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Abstract: This paper presents a novel class of self-organizing sensing agents that adaptively
learn an anisotropic, spatio-temporal Gaussian process using noisy measurements and move
in order to improve the quality of the estimated covariance function. This approach is based
on a class of anisotropic covariance functions of Gaussian processes introduced to model a
broad range of spatio-temporal physical phenomena. The covariance function is assumed
to be unknown a priori. Hence, it is estimated by the maximum a posteriori probability
(MAP) estimator. The prediction of the field of interest is then obtained based on the MAP
estimate of the covariance function. An optimal sampling strategy is proposed to minimize
the information-theoretic cost function of the Fisher Information Matrix. Simulation results
demonstrate the effectiveness and the adaptability of the proposed scheme.
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1. Introduction

In recent years, due to global climate changes, more environmental scientists are interested in
the change of ecosystems over vast regions in lands, oceans, and lakes. For instance, for certain
environmental conditions, rapidly reproducing harmful algal blooms in the Great Lakes can produce
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cyanotoxins. Besides such natural disasters, there exist growing ubiquitous possibilities of the release of
toxic chemicals and contaminants in the air, lakes, and public water systems. This resulted in the rising
demands to utilize autonomous robotic systems that can perform a series of tasks such as estimation,
prediction, monitoring, tracking and removal of a scalar field of interest undergoing often complex
transport phenomena (Common examples are diffusion, convection, and advection).

Significant enhancements have been made in the areas of mobile sensor networks and mobile sensing
vehicles such as unmanned ground vehicles, autonomous underwater vehicles, and unmanned aerial
vehicles. Emerging technologies have been reported on the coordination of mobile sensing agents [1–6].
Mobile sensing agents form an ad-hoc wireless communication network in which each agent usually
operates under a short communication range, with limited memory and computational power. Mobile
sensing agents are often spatially distributed in an uncertain surveillance environment.

The mobility of mobile agents can be designed in order to perform the optimal sampling of the
field of interest. Recently in [5], Leonard et al. developed mobile sensor networks that optimize
ocean sampling performance defined in terms of uncertainty in a model estimate of a sampled field.
In [6], distributed learning and cooperative control were developed for multi-agent systems to discover
peaks of the unknown field based on the recursive estimation of an unknown field. In general, we
design the mobility of sensing agents to find the most informative locations to make observations for a
spatio-temporal phenomenon. To find these locations that predict the phenomena best, one needs a model
of the spatio-temporal phenomenon itself. In our approach, we focus on Gaussian processes to model
fields undergoing transport phenomena. A Gaussian process (or kriging in geostatistics) has been widely
used as a nonlinear regression technique to estimate and predict geostatistical data [7–11]. A Gaussian
process is a natural generalization of the Gaussian probability distribution. It generalizes the Gaussian
distribution with a finite number of random variables to a Gaussian process with an infinite number of
random variables in the surveillance region. Gaussian process modeling enables us to predict physical
values, such as temperature and plume concentration, at any of spatial points with a predicted uncertainty
level efficiently. For instance, near-optimal static sensor placements with a mutual information criterion
in Gaussian processes were proposed by [12,13]. Distributed kriged Kalman filter for spatial estimation
based on mobile sensor networks are developed by [14]. A distributed adaptive sampling approach
was proposed by [15] for sensor networks to find locations that maximize the information contents by
assuming that the covariance function is known up to a scaling parameter. Multi-agent systems that
are versatile for various tasks by exploiting predictive posterior statistics of Gaussian processes were
developed by [16,17].

The motivation of our work is as follows. Even though there have been efforts to utilize Gaussian
processes to model and predict the spatio-temporal field of interest, most of recent papers assume that
Gaussian processes are isotropic, implying that the covariance function only depends on the distance
between locations. Many studies also assume that the corresponding covariance functions are known a
priori for simplicity. However, this is not the case in general as pointed out in literature [12,13,18], in
which they treat the non-stationary process by fusing a collection of isotropic spatial Gaussian processes
associated with a set of local regions. Hence our motivation is to develop theoretically-sound algorithms
for mobile sensor networks to learn the anisotropic covariance function of a spatio-temporal Gaussian
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process. Mobile sensing agents can then predict the Gaussian process based on the estimated covariance
function in a nonparametric manner.

