be calculated using Equation (10), in which TA is the length of “child admission” time: 

i

Oj

jCMACWTX

Oj

jACMACWRX

WTSWTSTT

WTSTTT

i

i

















)(

)( 2

 (10)  

For LL-MAC, the time spent on receiving data (TRX(LL-MAC)) and the time spent on transmitting data 

(TTX(LL-MAC)) can be calculated using Equation (11): 

max)(

max)(

)1][(

][)23(

WTSOKTT

WTSOKTNT

iCMACLLTX

iCMACLLRX








 (11)  

In Equation (11), Oi is the set of descendants of the node ui. K[Oi] is the cardinal of Oi. WTSmax is 

the length of the uniform slot assigned by LL-MAC, since the length of time slot in LL-MAC depends 

on the data generation rate of the node that generates the maximum amount of data. 

The difference between the power consumption of LL-MAC and W-MAC ( P ) can be calculated 

using Equation (12), in which PLL-MAC is the power consumption of LL-MAC, and PW-MAC is the power 

consumption of W-MAC. The proof is described in Appendix. 

)))(2)13)(((

))()(((
1

max

maxmax















i

i

Oj

jACsleepRX

i

Oj

jsleepTX

P

MACWMACLL

WTSWTSTTNPP

WTSWTSWTSWTSPP
T

PPP
 

(12)  

Because the “node insertion” message is small, TA is frequently shorter than TC. If we assume that 

TA is equal to TC, then we have: 

P

C
sleepRX

Oj

CsleepRX

Oj

sleepTX

P

Oj

jCsleepRX

i

Oj

jsleepTX

P

T

T
NPP

WTSWTSTNPP

WTSWTSWTSWTSPP
T

WTSWTSTNPP

WTSWTSWTSWTSPP
T

P

i

i

i

i

)13)((

)))()13)(((

))()(((
1

)))()13)(((

))()(((
1

maxmax

maxmaxmaxmax

max

maxmax



























 
(13)  

Obviously, P  is always a positive number, i.e., W-MAC is more energy efficient than LL-MAC. 

We can also see that P  will grow when there is more significant difference between the maximum 

and average data generation rate of nodes, which shows the supreme energy efficiency of the 

scheduling of W-MAC in heterogeneous convergecast scenario. At the same time, P  will also be 

larger when the number of sensor nodes in the network increases, i.e., W-MAC can reserve more 

energy in large scale network. 



Sensors 2011, 11           

 

2517 

5.1.2. Latency 

Given a general M-level data collection network (as shown in Figure 7), we select the node which is 

at the level M, and will be the first one to transmit data in the leftmost subtree, to calculate the  

end-to-end data transmission latency. We denote the selected node as uM0, the number of sensor nodes 

at the level m of the subtree which uM0 belongs to as nc(m), and the number of sensor nodes at the level 

m of the whole network as n(m). 

Figure 7. General data collection tree. 

...

...

...

...

...

Level 0

... ...

Level 1

Level 2

Level M

nc(M)
 

 

The latency of W-MAC (DW-MAC) can be calculated using Equation (14): 

 
 

 
M

i

M

n

j

jMACW WTSWTSiD
ic

1

0

1

))1((
)(

 (14)  

For LL-MAC, its latency (DLL-MAC) can be calculated using Equation (15) according to its level-by-level 

scheduling behavior: 

max)1)1(( WTSNMD MACLL   (15)  

The difference between the latency of LL-MAC and W-MAC ( D ) is: 



 



 









M

i

i

M

M

i

n

j

ji

MACWMACLL

WTSniM

WTSWTSWTSiWTSnM

DDD

ic

1

max)(

0max

1 1

max)(

)(

))1()1((
)(

 

(16)  

The proof is described in Appendix. D  is always a positive number. Similar to the power 

consumption analysis results, we can see that the latency performance of W-MAC will be much better 

than that of LL-MAC in large scale heterogeneous convergecast network. 



