
Sensors 2011, 11, 2946-2960; doi:10.3390/s110302946
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

On the Optimal Identification of Tag Sets in Time-Constrained
RFID Configurations
Javier Vales-Alonso ∗, Marı́a Victoria Bueno-Delgado, Esteban Egea-López, Juan José Alcaraz
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Abstract: In Radio Frequency Identification facilities the identification delay of a set of tags
is mainly caused by the random access nature of the reading protocol, yielding a random
identification time of the set of tags. In this paper, the cumulative distribution function
of the identification time is evaluated using a discrete time Markov chain for single-set
time-constrained passive RFID systems, namely those ones where a single group of tags
is assumed to be in the reading area and only for a bounded time (sojourn time) before
leaving. In these scenarios some tags in a set may leave the reader coverage area unidentified.
The probability of this event is obtained from the cumulative distribution function of the
identification time as a function of the sojourn time. This result provides a suitable criterion
to minimize the probability of losing tags. Besides, an identification strategy based on
splitting the set of tags in smaller subsets is also considered. Results demonstrate that there
are optimal splitting configurations that reduce the overall identification time while keeping
the same probability of losing tags.

Keywords: RFID; anti-collision protocols; time-constrained configuration; identification
time; tag loss probability
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1. Introduction

Radio Frequency IDentification (RFID) enables the identification of nearby objects or people by
means of Radio-Frequency (RF) signals. The communication takes place between small and inexpensive
devices called tags which are attached to the items to be tracked, and readers which collect and manage
information about these items. This process is performed in the coverage area of the reader, or checking
area. RFID is increasingly being used to identify and track objects in supply chains and manufacturing
process [1]. These scenarios consider a large number of tags attached to items which pass through
checking areas, usually carried in sets by conveyor belts, pallets, lorries, etc. According to the power
supply of the tags, RFID systems are classified as active or passive. The former are used in applications
which typically require to sense the environment (e.g., Wireless Sensor Networks). The latter are the
most extended in logistic facilities due to their low cost. In passive systems, RFID readers continuously
emit electromagnetic waves creating reading areas. Passing tags are thereby energized allowing them to
send their identifiers back to the reader.

Since the communication between tags and reader use a shared wireless channel, when multiple tags
reply simultaneously to a reader, a collision occurs. Therefore, to avoid it, an anti-collision protocol
is necessary, and readers implement them. Framed-slotted Aloha (FSA) is one of the most widely
used anti-collision protocol by passive RFID systems [1]. As in Slotted-Aloha, time is divided into
periods called slots, but all slots are confined to a super-structure called “frame”. The reader starts an
interrogation frame by sending a Query packet informing the tags about the frame length K (the number
of slots that make a frame). At every frame, each unidentified tag randomly selects a slot among the K

slots to send its identifiers to the reader. When more than a single tag select the same slot in the frame,
a collision occurs, and the reader is not able to recover the identifier of the tags involved in the collision.
Variations of FSA are used for instance by ISO/IEC 18000-6C, ISO/IEC 18000-7 [2] and EPCGlobal
Class 1 Gen 2 (EPC-C1G2) [3], used by most commercial passive and active RFID systems.

Three different classes of scenarios of practical interest arise in RFID facilities, according to the way
the tags behave in the reading areas:

1. Static scenario: a group of tags enters the reading area and remains there until all of them have
been successfully identified. Other tags do not enter during that time. As an example, let us think
about a conveyor belt controlled by a reader: as long as the reader detects collisions, the conveyor
is stopped. Once the reader does not detect tags contending, the conveyor belt runs again, allowing
new tags to enter. The goal in the static scenario is usually to minimize the average identification
time. A thorough evaluation of this case can be found in our previous paper [4].

2. Flow scenario: tags are continuously entering and leaving the checking area, according to some
scenario dynamics that defines the arrival process. For example, a conveyor belt continuously
running with tags randomly scattered on it. In this case, some tags may leave the reader coverage
area unidentified. Thus minimizing the average identification time (as in the prior case) should not
be optimization goal—instead it is critical to minimize the probability of losing tags. This case
has been evaluated in [5] and [6].
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3. Mixed scenario: in this case a group of tags enter the checking area and stay there only for a
certain time (sojourn time). No more groups enter the checking area until the previous one has
left. For example, consider a moving truck with tags grouped in boxes, which are uniformly
spaced. Like in the flow scenario some tags may leave the reader coverage area unidentified. This
is the case addressed in this paper. Our goal is to compute the minimum suitable sojourn time that
guarantee that the percentage of groups correctly identified is above some level. In this paper, this
level is termed Identification Confidence Level (ICL).