The contribution of this paper is to develop covariance function learning algorithms for the sensing
agents to perform nonparametric prediction based on a properly adapted Gaussian process for a given
spatio-temporal phenomenon. By introducing a generalized covariance function, we expand the class of
Gaussian processes to include the anisotropic spatio-temporal phenomena. The maximum a posteriori
probability (MAP) estimator is used to find hyperparameters for the associated covariance function. The
proposed optimal navigation strategy for autonomous vehicles minimizes the information-theoretic cost
function such as D-or A-optimality criterion using the Fisher Information Matrix (or Cramér-Rao lower
bound (CRLB)[19], improving the quality of the estimated covariance function. A Gaussian process with
a time-varying covariance function has been proposed to demonstrate the adaptability of the proposed
scheme.

This paper is organized as follows. In Section 2, we briefly review the mobile sensing network model
and the notation related to a graph. A nonparametric approach to predict a field of interest based on
measurements is presented in Section 3. Section 4 introduces a covariance function learning algorithm
for an anisotropic, spatio-temporal Gaussian process. An optimal navigation strategy is described in
Section 5. In Section 6, simulation results illustrate the usefulness of our approach and its adaptability
for unknown and/or time-varying covariance functions.

The standard notation will be used in the paper. Let R,R≥0,Z denote, respectively, the set of real,
non-negative real, and integer numbers. The positive semi-definiteness of a matrix A is denoted by
A � 0. Let |B| denotes the determinant of a matrix B. E denote the expectation operator.

2. Mobile Sensor Networks

First, we explain the mobile sensing network and the measurement model used in this paper. Let Ns

be the number of sensing agents distributed over the surveillance region Q ∈ R2. Assume that Q is a
compact set. The identity of each agent is indexed by I := {1, 2, · · · , Ns}. Let qi(t) ∈ Q be the location
of the i-th sensing agent at time t ∈ R≥0. We assume that the measurement y(qi(t), t) of agent i is the
sum of the scalar value of the Gaussian process z(qi(t), t) and sensor noise wi(t), at its position qi(t) and
some measurement time t,

y(qi(t), t) := z(qi(t), t) + wi(t).

The communication network of mobile agents can be represented by a graph with edges. Let
G(t) = (I, E(t)) be an undirected communication graph such that an edge (i, j) ∈ E(t) if and only
if agent i can communicate with agent j 6= i. We define the neighborhood of agent i at time t by
Ni(t) := {j | (i, j) ∈ E(t), i ∈ I}. We also define the closed neighborhood of agent i at time t by the
union of its index and its neighbors, i.e., N̄i(t) := {i} ∪Ni(t).

3. The Nonparametric Approach

With the spatially distributed sampling capability, agents need to estimate and predict the field of
interest by fusing the collective samples from different space and time indices. We show a nonparametric
approach to predict a field of interest based on measurements. We assume that a field undergoing a
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physical transport phenomenon can be modeled by a spatio-temporal Gaussian process, which can be
used for nonparametric prediction.

Consider a spatio-temporal Gaussian process:

z(s, t) ∼ GP (µ(s, t),K(s, t, s′, t′)) (1)

where s, s′ ∈ Q, t, t′ ∈ R≥0 and µ(s, t) denotes the mean value at location s and time t. We then
propose the following generalized covariance function K(s, t, s′, t′; Ψ) with a hyperparameter vector
Ψ := [ σf σx σy σt ]T :

K(s, t, s′, t; Ψ) = σ2
f exp

− ∑
l∈{x,y}

(sl − s′l)2

2σ2
l

 exp

(
−(t− t′)2

2σ2
t

)
(2)

where sl is the l-th entry of s. {σx, σy} and σt are kernel bandwidths for space and time, respectively.
Equation (2) shows that points close in the measurement space and time indices are strongly correlated
and produce similar values. In reality, the larger temporal distance two measurements are taken
with, the less correlated they become, which strongly supports our generalized covariance function in
Equation (2). This may also justify the truncation (or windowing) of the observed time series data to
limit the size of the covariance matrix for reducing the computational cost.

