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Abstract: Fiber Bragg gratings written in highly birefringent microstructured optical fiber 

with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg 

peak wavelength shifts are measured under controlled axial and transversal strain and 

during thermal cycling of the composite sample. We obtain a sensitivity to transversal 

strain that exceeds values reported earlier in literature by one order of magnitude. Our 

results evidence the relevance of using microstructured optical fibers for structural integrity 

monitoring of composite material structures.  
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1. Introduction  

Monitoring the internal strain state of fiber-reinforced polymer materials has become an important 

issue since in-service strain monitoring of civil engineering and aeronautic structures can lead to 

improved safety and better control over costs [1]. Fiber Bragg grating (FBG) based sensors are 

excellent candidates for that purpose as they can be embedded in different materials for smart structure 

applications. These sensors combine many advantages over conventional electrical sensor 

configurations, such as for example their small size, their immunity to electromagnetic interference, 

their multiplexing capabilities and self-referencing ability together with an often linear response that is 

encoded in the change of their reflected resonance wavelength.  

To monitor the structural health of composite fiber-reinforced polymer (CFRP), one ideally needs a 

complete mapping of the internal strain field of the material using multi-axial strain sensors. One also 

needs to distinguish between the strain occurring in the axial and in the transverse directions. 

Monitoring the strain in the transverse direction of a CFRP in a laminated configuration is indeed an 

essential issue. In such structures reinforcement fibers enhance the mechanical strength of the 

composite in the plane of the structure, but they suffer from fragility in the transverse direction. One 

therefore needs to develop a system that is able to sense the out-of-the plane strains in composite 

laminates. 

The possibility of embedding optical fibers in anisotropic materials has already been 

demonstrated [2]. Nevertheless most of the work published so far has focused on axial load and 

temperature variations, but did not investigate in detail the out-of-plane strain which is a key parameter 

in the structural integrity of anisotropic materials. The sensitivity to transversal strain also remained 

considerably lower than the sensitivity to axial strain [3,4]. In recent years substantial research efforts 

also attempted at developing multi-parameter FBG sensors. Several reports described the 

characterization of gratings subjected to transversal strains [5,6]. The Bragg gratings were written 

either in polarization maintaining-fibers [4,7,8] or in microstructured optical fiber [9]. However 

distinguishing between transversal and axial strain and correcting for temperature cross-sensitivity still 

required to use a second grating [8]. 

Several studies indeed relied on two FBGs written in the same fiber: the first grating is sensitive to 

all external perturbations (strain and temperature) while the second grating remains isolated from (part 

of) the external mechanical strain. This approach allows precisely defining the influence of each 

perturbation [10,11] but the presence of the capillary used to isolate the second grating from 

mechanical load disturbs the structure under test.  

In our work we demonstrate a new optical fiber sensor specifically designed to identify transverse 

strain components in a CFRP with a much higher sensitivity than ever achieved before, and with a 

response that is independent of temperature variations. To do so we use FBGs inscribed in a highly 

birefringent microstructured optical fiber (MOF). Our paper is structured as follows. In the next 

section we summarize the theory of FBGs and we characterize the Bragg grating inscribed in the MOF. 

In Section 3 we theoretically and mechanically characterize the response of the bare free standing 
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optical fiber to a transverse line load. In the fourth section we describe the embedding procedure and 

we assess the behavior of the embedded fiber under several loading conditions (temperature, axial and 

transversal tests). We eventually compare our results with those already reported in literature. Finally 

we conclude on the possible use of integrated MOFs for precisely monitoring transverse strain fields in 

laminated composite structures. 