Sensors 2011, 11           

 

2518 

5.1.3. Global Latency 

The global latency of W-MAC (GDW-MAC) can be calculated using Equation (17): 

 
 

 
M

i

n

j

jACMACW

i

WTSiTTNGD
1 1

)(

))(1(  (17)  

The global latency of LL-MAC (GDLL-MAC) can be calculated using Equation (18): 

max)33( MNWTSTNGD CMACLL   (18)  

The difference between GDLL-MAC and GDW-MAC ( GD ) is: 

 
 







M

i

n

j

jiAC

MACWMACLL

i

WTSiWTSMnTNTN

GDGDGD

1 1

max)(

)(

)()1()22(
 (19)  

Similarly, if we let TA=TC, then Equation (19) can be simplified as: 



 

 



 

 







M

i

iC

M

i

n

j

iC

M

i

n

j

jiC

WTSniMTN

WTSiWTSMnTN

WTSiWTSMnTNGD

i

i

1

max)(

1 1

maxmax)(

1 1

max)(

)()1(

)()1(

)()1(

)(

)(

 (20)  

GD  is always a positive number. Again, the global latency of W-MAC will be much smaller than 

that of LL-MAC in large scale heterogeneous convergecast network. We will next examine the 

performance of W-MAC in the NS2 simulator, and verify the results of the theoretical analysis. 

5.2. Simulation Results 

In our simulation, we use a time-driven data collection network to test the performance of the 

proposed protocol. In the network, the data collection cycle is set to 1 minute, and the data generation 

rate of each sensor node is a uniformly distributed random value within the range of  

32–512 bytes/minute. Node parameters are set to the typical values of the Crossbow MICAz mote, as 

shown in Table 1. In LL-MAC and W-MAC, the convergecast in the data interval is broken into 10 

rounds to alleviate the buffer usage. We first set the data aggregation rate R of W-MAC to 1 in 

protocols comparison for fair competition, and will later show the performance improvement achieved 

by combining W-MAC and data aggregation. 

Table 1. Node Parameters. 

Parameter Value 

RX power 83.1 mW 

TX power 66 mW 

Sleep power 0.048 mW 

Data rate 250 kbps 

 



Sensors 2011, 11           

 

2519 

5.2.1. Protocol Comparison 

Figure 8(a) shows the power consumption simulation results. The average power consumption of 

W-MAC is only 8% of that of DMAC, and 48% of that of LL-MAC. The excessive power 

consumption of DMAC mainly comes from the fact that: (1) random backoff increases the length of 

slot. Meanwhile, the node has to wait for 5 slots before retrying when the channel is unavailable; (2) 

extra large data record must be divided into multiple segments to be transmitted in multiple slots. The 

power consumption of LL-MAC is higher than that of W-MAC due to: (1) relatively higher energy 

consumption in the control interval. Figure 9(a) gives a comparison between the energy consumption 

of LL-MAC and W-MAC in one control interval. It can be observed that the energy consumption of 

LL-MAC rises quickly when the scale of the network increases, but the energy consumption of  

W-MAC is independent of the scale of the network and always keeps at an extremely low level;  

(2) idle listening caused by uniform slots allocation.  

Figure 8(b) shows the simulation results of latency. The average latency of W-MAC is only 11% of 

that of DMAC, and 33% of that of LL-MAC. The reasons that W-MAC outperforms DMAC in latency 

are similar to those have been presented in the power consumption simulation results analysis. The 

latency of LL-MAC is higher than that of W-MAC due to: (1) slots waste problem brought by the 

level-by-level data transfer scheduling; (2) low channel utilization caused by uniform slots allocation. 

Figure 8. Protocols comparison: (a) power consumption; (b) latency and (c) global latency. 

0.1

1

10

100

10 20 30 40 50

Number of nodes

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

m
W

)

DMAC LL-MAC W-MAC

0

10

20

30

40

10 20 30 40 50

Number of nodes

L
a

te
n

cy
 (

s)

DMAC

LL-MAC

W-MAC

 

(a)       (b) 

0

10

20

30

40

50

10 20 30 40 50

Number of nodes

G
lo

b
a

l 
la

te
n

cy
 (

s)

DMAC

LL-MAC

W-MAC

 

(c) 



Sensors 2011, 11           

 

2520 

Figure 8(c) shows the simulation results of global latency. The average global latency of W-MAC is 

only 12% of that of DMAC, and 36% of that of LL-MAC. Besides those have been explained in the 

latency simulation results analysis, the relatively long control interval of LL-MAC also plays an 

important part in its high global latency. Figure 9(b) gives a comparison between the control interval 

length of LL-MAC and W-MAC. It can be observed that the control interval length of LL-MAC 

increases faster when the network scale increases. 