In the case that the global coordinates are different from the local model coordinates, a similarity
transformation can be used to address this issue. For instance, a rotational relationship between the
model basis {~ex, ~ey} and the global basis { ~Ex, ~Ey} is:[

~ex

~ey

]
=

[
cos θ sin θ

− sin θ cos θ

][
~Ex
~Ey

]

where θ represents the angle of rotation. We can then use the following relationship to change the
coordinates: {

x = X cos θ + Y sin θ

y = −X sin θ + Y cos θ

where x and y indicate coordinates in the local basis and X and Y indicate their counterparts in the
global basis. Equation (2) can then be rewritten in terms of global coordinates as

K(s, t, s′, t′; Ψ) = σ2
f exp

(
− [(sX − s′X) cos θ + (sY − s′Y ) sin θ]2

2σ2
x

)
· exp

(
− [−(sX − s′X) sin θ + (sY − s′Y ) cos θ]2

2σ2
y

)
exp

(
−(t− t′)2

2σ2
t

)
where sX and sY are the coordinates in the global basis. In this case, the parameter vector Ψ is redefined
as Ψ := [ σf σx σy σt θ ]T .

Up to time tk, agent i has noisy collective data
{
y(qj(tm), tm) |m ∈ Z, j ∈ N̄i(tm), 1 ≤ m ≤ k

}
,

where N̄i(tm) denotes the closed neighborhood of agent i at time tm. The measurements
y(qj(tm), tm) = z(qj(tm), tm) + wj(tm) are taken at different positions qj(tm) ∈ Q and different
times tm ∈ R≥0. The measurements are corrupted by the sensor and communication noises
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represented by Gaussian white noise wj ∼ N (0, σ2
w). For the case in which the noise level σw is

not known and needs to be estimated, the hyperparameter vector can be expanded to include σw, i.e.,
Ψ := [ σf σx σy σt σw ]T . The column-vectorized measurements collected by agent i is denoted
by

Y≤k := col
(
y(qj(tm), tm) |m ∈ Z, j ∈ N̄i(tm), 1 ≤ m ≤ k

)
with a joint distribution

p(Y≤k|Ψ) :=
1

(2π)n/2|ΣY≤k
|1/2 exp

(
−1

2
(Y≤k − µY≤k

)TΣ−1
Y≤k

(Y≤k − µY≤k
)

)
where n is the total number of observations up to time tk, µY≤k

:= E(Y≤k) is the mean
vector of Y≤k, ΣY≤k

:= E
(
(Y≤k − µY≤k

)(Y≤k − µY≤k
)T
)

is the covariance matrix of Y≤k

obtained by [ΣY≤k
]ij = K(si, ti, sj, tj) + σ2

wδij in which δij denotes the Kronecker delta function.
If the covariance function is known a priori, the prediction of the random field z(s, t) at location s

and time t is then obtained by

z(s, t|tk) := z(s, t) |Y≤k ∼ N
(
ẑ(s, t|tk), σ2(s, t|tk)

)
(3)

where ẑ(s, t|tk) := E (z(s, t|tk)) is

ẑ(s, t|tk) := µ(s, t) + ΣzY≤k
Σ−1
Y≤k

(Y≤k − µY≤k
)

and the prediction error variance is

σ2(s, t|tk) := Σz − ΣzY≤k
Σ−1
Y≤k

ΣY≤kz

where Σz is the covariance of z, obtained by K(s, t, s, t; Ψ), ΣzY≤k
= ΣT

Y≤kz
is the covariance matrix

between z and Y≤k, obtained by [ΣzY≤k
]j = K(s, t, sj, tj; Ψ). Each agent can then predict the field of

interest at any location and time with the associated uncertainty in a nonparametric way. In the next
section, we present a learning approach for unknown covariance functions.

4. The MAP Estimate of the Hyperparameter Vector

Without loss of generality, we use a zero mean Gaussian process z(s, t) ∼ GP(0,K(s, t, s′, t′)) for
modeling the field undergoing a physical transport phenomenon. This is not a strong limitation since the
mean of the posterior process is not confined to zero [11].