2. Description of the Microstructured Optical Fiber and Characteristics of the Bragg Grating 

2.1. Fiber Bragg Grating Sensor Theory 

A fiber Bragg grating is a periodic modulation of the refractive index of the fiber core, extended 

over a limited length of the fiber (typically a few mm). A FBG acts as a wavelength selective filter for 

light traveling along the fiber: it reflects light with a spectrum centered on the Bragg wavelength B, 

which is given by the following equation:  

஻ߣ ൌ 2. ݊௘௙௙.Λ      (1) 

where  is the grating period and neff is the mean effective refractive index in the core region [12]. In a 

birefringent fiber two orthogonally polarized modes can propagate along the fiber with different phase 

velocities. A Bragg grating in such a fiber will return two reflection peaks (at wavelengths B1 and B2) 

corresponding to the two orthogonally polarized modes travelling along respectively the slow and fast 

axis of the optical fiber. The spectral distance ∆B between these two peaks, to which we will refer as 

the wavelength separation, is proportional to the phase modal birefringence B: 

Δߣ஻ ൌ 2.Λ.  (2)       ܤ

ܤ ൌ ݊ଵ െ ݊ଶ       (3) 

where n1 and n2 are the effective indices of the two orthogonally polarized modes. Both the effective 

indices and the grating period will be affected by temperature and by applied mechanical strain. To 

determine the resulting Bragg wavelength shift of FBGs written in mechanically anisotropic optical 

fibers, Kim et al. [13] made the assumption that most of the energy of the fundamental mode 

propagating in the fiber is contained within the core and hence the principal strains at the centre of the 

fiber are sufficient to determine this wavelength shift. Under this approximation and when assuming 

constant temperature, the wavelength shifts can be derived from the total strain field present in the 

center of the fiber core as: 
ΔఒB,భ
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where 1, 2 and 3 are the principal strain components along the axes of the fiber (3 refers to the axial 

direction), p11 and p12 stand for the strain-optic coefficients [14], B1,2 denote the initial unstrained 

wavelengths of the Bragg peaks for each polarization mode and ∆B,1,2 are the Bragg wavelength peak 

shifts. By applying mechanical strain to the grating, the phase modal birefringence is modified, which 

in turn induces a measurable variation of the wavelength separation.  
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2.2. Fiber Microstructure Topology and Description of the Bragg Grating 

In this report we rely on a microstructured optical fiber. The cross-section of the silica fiber contains 

a doped core with a GeO2 concentration of 7.4 mol% and a distribution of micro air-holes running 

along the fiber length [Figure 1(a)]. It is already well known that by modifying the air-hole 

microstructure, i.e. by changing the diameter, or the distance between the air-holes and their location in 

the fiber cross-section, one can tailor the guiding properties of the fiber for specific applications and 

enhance its sensitivity to particular physical quantities [15]. The air-hole topology of the MOF under 

consideration has already demonstrated a high sensitivity to hydrostatic pressure [16]. Here we focus 

on its high sensitivity to transversal loading. Moreover, the phase modal birefringence in this MOF is 

inherently insensitive to temperature as reported in [16] which helps avoiding complex temperature 

compensation systems.  

The function of the germanium doped fiber core is to allow using conventional ultraviolet fiber 

Bragg grating inscription methods. The FBGs were written with pulses of UV radiation originating 

from a Kr:F laser operating at 248 nm and with an interferometric Talbot system [17]. The writing of 

Bragg gratings in the germanium doped core of MOFs using this inscription technique has already 

been reported in [18]. The gratings are 5 mm in length with an averaged linewidth of 201 pm. The 

resulting Bragg spectrum shown in Figure 1(b) exhibits two clearly identified Bragg peaks. The peak 

separation is about 2 nm at  = 1,550 nm which corresponds to a modal birefringence of about 

2 × 10−3. This value is almost one order of magnitude larger than the values for conventional 

birefringent optical fibers, e.g., as reported in [19]. 

Figure 1. (a) Scanning electron microscope micrograph of a cross-section of the studied 

MOF and close up of the core region. (b) Bragg grating spectrum inscribed in the  

fiber core. 