To conduct the study of mixed scenarios a Discrete Time Markov Chain (DTMC) is used to obtain
the cumulative distribution function of the identification time of a group of tags of size N . From it the
ICL is computed as a function of the sojourn time. Moreover, based on the previous results, a splitting
strategy of the tag set is considered. That is, given a number of tags N entering the checking area we seek
to find which is the best size of subsets that minimizes the global duration of the identification process
guaranteeing the ICL level.

Overall, the results provided in this paper are useful to help manufacturers and system operators to
improve the RFID system performance in mixed scenarios. Designers must rely on physical parameters
to control the performance of the system, such as, conveyor belt speed, coverage range, etc. The
usefulness of the results of this paper is twofold. First, given an ICL bound and a packet tag size N

the minimum sojourn time is computed in Section 3 and from it the physical parameters of the facility
(e.g., conveyor belt speed) can be determined. Second, if tags repackaging is possible the optimal packet
size is derived from the results exposed in Section 5. Let us remark that the results derived are valid for
any FSA protocol with fixed frame size. This includes most active and passive RFID standards used in
logistic currently.

The rest of the paper is organized as follows: a review of the related work is provided in Section 2.
The analysis of mixed scenarios is addressed in Sections 3 and 4. Section 5 discusses the feasibility of a
splitting strategy in the tag set. Finally, Section 6 points out the main conclusions of the work.

2. Related Work

A large number of studies has been conducted in the last years with the aim of evaluating the
performance of passive RFID systems. Most of them focused on suggesting new protocols and
algorithms to improve the performance of RFID installations. The proposals cover a wide range of
topics, with an emphasis in security, e.g., [7–9] and anti-collision protocols, e.g., [10–13]. However,
the vast majority of these proposals cannot be implemented in off-the-self readers, due to their high
computational cost or due to incompatibilities with the current standards [14]. Hence, additional effort
must be also devoted to study configuration and deployment techniques to achieve the best performance
of RFID systems with the currently available commercial readers. In [15–18] the authors performed
several empirical studies to determine the factors that degrade performance and reliability of UHF RFID
systems under EPC-C1G2 standard in a static scenario. In [15] the authors compute the read range by
means of simulations, while in [16] the authors show how the bit error rate degrades the EPC-C1G2
performance. In [17], the authors experimentally validate the work in [15] and [16], and explore
the extent to which reader configuration options, focused on the physical and medium access control
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layer can mitigate these factors. From the study, authors suggest that tuning physical layer operational
parameters may increase the read rate up to a 33%. In [18] it is shown how the performance in EPC-C1G2
varies widely for different readers.

Some works focus on analyzing the identification process of passive RFID systems. A relevant study
is addressed by Vogt in [19], where the author characterizes the identification process of ISO-18000-6C
standard [2] as a Markov chain, assuming a static scenario. The author found that the results matched an
experimental evaluation using the old I-Code RFID system [20]. However, in [19] the author assumes
that those tags already identified in previous frames keep on competing. This is not the case currently,
since most FSA derived protocols, including EPC-C1G2, force identified tags to withdraw from the
identification process.

In [4] we study the identification performance in static scenarios, but also considering the dynamic
frame-length procedure of EPC-C1G2, which is not widely implemented in the commercial readers.

There are only a few works that address the mathematical analysis of the identification process in
flow scenarios. In [21] and [6] we analyze the identification performance of RFID systems in scenarios
characterized by an incoming flow of tags entering the coverage area of a reader, moving at constant
speed (e.g., modeling a conveyor belt) and, considering that new tags can enter the workspace although
other tags are still being identified. In [6] we provide a model based on dynamical systems for a general
scenario where tags enter the checking area according to some arbitrary random arrival process and
move with constant speed. With this model, the average tag loss ratio (tags lost per tags entering) can
be computed. Moreover, assuming a fixed frame length identification procedure this model provides the
optimal frame length for a given set of configuration parameters (speed, tag density and so on). Let us
remark that these results can not be used in mixed scenarios, where new groups of tags do not enter in
the reading area during the sojourn time.