The simulation results verify the correctness of the theoretical analysis. Figure 10 provides a 

comparison between the analysis and simulation result of P  (the difference between the power 

consumption of LL-MAC and W-MAC). We can see that the analysis result matches the simulation 

result, and there is only a small difference between them. The reason of this small difference is that the 

node is not always in TX mode in the time slice for transmitting data, but will occasionally switch to 

RX mode (e.g., to receive acknowledgement). Because the current in TX mode is lower than that in 

RX mode for the MICAz mote, the analysis result is a little bit smaller than the simulation result. For 

latency and global latency, the analysis and simulation results completely match with each other. 

Figure 9. The control overhead of LL-MAC and W-MAC: (a) energy consumption and (b) 

time consumption. 

0

10

20

30

40

50

10 20 30 40 50

Number of nodes

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
m

J
)

LL-MAC

W-MAC

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50

Number of nodes

T
im

e 
co

n
su

m
p

ti
o

n
 (

s)

LL-MAC

W-MAC

 

(a)       (b) 

Figure 10. Analysis and simulation result of P . 

0

0.5

1

1.5

2

10 20 30 40 50

Number of nodes

△
P

 (
m

W
)

Analysis result
Simulation result

 



Sensors 2011, 11           

 

2521 

Figure 11 shows the energy and time saving brought by the proposed schedule adjustment 

mechanism (here we assume that the workload of every node in the network has been changed to make 

the energy and time consumption of the schedule adjustment mechanism maximized). The period of 

schedule reestablishment is relatively long, and all nodes have to be kept awake, thus causes extra high 

energy consumption. As a comparison, through our schedule adjusting, the adjustment messages are 

piggybacked in normal network control and data delivery packages, and as a result, each node almost 

does not need to spend additional energy on schedule adjustment, and this advantage can even be kept 

regardless of the network scale, as shown in Figure 11(a). At the same time, because the schedule 

adjustment is conducted in normal network control and data delivery operations, the overall time 

consumption of schedule adjustment is also much lower than that of schedule reestablishment, and 

increases much slower when the network scale grows, as shown in Figure 11(b). 

 

Figure 11. Comparison between the schedule reestablishment and adjustment: (a) energy 

consumption and (b) time consumption. 

 

0

5

10

15

20

25

30

10 20 30 40 50

Number of nodes

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
m

J
) Reestablishing

Adjusting

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 20 30 40 50

Number of nodes

T
im

e 
co

n
su

m
p

ti
o

n
 (

s)

Reestablishing
Adjusting

 

(a)       (b) 

 

5.2.2. Collaborating with Data Aggregation 

 

Data aggregation is wildly used in WSNs for reducing data traffic. In this part, we choose packing 

aggregation, a typical lossless data aggregation technique which packs several non-aggregated packets 

into one aggregated packet without compression, for evaluation. Figure 12 gives a comparison 

between the performance of W-MAC with and without data aggregation under different data 

generation rate conditions (The number of nodes is set to 50). When data aggregation is employed, the 

data aggregation rate R in the workload W will be reduced, thus W-MAC will shorten the active time 

of nodes, and then the power consumption and data delivery latency will be lower. The power 

consumption and global latency of W-MAC with data aggregation can even be reduced to a half of that 

without data aggregation under low data generation rate condition (16 bytes/minute). 



Sensors 2011, 11           

 

2522 

Figure 12. The performance of W-MAC with and without data aggregation: (a) power 

consumption and (b) global latency. 

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

Average data generation rate (bytes/minute)

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

m
W

)

W-MAC

W-MAC (data aggregation)

0.6

0.9

1.2

1.5

1.8

2.1

2.4

10 20 30 40 50 60 70 80 90 100

Average data generation rate (bytes/minute)

G
lo

b
a

l 
la

te
n

cy
 (

s)

W-MAC

W-MAC (data aggregation)

 

(a)       (b) 

6. Conclusions 

This paper presents W-MAC, a workload-aware MAC protocol for heterogeneous convergecast in 

WSNs. W-MAC adopts a subtree-based iterative cascading scheduling mechanism, and a  

workload-aware time slice allocation mechanism for minimizing the power consumption of nodes 

while offering a low data latency. We also present a schedule adjustment mechanism for W-MAC to 

minimize the energy and time consumption in adapting to workload changes, thus ensure the operation 

efficiency of W-MAC in data traffic and network topology variable scenarios. 