 

(a)  (b) 

3. Simulations and Experiments for the Bare Microstructured Optical Fiber 

The sensing potential of a FBG in the proposed MOF can already be demonstrated by characterizing 

its response to a transversal line load. The experiments were made by compressing the grating between 

a metal and a glass plate in a dedicated test bench for the calibration of FBG-based sensors [20]. We 

applied a transversal line load of 0.2 N/mm to the fiber and monitored the wavelength peak variation 

SLOW 
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using an amplified spontaneous emission source, a circulator and a commercially available FBG 

interrogator with a peak wavelength detection resolution of 1 pm.  

Figure 2. (a) Wavelength shift of the Bragg peaks versus transversal line load for one 

particular fiber orientation. The red solid lines represent the linear fit. (b) Transverse line 

load sensitivity plotted against angle of rotation for FBG in the fiber. The dashed vertical 

lines indicate the maximum values. 

(a) (b) 

Since the air-hole topology is highly asymmetric, the transversal line load sensitivity changes with 

the angular orientation of the applied force with respect to the fiber cross-section. The grating 

sensitivity is determined as the slope of a linear fit of the Bragg peak wavelength shift versus the 

applied transversal line load for various angular orientations in steps of 15° [Figure 2(a)]. The typical 

values of the R² coefficients of the linear fits were above 0.995. The fiber response according to the 

force orientation exhibits, as expected, a periodic behavior [Figure 2(b)]. We can point out the 

differences in the fiber response at 0° and at 360° while the fiber orientations are theoretically identical. 

These different values are most likely due to the difficult control of the fiber orientation and hence to 

its uncertainty during the experiments. The highest sensitivity of about −370 pm/(N/mm) is obtained 

when the load is applied along the slow axis of the fiber. The large side microstructure is designed to 

guide the applied load along this eigenaxis to confine the stress into the core, which increases the 

material birefringence and hence the sensitivity. We can compare our sensitivity to results published in 

literature. It is twice as large as that obtained using conventional highly birefringent (HB) fibers such 

as bow-tie fiber [160 pm/(N/mm) [19]]. In 2007 the sensing characteristics of a 220 µm diameter  

side-hole fiber were investigated [7]. The Bragg peak separation sensitivity reached 176 pm/(N/mm) 

which is half the value found in our experiments. In 2009 the Bragg peak separation sensitivity of a 

simple microstructured fiber tested in diametrical compression was reported to be about 

100 pm/(N/mm) [20].  

A numerical simulation of the FBG sensitivity to transversal line load was performed with the 

commercially available COMSOL Multiphysics software in a two-dimensional finite element 

model [16,20,21]. The exact dimensions of the simulated fiber have been extracted from a scanning 

electron microscope image of the fabricated fiber. The simulation combines mechanical calculations 

using the plane strain approximation and optical calculations where a full-vector perpendicular wave 

representation is used to solve for the optical modes. The mechanical calculations attempt at 
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determining the stress distribution in the fiber which is subsequently used in the optical calculations to 

find the effective refractive indices of the fundamental optical modes of the fiber.  

Figure 3. Comparison between experimental (EXP) and simulated values (FEA): 

sensitivity of the wavelength separation versus fiber orientation. 

 

The results for the maximum and minimum sensitivity obtained from the finite element model show 

a reasonable agreement with the experimental results (Figure 3). The deviations are most likely due to 

the uncertainty on the angular orientation of the optical fiber. As can be seen in Figure 1(a) the outer 

shape of the cladding is not perfectly circular, which induces deviations in orientation between the 

portion of the fiber held in the rotation stages and the portion clamped between the load applying 

plates. The flattened shape of the outer cladding is therefore responsible for the flattened portions in 

the angular sensitivity of the fiber observed in Figure 3. The simulation nevertheless confirms that the 

sensitivity is maximal when the load is applied along the slow axis of the fiber. We therefore chose this 

orientation to embed the fibers into the composite material samples to reach the highest sensitivity in 

the transversal direction of the samples. 

4. Response of the Embedded FBGs for Various Loading Conditions  

The MOFs were embedded in composite materials in the previously defined orientation. Three 

different types of loads were applied to the test specimens to compare the sensor responses: axial strain, 

transversal strain and temperature tests were carried out. 