A work focused on mixed scenarios has been published [22], where a probabilistic model is provided
for a conveyor belt carrying tags grouped in boxes. However, the main difference between [22] and
this work is that, in the former the authors consider a dynamic frame length operation and provide a
dynamic programming algorithm to optimally adjust the frame length based on their model. But, as
stated previously, most commercial readers do not provide the dynamic frame capability and use FSA
with a constant frame length. Therefore, the performance has to be improved by adjusting other system’s
parameters. In this paper we address this case.

3. Identification Process in Mixed Scenarios

The identification performance of FSA RFID systems in static scenarios was addressed by the authors
in [4]. In this work we begin reviewing the Markov analysis of that scenario since it is the basis of the
controlled-arrival scenario.

Static scenarios are characterized by a block of tags (modeling a physical container like a pallet, a
box, etc.) that enter the checking area and remain there until all of them are successfully identified. Two
related performance metrics are commonly considered:

• The average identification time, defined as the mean number of time units (slots, frames, seconds,
etc.) until all tags are identified.
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• The system throughput or efficiency, defined as the inverse of the mean identification time, i.e., the
ratio of identified tags per time unit.

For mixed scenarios where the tags only remain in coverage for a certain sojourn time the goal must
be different. In this case, the probability that some tag lost in a group must be minimized. As stated
in the introduction, configuration must be established to ensure with a given Identification Confidence
Level (ICL) that all the tags in a set have been identified before leaving the reading area. Given an ICL
level the minimum required sojourn time can be derived from the cumulative distribution function of the
reading time, which is computed in the next sections.

3.1. Markovian Analysis

The state of an identification process in a static and a mixed scenario is determined by the number of
remaining unidentified tags. Thus, the identification process can be modeled as a homogeneous DTMC,
Xs, where each state of the chain represents the number of unidentified tags, being s the frame number.
Thus, the state space of the Markov process is {N,N−1, . . . , 0}, being N the number of tags to identify.
Figure 1 shows a partial DTMC state diagram from the initial state, X0 = N . The transitions between
states is governed by the probability of identifying a certain quantity of tags t in a given frame or, in
other words, the probability of going from state i to an state with (i − t) tags still unidentified. Let us
remark again that we are considering the number of tags identified in a frame so a maximum of t = K

tags can be identified in a frame.

Figure 1. Partial Markov Chain.
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The transition matrix P (as usual pij denotes the probability of going from state i to state j) depends
on the anti-collision protocol used and its parameters. To compute the transition matrix P in FSA, let
us denote K as the number of slots per frame (frame length), and let us define the random variable µt,
which indicates the number of slots being filled with exactly t tags in a reading frame.

When t = 1, µ1 provides the number of slots with a successful identification for a given frame length
and contending tags. Its probability mass function is given by (see [23]):

PK,N (µ1 = m) =
K!N !

m!KN

N−m∑
z=0

(−1)z(K −m− z)N−m−z

(N −m− z)!z!(K −m− z)!
(1)

That is, PK,N(µ1 = m) provides the probability that m slots have a single reply with a frame length of
K slots and N tags contending. Recall from the introduction that K denotes the number of slots per
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frame. Thus, taking into account that tags identified in a frame will not contend in the following ones,
the transition matrix P [24] is:

pi,j =

PK,i(µ1 = i− j) , i−K ≤ j ≤ i

0 , otherwise
(2)

for i = 0, . . . , N .
The Markov chain clearly has a single absorbing state, Xs = 0. That is, all tags are identified after

an arbitrary long time period. The mean number of steps until the absorbing state is the mean number of
identification frames (s̄). It can be computed by means of the fundamental matrix, D, of the absorbing
chain [25]. D is obtained from the canonical form [26] of the transition probability matrix P . In our
case, since there is only one absorbing state P has the form:

P =

(
F Q

0 1

)
(3)

where F denotes the sub-matrix of P with the all the transient states (note that the size of F is N ×N ).
Thus, the fundamental matrix D is:

D = (IN − F )−1 (4)

being IN the identity matrix of size (N ×N).
From D the average number of identification frames s̄ can be calculated as follows:

s̄ =
N∑
y=1

D1,y (5)

That is, the sum of the elements of the first row in D.
Besides, the corresponding mean number of slots is L̄ = s̄ ·K since the frame length is constant.