If the covariance function of a Gaussian process is not known a priori, mobile agents need to estimate
parameters of the covariance function (Ψ) based on the observed samples. Using Bayes’ rule, the
posterior p(Ψ|Y≤k) is proportional to the likelihood p(Y≤k|Ψ) times the prior p(Ψ), i.e.,

p(Ψ|Y≤k) ∝ p(Y≤k|Ψ)p(Ψ)

At time tk, the maximum a posteriori (MAP) estimate Ψ̂k of the hyperparameter vector can be obtained
by

Ψ̂k = arg max
Ψ

p(Ψ|Y≤k)

= arg max
Ψ

p(Y≤k|Ψ)p(Ψ)
(4)
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This is equivalent to maximize the logarithm of the posterior p(Ψ|Y≤k), i.e.,

Ψ̂k = arg max
Ψ

(ln p(Y≤k|Ψ) + ln p(Ψ))

The log likelihood function is given by

ln p(Y≤k|Ψ) = −1

2
Y T
≤kΣ

−1
Y≤k

Y≤k −
1

2
ln |ΣY≤k

| − n

2
ln 2π

where n is the size of Y≤k. Notice that if no prior information is given, the MAP estimate in
Equation (4) is equal to the maximum likelihood (ML) estimate.

A gradient ascent algorithm is used to find a MAP estimate of Ψ:

Ψ̂
(i+1)
k = Ψ̂

(i)
k + ε

(i)
k ∇Ψ̂

(i)
k

ln p(Ψ̂
(i)
k |Y≤k), i ≥ 0

where ε(i)k is a small positive number which can be obtained by using a backtracking line search and
∇xf(x) is the partial derivative of f(x) with respect to x. The partial derivative of the log likelihood
function with respect to a hyperparameter ψj is given by

∂ ln p(Y≤k|Ψ)

∂ψj
=

1

2
Y T
≤kΣ

−1
Y≤k

∂ΣY≤k

∂ψj
Σ−1
Y≤k

Y≤k −
1

2
tr
(

Σ−1
Y≤k

∂ΣY≤k

∂ψj

)
=

1

2
tr
(

(ββT − Σ−1
Y≤k

)
∂ΣY≤k

∂ψj

) (5)

where β = Σ−1
Y≤k

Y≤k. Alternatively, a simplex search method [20] can be used to find a MAP estimate
of Ψ. This is a direct search method that does not use numerical or analytic gradients.

After finding a MAP estimate of Ψ, agents can proceed the prediction of the field of interest using
Equation (3).

5. An Adaptive Sampling Strategy

Agents should find new sampling positions to improve the quality of the estimated covariance function
in the next iteration at time tk+1. For instance, to precisely estimate the anisotropic phenomenon, i.e.,
processes with different correlations along x-axis and y-axis directions, sensing agents need to explore
and sample measurements along different directions.

To this end, we consider a centralized scheme. Suppose that a leader agent (or a central station)
knows the communication graph at the next iteration time tk+1 and also has access to all measurements
collected by agents. Let Yk+1 and Y≤k be the measurements at time tk+1 and the collective measurements
up to time tk, respectively, i.e.,

Yk+1 :=col (y(qi(tk+1), tk+1) | i ∈ I) ,

Y≤k :=col (y(qi(tm), tm) |m ∈ Z, i ∈ I, 1 ≤ m ≤ k)

To derive the optimal navigation strategy, we compute the log likelihood function of observations of
Y≤k+1:

L(Y≤k+1,Ψ) := ln p(Y≤k+1|Ψ)

=− 1

2
Y T
≤k+1Σ−1

Y≤k+1
Y≤k+1 −

1

2
ln |ΣY≤k+1

| − n≤k+1

2
ln 2π

(6)
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where n≤k+1 is the size of Y≤k+1.
Since the locations of observations in Y≤k were already fixed, we represent the log likelihood function

in terms of a vector of future sampling points q̃ at time tk+1 only and the hyperparameter vector Ψ:

L(q̃,Ψ) := ln p(Y≤k+1(q̃)|Ψ)

Now consider the Fisher Information Matrix (FIM) that measures the information produced by
measurements Y≤k+1 for estimating the hyperparameter vector at time tk+1. The Cramér-Rao lower
bound (CRLB) theorem states that the inverse of the FIM is a lower bound of the estimation error
covariance matrix [19,21]:

E
(

(Ψ̂k+1 −Ψ)(Ψ̂k+1 −Ψ)T
)
� FIM−1

where Ψ̂k+1 represents the estimation of Ψ at time tk+1. The FIM [19] is given by

[FIM(q̃,Ψ)]ij = −E
(
∂2L(q̃,Ψ)

∂ψi∂ψj

)
(7)

where the expectation is taken with respect to p(Y≤k+1|Ψ). The analytical closed-form of FIM is given
by

[FIM(q̃,Ψ)]ij =
1

2
tr
(

Σ−1
Y≤k+1

∂ΣY≤k+1

∂ψi
Σ−1
Y≤k+1

∂ΣY≤k+1

∂ψj

)
Since the true value of Ψ is not available, we will evaluate the FIM in Equation (7) at the currently
available best estimate Ψ̂k. This has been an effective practical solution when we evaluate the FIM and
estimate Ψ simultaneously [22,23]. The term due to the MAP estimation error in evaluating the FIM in
Equation (7) will decrease as the number of samples increases.