4.1. Embedding Process and Verifications 

The FBGs have been embedded at mid-thickness of a lay-up of 16 carbon fiber epoxy unidirectional 

prepreg layers with a total thickness of 1.54 mm (M18/M55J material). The fiber coatings have been 

removed using an optical fiber mechanical stripper after a chemical treatment over a few centimeters at 

the location of the Bragg grating. The composite samples are processed in an autoclave using the 

vacuum bagging technique, in which a temperature and pressure cycle is applied to the composite. The 

test specimens have a symmetric lay-up ([902, 02]2S) and the optical fibers are oriented with their fast 

axes parallel to the surface of the composite coupon. Visual inspection of the fiber orientation (after 

the loading experiments) revealed a very low deviation from the desired orientation of about ±3°. 
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The optical fibers have much greater dimensions than the carbon reinforcement fibers of the plies. 

Embedding the fibers could therefore result in a geometric distortion of the surrounding fibers by 

creating resin-rich pockets [22]. To avoid that problem the optical fibers are integrated in the same 

direction as the reinforcement fibers. As seen in Figure 4(a), the optical fiber is homogeneously 

surrounded by resin and reinforcement fibers which should have the least detrimental consequences on 

the structural integrity of the host material. After embedding, the optical spectrum is still visible and 

both peaks are clearly distinguishable, but we notice a shift of both peaks to higher wavelengths 

[Figure 4(b)]. This peak shift is the result of the residual strains occurring during the production 

process of the laminate and arising from the mismatch in material properties between the 

reinforcement fibers and the resin. This was also shown in [3], where the curing process of a composite 

laminate was monitored by a FBG inscribed in a conventional HB optical fiber to investigate the 

possibility to monitor the different effects of axial and transversal stress and to determine the  

residual stress. 

Figure 4. (a) Transversal cross-section of the composite samples at the grating location. 

(b) Spectrum of the Bragg grating sensor before and after embedding in composite 

materials. 

 

(a) (b) 

4.2. Temperature Tests 

The samples were submitted to a thermal cycle in a dedicated climate chamber; the temperature was 

increased from ambient to 120 °C and then the samples were allowed to cool down slowly over a 

period of 10 hours. The embedded FBGs responses were monitored during the cooling phase which is 

considered as a quasi-static temperature variation. The temperature sensitivities of both peaks were 

determined by linear fits of the curves [Figure 5(b)] with R2 coefficients above 0.994. The temperature 

responses of the slow and fast axes are respectively 8.02 pm/°C and 3.61 pm/°C. The different 

sensitivity of both modes is due to the release of the asymmetric strains occurring in the composite 

sample during its cooling to ambient temperature. The temperature sensitivity of the Bragg peak 

separation is about of 4.41 pm/°C [Figure 5(a)].  

The temperature sensitivity is not inherent to the fiber, but should be understood as the result of the 

modified stress/strain state induced by a temperature change inside the composite sample. We have 

indeed already demonstrated that this microstructure is intrinsically insensitive to temperature [16] and 
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hence the wavelength changes occurring during the thermal cycles do come from strain of the 

surrounding material. Moreover for the bare optical fiber the Bragg peak separation sensitivity is about 

−0.07 pm/°C which is more than 60 times lower than the Bragg peak separation sensitivity for the FBG 

embedded in composite laminate. The temperature sensitivity is induced by the outer strain and 

therefore the proposed sensor holds potential to evaluate process-induced residual strain in composite 

samples and therefore to identify the initial internal state of a composite structure.  

Figure 5. Responses of the embedded FBGs during the cooling phase; the temperature 

variation is indicated with arrows. (a) Change in Bragg peak separation versus 

temperature. (b) Change in Bragg peak wavelength versus temperature. 