3.2. Computation of the Minimum Sojourn Time for a Given ICL

As stated in the introduction, when tags enter the reading area in mixed scenarios new groups of tags
do not enter until the previous one has left it. Therefore, the bulk of tags remains in the reading area
only for a bounded sojourn time and some tags may be still unidentified after leaving. Figure 2 depicts
this operation mode. Hence, for these type of scenarios the goal is to minimize the number of times
this event of losing tags can occur. Let us remark that the identification time is an unbounded random
variable for FSA systems (i.e., the identification time can be arbitrarily high with probability greater than
zero). That is, it is not possible to establish a sojourn time which guarantees in the 100% of cases the
identification of all the tags. Instead, a minimum sojourn time can be selected to guarantee that in all
the cases the probability of identifying all the tags is higher than a given probability threshold, termed
as Identification Confidence Level (ICL). From a practical point of view, the design process would be as
follows: first, it starts with a quality requirement in the form of a given ICL parameter, then the minimum
sojourn time needed to achieve the ICL is computed, and finally, the tunable system parameters (speed,
tag population or others) are set to appropriate values to get the desired sojourn time. In the following
sections we provide a method to compute the sojourn time for an ICL level.
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Figure 2. Typical identification procedure in semi-static scenario. A set of tags enter the
coverage area and stay for a sojourn time (during which tags are being identified) before a
new set enters.
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The analysis and computation of the minimum sojourn time needed to achieve an ICL level uses the
DTMC built in the previous section. The Markovian analysis to compute the transition probabilities is
the same as in the static scenario. Hence, we start the analysis from the transition probability matrix P

given in Equation (2). Let us denote π(s) = [π
(s)
0 , . . . , π

(s)
N ] the state probability vector of our DMTC at

frame s, that is, a row vector where the i-th element (π(s)
i ) represents the probability that i tags have been

identified in s frames. From another point of view, π(s)
i is the probability of being at a particular system

state N − i in the frame s. Besides, let π(0) = [1, 0, . . . , 0] be the initial distribution (since none of the
N tags is identified before identification process starts). Then:

π(s) = π(0) · P s (6)

That is, the state probability vector at frame s is given by the product of the initial distribution and the
s power of the transition matrix P . Let VN denote the random variable that indicates the number of
frames required to identify N tags. Its cumulative distribution function (CDF) can be computed from
Equation (6) as:

P [VN ≤ s] = π
(s)
N (7)

From the CDF of VN , the minimum number of frames s required to achieve a given ICL level can be
computed. The time elapsed in these frames is the minimum sojourn time needed.

Figure 3 illustrates this method for ICL set to 0.99. The s-th column represents the probability of
having identified the whole set of N tags at end of frame s, that is π(s)

N . In this example, after six frames,
the probability of identifying all tags is higher than the ICL selected. That is, each group of tags should
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remain in coverage for at least 6 identification frames in order to guarantee that, in the 99% of the cases,
all tags are successfully identified. Let us remark that this is not the same as guaranteeing that 99% of
tags are successfully identified in each group, being the former condition stronger that the latter one.

Figure 3. Minimum sojourn time for a given ICL.

4. Reading Process Evaluation

In this section the reading process is evaluated for mixed scenarios. The goal is to point out the
differences in the reading performance if the ICL criterion is used to set the sojourn time, rather than
using the simpler approximation of setting the average identification time as the sojourn time.

From Equation (7) the sojourn time is computed for an ICL level set to 0.99 assuming a frame length
K = 16, and for a range N from 10 to 100 tags. Figure 4 shows the results. Let us remark that the
results are exactly computed from Equation (7), no simulation has been done. Note that sojourn time is
expressed as frames, and since frame length is fixed, the conversion to slots is provided as well. Besides,
Figure 4 also shows the average number of frames (slots) required for identification, computed from
Equation (5). Let us remark that this second curve corresponds to the criterion of selecting the average
identification time as the sojourn time. Therefore, it has been referred to as “Criterion average” in the
figure. Figure 4 also shows that achieving an ICL level of 0.99 becomes harder as the number of tags
increases. In fact, it is the expected result when the frame length K is not high enough to cope with
them. In that case, the frame length must be increased properly. To illustrate it, Table 1 provides the
number of frames needed to achieve an ICL level of 0.99 when K = 16, 32 and 64 slots and slots are
N = 50, 100, 200 and 300 tags. As can be seen, by increasing the frame length according to the expected
number of tags it is possible to achieve the given ICL in a reasonable amount of time.