We can expect that minimizing the CRLB results in a decrease of uncertainty in estimating Ψ [22].
Using the D-optimality criterion [24,25], the objective function J is given by

J(q̃, Ψ̂k) := det
(

FIM−1(q̃, Ψ̂k)
)

(8)

Minimizing J in Equation (8) corresponds to minimizing the volume of the ellipsoid which represents
the maximum confidence region for the estimated hyperparameters. However, if one hyperparameter has
a much larger variance compared to the others, minimizing the volume may not be very useful [25]. As
an alternative, the A-optimality which minimizes the sum of the variances may be used. The objective
function J based on the A-optimality criterion is

J(q̃, Ψ̂k) := tr
(

FIM−1(q̃, Ψ̂k)
)

(9)

A control law for the mobile sensor network can be formulated as follows:

q(tk+1) = arg min
q̃∈Q

J(q̃, Ψ̂k) (10)

A gradient descent strategy can be used to find the next optimal sampling positions:

q̃(i+1) = q̃(i) − α(i)∇q̃(i)J(q̃(i), Ψ̂k) (11)
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where α(i) is a small positive number which can be obtained by using a backtracking line search.
Alternatively, a control law for the mobile sensor network can be formulated as follows:

q(tk+1) = arg min
q̃∈

∏Ns
i=1Qi

J(q̃, Ψ̂k)

where

Qi = qi(tk) +

nd∏
j=1

[−δj δj]

where nd = 2 denotes the dimension of the surveillance region Q and δj is the maximum distance for
each agent to move in x and y directions.

However, optimization on ln p(Y≤k+1|Ψ) in Equation (6) and J(q̃, Ψ̂k) in Equation (8) or (9) can be
numerically costly due to the increasing size of ΣY≤k

. One way to deal with this problem is to use a
truncated date set

Yk−δ≤,≤k := col (y(sj(tm), tm) |m ∈ Z, j ∈ I, k − δ ≤ m ≤ k)

instead of using Y≤k. In addition, this approach based on the truncated observations can be viewed
as a strategy to deal with a slowly time-varying parameter vector Ψ, which will further investigated in
Section 6.2.

The overall protocol for the sensor network is summarized as in Table 1.

Table 1. An adaptive sampling strategy for mobile sensor networks.

1. Learning: At time tk, the sensor network updates Ψ̂k using a MAP estimate Equation (4)
for a data set Y≤k. Start this MAP optimization with the initial point Ψ̂k−1.
2. Prediction: For given Y≤k and Ψ̂k, agents can compute prediction at any point and time
using Equation (3), i.e., p(z(s, t)|Y≤k; Ψ̂k).
3. Sampling: Based on {Ψ̂k, Y≤k}, the sensor network computes the control Equation (10)
in order to maximize J(q̃, Ψ̂k). Update the positions of agents accordingly and collect
measurements at time tk+1.
4. Repeat the steps 1–3 until Ψ converges.

6. Simulation Results

In this section, we evaluate the proposed approach for a spatio-temporal Gaussian process
(Section 6.1) and an advection-diffusion process (Section 6.3). For both cases, we compare the
simulation results using the proposed optimal sampling strategy with results using a benchmark random
sampling strategy. In this random sampling strategy, each agent was initially randomly deployed in the
surveillance region. At each time step, the next sampling position for agent i is generated randomly
with the same mobility constraint, viz. a random position within a square region with length 2 centered
at the current position qi. For fair comparison, the same values were used for all other conditions. In
Section 6.2, our approach based on truncated observations has been applied to a Gaussian process with
a time-varying covariance function to demonstrate the adaptability of the proposed scheme.
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6.1. A Spatio-Temporal Gaussian Process