(a) (b) 

4.3. Axial Strain Test 

The samples were loaded in the axial direction corresponding to the integrated optical fiber 

direction and the wavelength changes were monitored at the same time. The axial strain applied to the 

samples is measured by a reference grating glued on top of the sample at the exact location of the 

Bragg grating of interest [Figure 6(a)]. A maximum strain of 1,000 µ is applied to the laminate at a 

rate of 200 µ/min.  

Figure 6. (a) Axial load set-up. (b) Peak wavelength changes versus axial strain. 

 

(a) (b) 
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grating 

Axial displacement 

Test sample 
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Figure 6(b) shows that both peaks react in the same way and in a linear manner. Consequently the 

peak separation of the sensor is almost insensitive to axial strain for both samples (Table 1) and the 

fast and slow axes sensitivities are very close to those of the bare fiber (about 1.18 pm/µ). 

Table 1. Axial strain sensitivity of FBGs sensors embedded in [02, 902]2S lay-up composite. 

pm/µ Average on sample tested 

Fast axis 1.22 ± 0.03 

Slow axis 1.21 ± 0.02 

Peak separation −0.01 ± 0.01 

4.4. Transverse Strain Test 

Transverse strain tests were performed on the sensors to characterize the out-of-plane laminate 

response. The specimens are compressed between two metal blocks with an increasing load of 

maximum 20 kN which corresponds to about 25 MPa (8 cm2 contact surface). To ensure a 

homogenous pressure on the composite, two rubber slices are placed between the metal blocks and the 

load applying surfaces [Figure 7(a)]. The wavelength of the peaks and the load are recorded 

continuously (read-out frequency 1 Hz) during the test. By approximating the Young modulus of the 

laminate in the load direction by 6 GPa, we can estimate the transversal strain applied to the samples. 

Figure 7(b) shows the linear behavior of the peak wavelength versus the transversal strain applied, 

from which we determine the response of the sensors (Table 2). As for the bare fiber calibration, this 

experiment shows that when the optical fiber is loaded along its slow axis, its response is much more 

important for the fast axis than for the slow axis; in this case the difference in sensitivity is more than 

50%. As shown in Figure 1(a) the fiber microstructure is highly asymmetric and presents much more 

side-holes along the fast axis. Therefore, the stresses along the major diameter of the cladding are 

larger than those created along the minor diameter direction, and hence the transverse sensitivity along 

the fast axis of the fiber is higher compared to the slow axis. 

Figure 7. (a) Transverse load set-up. (b) Peak wavelength changes versus transversal strain. 

 

(a) (b) 
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Table 2. Transversal strain sensitivity of the MOF. 

pm/µ Average on the tested samples 

Fast axis 0.26 ± 0.05 
Slow axis 0.10 ± 0.02 
Peak separation −0.16 ± 0.03 

The specific behavior of the sensors can hence be understood as follows. When the fiber is  

non-uniformly loaded at constant temperature, one can de-multiplex the loads acting on the  

optical fiber:  

 a Bragg peak separation change is induced by transversal strains, because the axial strain 

sensitivity of the peak separation has been shown to be zero; 

 identical changes in the peak wavelengths will refer primarily to axial strains. The sensitivities of 

the slow and fast axis for axial strain are 5 to 10 times larger than for transversal strain.  

We can now assess in how much more sensitive our sensor is compared to FBGs in conventional 

HB optical fibers and in a MOF with another type of microstructure. 

4.5. Comparison of the Sensor Response with Previous Studies 

In [23] the transversal strain response of sensors was determined for conventional bow-tie type HB 

optical fiber and for another MOF structure (referred to here as MOF2) both embedded in a 

unidirectional laminate. Figure 8 shows that the proposed MOF (referred to as MOF1) demonstrates a 

much higher response to transversal strain than the two other FBGs. The transversal Bragg separation 

sensitivity reaches about −0.16 pm/µ in the case of the MOF studied here; which is one order of 

magnitude higher than that of the conventional HB fiber and of MOF2. However the laminate 

composite in [23] refers to a unidirectional configuration and one therefore needs to verify how large 

the composite configuration influences the sensor response. 