Note from Figure 4 that the derivative of the sojourn time seems to increase with N . This has an
important implication. Namely, that the reading efficiency decreases for large sets. This effect can
also be seen in Table 1. In fact, as a result of this observation we propose a identification strategy that
improves the reading efficiency by splitting the set of tags in subset of lower size. Section 5 deals with
this property and its consequences.
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Figure 4. Identification time (frames and slots) needed for different tag populations and
K = 16. Criterion ICL = 0.99 shows the minimum number of frames computed from
Equation (7), whereas Criterion average shows the number of frames needed when computed
using Equation (5). The number of slots is given by the number of frames times the frame
length.
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Table 1. Number of frames needed to achieve ICL = 0.99 for frame lengths K = 16, 32, 64

and number of tags N = 50, 100, 200, 300.

Number of tags
Frame length (slots) 50 100 200 300

16 17 169 ∞ ∞
32 7 16 144 ∞
64 5 7 15 41

The above-mentioned results indicate that in a mixed scenario the sojourn time of the tags must be
much larger than the average time required for reading, specially for large groups of tags. This might
result counterintuitive. A justification is provided in Figure 5. It shows the CDF of VN for a configuration
with N = 100 and K = 16. For a given sojourn time, it depicts the probability that all tags in the group
have been identified. In this figure, the average identification time is marked, and its corresponding
probability. The result is notable, since it means that when setting this value as the sojourn time more
than 50% of the sets would leave with some unidentified tags. This is not acceptable in most RFID
facilities. From another point of view, Figure 6 shows a comparative of the average number of lost tags
(L̄) using both criteria for the sojourn coverage. L̄ is the expectation of the number of unidentified tags
at frame s, corresponding to the probability distribution π(s). Namely,

L̄ =
N∑
i=0

(N − i)π
(s)
i (8)
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Figure 5. Cumulative Distribution Function for N = 100 and K = 16. Figure also shows the
average number of slots needed to identify 100 tags from Equation (5), which only provides
barely a 50% of probability of having identified all the tags.
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Figure 6. Mean number of unidentified tags for K = 16. Setting the average number of slots
provided by Equation (5) as sojourn time, curve called “Criterion average” results in a large
number of tags lost.
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Clearly, the average number of lost tags grows as the population increases if the sojourn time is the
average identification time. Moreover, the average number of lost tags with the criterion of ICL level set
to 0.99 is almost negligible. Result trends are similar regardless of the frame length K, and for larger tag
sets.

Summarizing, there is a trade off between the sojourn time required (conversely, in the speed of
processing of the items) and the possibility of losing tags in a RFID installation. Previous results allow
to select the desired operational point in this trade off.
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5. Splitting Strategy

Let us recall from previous section that the differential sojourn time required to achieve a given ICL
level increases with the size N of the set of tags. This observation suggests that if items could be
rearranged in smaller subsets the overall sojourn time (to identify all the subsets) may decrease, achieving
the same global ICL confidence. In this section the influence of this effect is studied for mixed scenarios.
Specifically, the aim is at deciding if splitting the set of tags reduces the overall identification time, and
computing the optimal configuration of the subsets.

In the splitting model, the N tags of a group are assumed to be uniformly redistributed into J smaller
subsets of size N ′ = N

J
tags (for simplicity we consider a perfect partition, i.e., N ′ is integer). Let V ′

N

denote the (random) identification time of the J subsets. It can be expressed as,

V ′
N =

J∑
i=1

VN ′ (9)

Since the reading time of one subset is independent from the reading time of any other subset the mass
probability function of V ′

N is just,

P [V ′
N = s] = P [VN ′ = s]∗ J. . . ∗P [VN ′ = s] (10)

where the ∗ operator denotes convolution. From the previous equation the cumulative distribution
function of V ′

N is obtained. As an example of the results, Figure 7 shows the CDF of the identification
time (measured in frames or in slots) achieved when a population of N = 400 tags is split into J = 2, 4
and 8 subsets (plus the original set of 400 tags), for a frame length of K = 128. In this scenario, for the
same ICL level as in the previous numerical examples, the configuration of two sets of 200 tags provides
the best results, being the first configuration able to surpass the ICL = 0.99 at frame 13. Therefore, these
results confirm our previous discussion, that is, the fact that the derivative of the sojourn time increases
with N effectively indicates that reducing the size of the set increases the reading efficiency. Hence,
splitting is useful and the next step is to find the optimal size of subsets.