We apply our approach to a spatio-temporal Gaussian process. The Gaussian process was numerically
generated for the simulation [11]. The hyperparameters used in the simulation were chosen such that
Ψ = [ σf σx σy σt σw ]T = [ 5 4 2 8 0.5 ]T . Two snap shots of the realized Gaussian
random field at time t = 1 and t = 20 are shown in Figure 1. In this case, Ns = 5 mobile sensing agents
were initialized at random positions in a surveillance region Q = [ 0 20 ] × [ 0 20 ]. The initial
values for the algorithm were given to be Ψ(0) = [ 1 10 10 1 0.1 ]T . A prior of the hyperparameter
vector has been selected as

p(Ψ) = p(σf )p(σx)p(σy)p(σt)p(σw)

where p(σf ) = p(σx) = p(σy) = p(σt) = Γ(5, 2), and p(σw) = Γ(5, 0.2). Γ(a, b) is a Gamma
distribution with mean ab and variance ab2 in which all possible values are positive. The gradient method
was used to find the MAP estimate of the hyperparameter vector.

Figure 1. Snap shots of the realized Gaussian process at (a) t = 1 and (b) t = 20.

(a) (b)

For simplicity, we assumed that the global basis is the same as the model basis. We considered a
situation where at each time, measurements of agents are transmitted to a leader (or a central station)
that uses our Gaussian learning algorithm and sends optimal control back to individual agents for next
iteration to improve the quality of the estimated covariance function. The maximum distance for agents
to move in one time step was chosen to be 1 for both x and y directions. The A-optimality criterion was
used for optimal sampling.

For both proposed and random strategies, Monte Carlo simulations were run for 100 times and the
statistical results are shown in Figure 2. The estimates of the hyperparameters (shown in circles and
error bars) tend to converge to the true values (shown in dotted lines) for both strategies. As can be
seen, the proposed scheme (Figure 2(a)) outperforms the random strategy (Figure 2(b)) in terms of the
A-optimality criterion.
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Figure 2. Monte Carlo simulation results (100 runs) for a spatio-temporal Gaussian
process using (a) the random sampling strategy, and (b) the adaptive sampling strategy.
The estimated hyperparameters are shown in blue circles with error-bars. The true
hyperparameters that used for generating the process are shown in red dashed lines.
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Figure 3 shows the predicted field along with agents’ trajectories at time t = 1 and t = 20 for one trial.
As shown in Figure 1(a) and Figure 3(a), at time t = 1, the predicted field is far from the true field due
to the inaccurate hyperparameters estimation and small number of observations. As time increases, the
predicted field will be closer to the true field due to the improved quality of the estimated the covariance
function and the cumulative observations. As expected, at time t = 20, the quality of the predicted field
is very well near the sampled positions as shown in Figure 3(b). With 100 observations, the running time
is around 30s using Matlab, R2008a (MathWorks) in a PC (2.4 GHz Dual-Core Processor). No attempt
has been made to optimize the code. After converging to a good estimate of Ψ, agents can switch to a
decentralized configuration and collect samples for other goals such as peak tracking and prediction of
the process [6,16,17].
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Figure 3. The predicted fields along with agents’ trajectories at (a) t = 1 and (b) t = 20.

(a) (b)

6.2. Time-Varying Covariance Functions

To illustrate the adaptability of the proposed strategy to time-varying covariance functions, we
introduce a Gaussian process defined by the following covariance function. The time-varying covariance
function is modeled by a time-varying weighted sum of two known covariance functionsK1(·) andK2(·)
such as

K(·) = λ(t)K1(·) + (1− λ(t))K2(·) (12)

where λ(t) ∈ [0, 1] is a time-varying weight factor that needs to be estimated. In the simulation study,
K1(·) is constructed with σf = 1, σx = 0.2, σy = 0.1, σt = 8, and σw = 0.1; and K2(·) is with σf = 1,
σx = 0.1, σy = 0.2, σt = 8, and σw = 0.1. This Gaussian process defined in (12) with theses particular
K1 and K2 effectively models hyperparameter changes in x and y directions.

To improve the adaptability, the mobile sensor network uses only observations sampled during the last
20 iterations for estimating λ(t) online. The true λ(t) and the estimated λ(t) are shown in Figure 4(a,b),
respectively. From Figure 4, it is clear that the weighting factor λ(t) can be estimated accurately after
some delay about 5–8 iterations. The delay is due to using the truncated observations that contain past
observations since the time-varying covariance function changes continuously in time.