Figure 8. Transversal strain response of a conventional HB fiber of bow-tie type (HBF) 

and of the MOF2 embedded in unidirectional laminate compared with the response of 

MOF1 integrated in a cross-ply configuration (the sensitivity plots of MOF2 and HBF are 

overlaying each other). 
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To determine how important the laminate configuration is we perform numerical simulations of the 

transversal strain tests. We first validate the simulations by comparing the numerical and experimental 

response of MOF1 and then we model the behavior of MOF2 embedded in the cross-ply configuration. 

The modeling of the laminate behavior submitted to transversal pressure is carried out with the 

commercially available finite element software ABAQUS. The goal is to link the strain in the fiber 

core to the strain in the laminate composite using Equations (4) and (5). The strain values used in these 

equations are an average of the principal strains in the entire core region all along the grating length; 

averaging the strain allows avoiding stress non-uniformity coming from the air-hole microstructure. 

We assume in the analysis that the principal strain axes and the optical axes of the anisotropic fiber 

overlap. We assume that the bonding between the optical fiber and the host material is perfect, the 

deformations are considered small and both materials behave elastically. The composite laminate 

model, illustrated in Figure 9(a), consists of 100,500 linear hexahedral elements of type C3D8R. The 

mesh is refined in the vicinity of the optical fiber. For symmetry reasons, only one eighth of the 

specimen is represented and specific boundary conditions are applied. The top surface is submitted to a 

linearly increased load of maximum 25 MPa. The simulated length is 20 mm which ensures us to be 

far away from the end facets and hence we avoid boundary effects. 

Figure 9. (a) 1/8 of the laminate structure meshed and close-up of MOF1. (b) Strain in the 

out-of-plane direction for MOF1. 

 

(a) (b) 

Figure 10 summarizes the results of the finite element analysis (FEA). Figure 10(a) first evidences 

the excellent agreement between simulations and experiments for MOF1 embedded in a cross-ply 

laminated composite, with a relative error of only 4.5 %. This validates our model and FEA approach. 

Second, the model suggests that when the same MOF is embedded within a unidirectional laminated 

composite the sensitivity to applied load is slightly reduced by approximately 3.4% [Figure 10(a)]. 

This result indicates that the composite lay-up does not play a major role in the transversal sensor 

response. Finally, the simulations again reveal the substantially improved sensitivity of MOF1 with a 

factor of 6 compared to MOF2 when both fiber types are embedded within a composite with similar 

lay-up [Figure 10(b)].  
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Figure 10. Comparison between the composite configurations. (a) MOF1 embedded in 

cross-ply laminate (experimental (EXP) and modeling (FEA)) and unidirectional laminate 

(modeling). (b) MOF1 and MOF2 in cross-ply laminate (modeling results). 

(a) (b) 

5. Conclusions 

We have embedded fiber Bragg gratings written in specially designed highly birefringent 

microstructured optical fiber in laminate fiber reinforced composite material samples, with the 

intention to accurately monitor the transverse strain components inside composite materials. The 

sensor response is encoded in the spectral distance between the two reflection peaks of the fiber Bragg 

grating. The gratings were successfully integrated within the composite panels without compromising 

the mechanical integrity of the material and the optical properties of the grating. The embedded Bragg 

gratings exhibit a substantial improvement in sensitivity to transversal strain and a low sensitivity to 

temperature changes compared to values reported earlier in literature. The embedded sensor sensitivity 

to temperature was 4.41 pm/°C, the sensitivity of the peak separation to transversal strain was 

0.16 pm/µ, while the sensitivity of the peak separation to axial strain remained negligible. Transversal 

strains can therefore be identified with resolutions down to about 10 µ using commercial fiber Bragg 

grating interrogation equipment. Furthermore and owing to the selective response of our sensor and to 

the bare sensor temperature sensitivity of 0.07 pm/°C, composite curing and residual strains can be 

monitored as well. This evidences the potential of using dedicated microstructured optical fibers in the 

field of structural health monitoring. 
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