Besides, due to the partition of the sets a time lapse between each subset should be reckoned on in
a complete model of the mixed scenario. Let τ denote this time lapse considered between two subsets.
Parameter τ can be regarded either as a safeguard time for the identification of tags (e.g., a temporal
spacing in a conveyor belt) or an operational parameter that takes into account an overhead for splitting
the sets (e.g., modelling a robotic arm that removes a subset from the reading area and introduces a new
one). With this restriction into account, the overall identification time (T ) is given in next equation. For
simplicity, τ is considered as an integer number of frames (conversely, slots).

T = V ′
N + (J − 1)τ (11)

And its mass probability function is,

P [T = s] = P [V ′
N = s− (J − 1)τ ] (12)
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Figure 7. Comparison of the CDF of the identification time for N = 400, J = (1, 2, 3, 4),
and K = 128.
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From the former equation the CDF of T is extracted and the minimum sojourn time is directly
determined with the same procedure as Section 3.2. The minimum sojourn time has been evaluated
for different subset sizes and τ settings. Figures 8, 9 and 10 show the results for N = 400 tags,
J = 1, 2, 3 and 4, τ = 0, 100, and 1,000 slots, ICL = 0.99, and different frame lengths K = 2x, being
x ∈ [3, 4 . . . , 15]. As can be seen, in both figures there is an optimal configuration for each value of the
frame length K, and a global optimum for a particular K. In particular, Figure 9 shows that this global
optimum is achieved with x = 5 (i.e., K = 32), and 8 subsets of 50 tags. For larger values of the overhead
τ , as in Figure 10, using a single set becomes a better option.

Figure 8. Total identification time in number of slots required with ICL = 0.99, N = 400,
τ = 0 and its subsets.
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Figure 9. Total identification time in number of slots required with ICL = 0.99, N = 400,
τ = 100 and its subsets.
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Figure 10. Total identification time in number of slots required with ICL = 0.99, N = 400,
τ = 1,000 and its subsets.
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6. Conclusions

This paper provides sound criteria for the configuration of RFID facilities in mixed scenarios. Since
in those scenarios it is not possible to ensure a successful identification of all tags in every set, a trade off
must be established: the lower the probability of losing some tag in a group, the greater the minimum
sojourn time required for the identification, and vice versa. Section 4 was devoted to analyze this trade
off. Optimal configurations (in terms of minimal sojourn time) are provided for different configuration
setups.

Moreover, the results analyzed in Section 4 strongly suggest the splitting of tag sets in smaller subsets
to achieve the same overall tag loss probability, but with reduced sojourn time. Section 5 addresses this



Sensors 2011, 11 2959

issue. A model that takes into account a safeguard time between tag subsets is introduced. Results show
that the splitting strategy is preferred given that the inter-arrival time between sets (τ ) is sufficiently
short.

Acknowledgements

This work has been supported by project TSI-020301-2008-2 (PIRAmIDE), funded by the Spanish
Ministerio de Industria, Turismo y Comercio, project CALM TEC2010-21405-C02-02 (subprogram
TCM), funded by the Spanish Ministerio de Innovación y Ciencia and also developed within the
framework of “Programa de Ayudas a Grupos de Excelencia de la Región de Murcia”, funded by
Fundación Seneca, Agencia de Ciencia y Tecnologı́a de la Región de Murcia (Plan Regional de Ciencia
y Tecnologı́a 2007/2010).

References and Notes

1. Finkenzeller, K. RFID Handbook: Radio-Frequency Identification, Fundamentals and
Applications; John Wiley: New York, NY, USA, 2000.

2. ISO/IEC 1800-6:2003(E). Part 6: Parameters for Air Interface Communications at 860–960 MHz,
2003. Available online: http://www.iso.org (accessed on 2 March 2011).