Through extensive theoretical analysis and simulation tests, we compared the performance of  

W-MAC with existing protocols, including DMAC and LL-MAC, and proved that W-MAC 

successfully meets the design goals. The average power consumption, latency and global latency of  

W-MAC are only 48%, 33% and 36% of those of the best competitor. Furthermore, W-MAC can 

effectively support data aggregation to further improve the performance. 

Acknowledgments 

This work is supported by the National Basic Research Program of China (973 Program) under 

grant No. 2006CB303000, and in part by the Science and Technology Program of Zhejiang Province 

under grant No. 2006C13104, the National Hi-Tech Research and Development Program (863 

Program) of China under grant No. 2007AA01Z240. 

References 

1. Ye, W.; Heidemann, J.; Estrin, D. An energy-efficient MAC protocol for wireless sensor networks. 

In Proceedings of the 21st International Annual Joint Conference of the IEEE Computer and 

Communications Societies, INFOCOM ’02, New York, NY, USA, 23–27 June 2002; pp. 1567-1576. 

2. Rajendran, V.; Obraczka, K.; Garcia-luna-aceves, J.J. Energy-efficient, collision-free medium 

access control for wireless sensor networks. In Proceedings of the 1st ACM Conference on 

Embedded Networked Sensor Systems, SENSYS’ 03, Los Angeles, CA, USA, 5–7 November 2003; 

pp. 181-192. 



Sensors 2011, 11           

 

2523 

3. Ahn, G.S.; Hong, S.G.; Miluzzo, E.; Campbell, A.T.; Coumo, F. Funneling-MAC: A localized, 

sink-oriented MAC for boosting fidelity in sensor networks. In Proceedings the 4th ACM 

Conference on Embedded Networked Sensor Systems, SENSYS ’06, Boulder, CO, USA,  

31 October–3 November 2006; pp. 293-306. 

4. Lu, G.; Krishnamachari, B.; Raghavendra, C.S. An adaptive energy-efficient and low-latency 

MAC for data gathering in wireless sensor networks. In Proceedings of the 18th International 

Parallel and Distributed Processing Symposium, IPDPS’04, Santa Fe, NM, USA, 26–30 April, 

2004; pp. 224-231. 

5. Ruzzelli, A.G.; Tynan, R.; O’hare, G. An energy-efficient and low-latency routing protocol for 

wireless sensor networks. In Proceedings of 2005 Systems Communications, ICW ‘05, Montreal, 

Canada, 14–17 August 2005; pp. 449-454. 

6. Anand, A.; Sachan, S.; Kapoor, K.; Nandi, S. QDMAC: An energy efficient low latency MAC 

protocol for query based wireless sensor networks. In Proceedings of 2009 International 

Conference of Distributed Computing and Networking, ICDCN’ 09, Hyderabad, India, 3–6 

January 2009; pp. 306-317. 

7. Marin, I.; Arias, J.; Arceredillo, E.; Zuloaga, A.; Losada, I.; Mabe, J. LL-MAC: A low latency 

MAC protocol for wireless self-organised networks. Microprocessors Microsystems 2008, 32, 

197-209. 

8. Choi, H.; Wang, J.; Hughes, E.A. Scheduling for information gathering on sensor network. Wirel. 

Netw. 2009, 15, 127-140. 

9. Gandham, S.; Zhang, Y.; Huang, Q. Distributed minimal time convergecast scheduling in wireless 

sensor networks. In Proceedings of the 26th IEEE International Conference on Distributed 

Computing Systems, ICDCS’06, Lisboa, Portugal, 4–7 July 2006; pp. 50-57. 

10. Ke, X.; Sun, L.M.; Wu, Z.M. Distributed scheduling for real-time convergecast in wireless sensor 

networks. J. Commun. 2007, 28, 44-50. 

11. Macedo, M.; Grilo, A.; Nunes, M. Distributed latency-energy minimization and interference 

avoidance in TDMA wireless sensor networks. Comput. Netw. 2009, 53, 569-582. 