6.3. Fitting a Gaussian Process to an Advection-Diffusion Process

We apply our approach to a spatio-temporal process generated by physical phenomena (advection and
diffusion). This work can be viewed as a statistical modeling of a physical process, i.e., as an effort to fit
a Gaussian process to a physical advection-diffusion process in practice. The advection-diffusion model
developed in [26] was used to generate the experimental data numerically. An instantaneous release
of Qkg of gas occurs at a location (x0, y0, z0). This is then spread by the wind with mean velocity
u = [ ux 0 0 ]T Assuming that all measurements are recorded at a level z = 0, and the release
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Figure 4. (a) The weighting factor λ(t) and (b) the estimated λ(t).
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Table 2. Parameters used in simulation.

Parameter Notation Unit Value
Number of agents Ns - 5

Sampling time ts min 5

Initial time t0 min 100

Gas release mass Q kg 106

Wind velocity in x axis ux m/min 0.5

Eddy diffusivity in x axis Kx m2/min 20

Eddy diffusivity in y axis Ky m2/min 10

Eddy diffusivity in z axis Kz m2/min 0.2

Location of explosion x0 m 2

Location of explosion y0 m 5

Location of explosion z0 m 0

Sensor noise level σw kg/m3 0.1

occurs at a ground level (i.e., z0 = 0), the concentration C at an arbitrary location (x, y, 0) and time t is
described by the following analytical solution [27]:

C(x, y, 0, t) =
Q exp

(
− (∆x−u∆t)2

4Kx∆t
− ∆y2

4Ky∆t

)
4π

3
2 (KxKyKz)

1
2 (∆t)

3
2

(13)

where ∆x = x − x0, ∆y = y − y0, and ∆t = 5(t − 1) + t0. The parameters used in the simulation
study are shown in Table 2. Notice that this process generates an anisotropic concentration field with
parameters Kx = 20m2/min and Ky = 10m2/min as in Table 2. The fields at time t = 1 and t = 20

are shown in Figure 5. Notice the center of the concentration moved. In this case,Ns = 5 mobile sensing
agents were initialized at random positions in a surveillance regionQ = [ −50 150 ]× [ −100 100 ].
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Figure 5. Snap shots of the advection-diffusion process at (a) t = 1 and (b) t = 20.

(a) (b)

The initial values for the algorithm was chosen to be Ψ(0) = [ 100 100 100 ]T where we assumed
σf = 1 and σw = 0.1. For this application, we did not assume any prior knowledge about the covariance
function. Hence, the MAP estimator was the same as the ML estimator. The gradient method was used
to find the ML estimate.

We again assumed that the global basis is the same as the model basis and assumed all agents have
the same level of measurement noises for simplicity. In our simulation study, agents start sampling at
t0 = 100min and take measurements at time tk with a sampling time of ts = 5min as in Table 2.

Monte Carlo simulations were run for 100 times, and Figure 6 shows the estimated σx, σy, and σt
with (a) the random sampling strategy and (b) the optimal sampling strategy, respectively. With 100

observations, the running time at each time step is around 20s using Matlab, R2008a (MathWorks) in a
PC (2.4 GHz Dual-Core Processor). No attempt has been made to optimize the code. As can be seen
in Figure 6, the estimates of the hyperparameters tend to converge to similar values for both strategies.
Clearly, the proposed strategy outperforms the random sampling strategy in terms of the estimation error
variance.

7. Summary

In this paper, we presented a novel class of self-organizing sensing agents that learn an anisotropic,
spatio-temporal Gaussian process using noisy measurements and move in order to improve the quality
of the estimated covariance function. The MAP estimator was used to estimate the hyperparameters in
the unknown covariance function and the prediction of the field of interest was obtained based on the
MAP estimates. An optimal navigation strategy was proposed to minimize the information-theoretic
cost function of the Fisher Information Matrix for the estimated hyperparameters. The proposed scheme
was applied to both a spatio-temporal Gaussian process and a true advection-diffusion field. Simulation
study indicated the effectiveness of the proposed scheme and the adaptability to time-varying covariance
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functions. The trade-off between a precise estimation and computational efficiency using truncated
observations will be studied in the future work.

Figure 6. Simulation results (100 runs) for a advection-diffusion process. The estimated
hyperparameters with (a) random sampling and (b) optimal sampling.
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