3. EPC Radio-Frequency Identify Protocol for Communications at 868–960 MHz. Available online:
http://www.epcglobalinc.org (accessed on 2 March 2011).

4. Bueno-Delgado, M.V.; Vales-Alonso, J. On the Optimal Frame-Length Configuration on Real
Passive RFID Systems. J. Netw. Comput. Applicat. 2010, in press.

5. Vales-Alonso, J.; Bueno-Delgado, M.V.; Egea-Lopez, E.; Alcaraz-Espin, J.; Gonzalez Castaño, F.J.
Characterization of the Identification Process in RFID Systems. In Radio Frequency Identification
Fundamentals and Applications; Intech: Rijeka, Croatia, 2010; pp. 27-48.

6. Alcaraz, J.; Egea-Lopez, E.; Vales-Alonso, J.; Garcia-Haro, J. Dynamic System Model for Optimal
Configuration of Mobile RFID Systems. Comput. Netw. 2010, in Press.

7. Lopez-Carmona, M.A.; Marsa-Maestre, I.; de la Hoz, E.; Velasco, J.R. Using RFID to Enhance
Security in Off-Site Data Storage. Sens. J. 2010, 10, 8010-8027.

8. Juels, A. RFID Security and Privacy: A Research Survey. IEEE J. Sel. Area. Commun. 2006, 24,
381-395.

9. Mitrokotsa, A.; Rieback, M.R.; Tanenbaum, A.S. Classifying RFID Attacks and Defenses. Inf.
Syst. Front. 2009, doi:10.1007/s10796-009-9210-z.

10. Shin, K.C.; Park, S.B.; Jo, G.S. Enhanced TDMA Based Anti-Collision Algorithm with a Dynamic
Frame Size Adjustment Strategy for Mobile RFID Readers. Sens. J. 2009, 9, 845-858.

11. Shin, K.; Song, W. RAC-Multi: Reader Anti-Collision Algorithm for Multichannel Mobile RFID
Networks. Sens. J. 2010, 10, 84-96.

12. Shih, D.H.; Sun, P.L.; Yen, D.C.; Huang, S.M. Taxonomy and Survey of RFID Anti-Collision
Protocols. J. Comput. Commun. 2006, 29, 2150-2166.

13. Ko, Y.-C.; Roy, S.; Smith, J.R.; Lee, H.-W.; Cho, C.-H. RFID MAC Performance Evaluation Based
on ISO/IEC 18000-6 Type C. IEEE Commun. Lett. 2008, 12, 426-428.



Sensors 2011, 11 2960

14. Bueno-Delgado, M.V.; Vales-Alonso, J.; Gonzalez-Castaño, F.J. Analysis of DFSA Anti-collision
Protocols in Passive RFID Environments. In Proceedings of 35th International Conference of the
IEEE Industrial Electronics Society, Porto, Portugal, 3–5 November 2009; pp. 2610-2617.

15. Nikitin, P.; Rao, V. Performance Limitations of Passive UHF RFID Systems. In Proceedings of
IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, USA, 9–14
July 2006; pp. 1011-1014.

16. Kawakita, Y.; Mitsugi, J. Anti-Collision Performance of Gen2 Air Protocol in Random Error
Communication Link. In Proceedings of International Symposium on Applications and Internet
Workshops, Phoenix, AZ, USA, 23–27 January 2006; pp. 68-71.

17. Buettner, M.; Wetherall, D. An Empirical Study of UHF RFID Performance. In Proceedings of
14th ACM International Conference on Mobile Computing and Networking, San Francisco, CA,
USA, 14–19 September 2008; pp. 223-234.

18. Aroor, S.; Deavours, D. Evaluation of the State of Passive UHF RFID: An Experimental Approach.
IEEE Syst. J. 2007, 1, 168-176.

19. Vogt, H. Efficient Object Identification with Passive RFID Tags. Lect. Note. Comput. Sci. 2002,
2414, 98-113.

20. ICODE. Available online: http://www.semiconductors.philips.com (accessed on 2 March 2011).
21. Vales-Alonso, J.; Bueno-Delgado, M.V.; Egea-López, E.; Alcaraz-Espı́n, J.J.; Garcı́a-Haro, J.
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