12. Wu, F.J.; Tseng, Y.C. Distributed wake-up scheduling for data collection in tree-based wireless 

sensor networks. IEEE Commun. Lett. 2009, 13, 850-852. 

13. Egren, S.C.; Varaiya, P. TDMA scheduling algorithms for wireless sensor networks. Wirel. Netw. 

2010, 16, 985-997. 

14. Song, W.Z.; Yuan, F.; Lahuseny, R. Time-optimum packet scheduling for many-to-one routing in 

wireless sensor networks. Int. J. Parall. Distrib. Sys. 2007, 22, 355-370. 

15. Solis, I.; Obraczka, K. The impact of timing in data aggregation for sensor networks.  

In Proceedings of 2004 IEEE International Conference on Communications, ICC’04, Paris, 

France, 20–24 June 2004; pp. 3640-3645. 

16. Li, H.; Yu, H.Y.; Yang, B.W.; Liu, A. Timing control for delay-constrained data aggregation in 

wireless sensor networks. Int. J. Commun. Syst. 2006, 20, 875-887. 

17. Chen, X.J.; Hu, X.D.; Zhu, J.M. Data gathering schedule for minimal aggregation time in wireless 

sensor networks. Int. J. Distrib. Sens. Netw. 2009, 5, 321-337. 

18. Yu, B.; Li, J.Z.; Li, Y.S. Distributed data aggregation scheduling in wireless sensor networks.  

In Proceedings of the 28th IEEE International Conference on Computer Communications, 

INFOCOM’09, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 2159-2167. 



Sensors 2011, 11           

 

2524 

19. Xu, X.H.; Wang, S.G.; Mao, X.F.; Tang, S.J.; Wang, S.G. A delay efficient algorithm for data 

aggregation in multi-hop wireless sensor networks. IEEE Trans. Parall. Distrib. Syst. 2010, 22, 

163-175. 

20. Chen, J.X.; Yang, Y.H.; Ma, M.D.; Ouyang, Y. Performance study of packing aggregation in 

wireless sensor networks. IEICE Trans. Commun. 2007, E90-B, 160-163. 

Appendix 

1. The proof of Equation (12): 

)))(2)13(2(

))(())(2)13(((
1

))2)(2()(

)2())1][2()33((

))1][(()][)23(((
1

maxmax

maxmaxmax

max

maxmax































i

ii

ii

i

Oj

ijCAsleep

i

Oj

jTX

Oj

jACRX

P

i

Oj

jACPsleep

Oj

ijCTX

Oj

jACRXiCPsleep

iCTXiCRX

P

MACWMACLL

WTSWTSWTSWTSTNTP

WTSWTSWTSWTSPWTSWTSTTNP
T

WTSWTSTTTPWTSWTSTP

WTSTTPWTSOKTNTP

WTSOKTPWTSOKTNP
T

PPP

 

)))(2)13)(((

))()(((
1

)))(())((

))(2)13(())(2)13(((
1

max

maxmax

maxmaxmaxmax

maxmax

























i

i

ii

ii

Oj

jACsleepRX

i

Oj

jsleepTX

P

i

Oj

jsleepi

Oj

jTX

Oj

jACsleep

Oj

jACRX

P

WTSWTSTTNPP

WTSWTSWTSWTSPP
T

WTSWTSWTSWTSPWTSWTSWTSWTSP

WTSWTSTTNPWTSWTSTTNP
T

 

2. The proof of Equation (16): 





 

 

 

 





 

 

 

 















M

i

i

M

i

ii

M

i

n

j

i

M

M

i

n

j

ji

M

M

i

n

j

j

M

i

i

M

i

M

n

j

jMACWMACLL

WTSniM

WTSniWTSnM

WTSWTSWTSiWTSnM

WTSWTSWTSiWTSnM

WTSWTSWTSiWTSnM

WTSWTSiWTSNMDDD

i

ic

ic

ic

1

max)(

1

max)(max)(

maxmax

1 1

maxmax)(

0max

1 1

max)(

0max

1 11

max)(

1

0

1

max

)(

))1()1((

))1()1((

))1()1((

))1(()1(

))1(()1)1((

)(

)(

)(

)(

 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3/). 


