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Abstract: This paper presents a benchmark for peak detection algorithms employed in
fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and
computational performance of currently used algorithms and those of a new proposed
artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms
are shown to have the highest precision but produce systematic errors that depend on the
FBG refractive index modulation profile. The proposed neural network displays relatively
good precision with reduced systematic errors and improved computational performance
when compared to other networks. Additionally, suitable algorithms may be chosen with the
general guidelines presented.
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1. Introduction

Fiber Bragg grating (FBG) interrogation techniques now form a mature field of research where
computational techniques must be used to improve the process of monitoring FBG sensors. When

used as sensors, FBG are usually subject to uniform fields of certain types of perturbation such as
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temperature or strain. In this case, the spectrum of the light reflected by the sensor has its peak
monitored, indicating the magnitude of the perturbation. Many techniques which are also part of
commercial systems use a periodically tunable laser source to illuminate the FBG and produce the
signal corresponding to the spectrum of the light that interacts with the device [1], characterizing
the spectrometric technique. These wavelength sweeping techniques may have high accuracy and
precision, requiring an additional computational processing of the acquired signals, and a wavelength
signal reference which is systematically used during the sensor interrogation process [2]. Computational
intelligence algorithms have been used to improve the peak detection accuracy in signals with distorted
spectrum in FBG strain sensors. This process provided an improvement in peak detection accuracy in
a signal with noise and distortion caused by a non-uniform disturbance in the sensor. One drawback of
any neural network use is its time execution performance which might be long to the implementation
in embedded hardware. Other neural networks were also proposed that could provide equivalent
performance in terms of accuracy and precision. In such cases, the approximation occurs during the
training phase of the neural network and is applied whenever the peak identification is necessary [3.,4].
Other simpler techniques demonstrate similar performances in terms of uncertainty and precision, but
are not capable of dealing with the same type of distortion solved by the neural network approach. More
typical techniques are based on least-squares (LS) fitting algorithms of an FBG spectrum, which result
in acceptable performance in interrogation systems as reported in the literature [5]. The use of a simple
algorithm to find the centroid of a spectrum profile would also provide useful results [6].

A benchmark evaluation of algorithms used in peak detection must be provided to produce guidelines
to evaluate the performance of the algorithms, including the least-squares fitting, computational
intelligence and simpler techniques. The benchmark for peak detection algorithms in the interrogation
of FBG sensors and the adapted algorithms are therefore made publicly available for general
applications [7]. In addition to the addressed problems, some aspects of the computational complexity of
neural networks algorithms for application in FBG interrogation are also evaluated by proposing the use
of a new computationally efficient training algorithm for neural networks. This may establish the limit
in the time execution performance of a neural network used in FBG interrogation with the additional
benefit of keeping the neural network performance of detecting the peak under different conditions of
distortion and noise in the spectrum signal.

2. Methodology

For comparison purposes, a brief description of the most frequently used algorithms to detect peak
position in the FBG spectrum will be provided in the following subsections. For testing purposes
the spectrum signal is simulated with different levels of additive white Gaussian noise (AWGN). The
algorithms were also applied in experimental data obtained with a tunable laser illuminating FBG
sensors. The proposal of the neural network algorithm for the approximation of the FBG spectrum
is described and the determination of its peak position statistics is then calculated, as equivalently
implemented for the other algorithms.

The described algorithms use input spectra with normalized amplitudes from 0 to 1 (0% and 100%
reflectivity, respectively). The transfer matrix method [8] is used to generate the test spectra for the

FBG with uniform and gaussian index modulation [2] profiles with a resolution of 0.1 pm. The mean
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refractive index change used was 10~* for the FBG with a length of 5mm in a standard single-mode
fiber. The simulated spectrum amplitude was normalized. The wavelength peak position of each
spectrum is determined by the maximum amplitude value position, and its resolution is then reduced
to 1 pm (wavelength distance between two consecutive points) and white-Gaussian noise is added to the
simulated signal with different signal-to-noise ratios (SNR). The signals were generated for SNR values
of 16 dB up to 60 dB in steps of 2dB. Sets of 300 input data for each SNR, using the same spectrum as
a signal, were generated to determine the statistics of the peak detection error.

The peak detection algorithms listed below were tested and their characteristics were evaluated with
the simulated spectra, verifying the accuracy (the mean of the difference between the peak obtained in
a noisy spectrum and the noiseless peak in a high resolution spectrum) and the precision (o, sample
standard deviation of the error) of each algorithm for each spectra set related to an SNR level.

The computational performance was verified for a sample spectrum, measuring the time needed for
the computation of each algorithm implementation using an input signal with an SNR of 60dB. The
implementations were compiled by gcc, version 4.5.1 and tested with an Intel® Core™2 Duo T7300
processor.

To measure its performance, the proposed neural network training algorithm was also compared to
other currently used algorithms in neural networks having the same topology and configuration as the
proposed algorithm,, namely the back-propagation [9] and iRprop [10] algorithms. For the evaluation of
time execution performance, the algorithms were executed until the network reached a mean square error
(MSE) of 0.0015 or smaller, or performed 10° iterations (epochs), whichever came first. The algorithms
were tested using a spectrum from an FBG with gaussian apodization and an SNR of 60 dB.

2.1. Test with Experimental Data

The tunable laser for the interrogation system is an Erbium-doped fiber (EDF) ring laser with an
intra-cavity Fabry-Perot filter (FPF) whose schematic design is depicted in Figure 1. The signal produced
by the laser illuminates fiber Bragg grating sensors through a fiber coupler. The reflected signal is
acquired with a photo-detector circuit and sent to a processing unit, which also controls the laser tuning.
The EDF has a length of 17 m with Er concentration of 280 ppm. The pump power of approximately
70 mW is introduced inside the EDF through a WDM coupler, which is part of an IFAM (Integrated
Fiber Amplifier Module). The optical isolator, also integrated with the WDM coupler, prevents the light
to propagate bi-directionally in the cavity. Through the output coupler, approximately 80% of the laser
light is emitted and the other 20% are used for optical feedback. The tuning range of the FPF (TB2500,
JDS FITEL) can be set by means of a voltage applied to its terminals which are connected to the PZT
that moves the mirrors of the filter. By correctly setting the voltage range to the FFP, the laser can be
tuned from 1,525 to 1,565 nm at the room temperature of 24 °C during the experiment. Between these
wavelengths the intensity of the laser output is approximately constant and higher than —20 dBm and its
line-width is also constant with an estimated value of 67 pm measured with an all-fiber interferometer.

The experimental data were acquired by a photo-detecting circuit collecting the light reflected by
the sensors, which were illuminated by the EDFL sensor interrogation system. Two sensors were
periodically monitored at a sweeping frequency of 10 Hz along a wavelength interval of 10nm. A

triangular waveform with a 50% duty-cycle was used as the tuning signal in the laser, while the
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processing of the acquired signal could be applied during the fall time of the triangular tuning waveform.
The data is composed of 20 measurements, where the signal is acquired by a photo-detector circuit
during the rise time of the triangular waveform that sweeps the laser wavelength. The acquired data
comprise a signal containing the information from the two FBGs, the sensor and the reference FBG, with
Bragg wavelength at 1,542.9nm and 1, 547nm. One of the FBG sensors is connected to a mechanical
apparatus able to stretch it in a controlled manner and its length is measured by a micrometer. The other
FBG is kept unperturbed and close to the perturbed sensor to compensate temperature variations during
the characterization. An example of the tuning signal and the photo-detected signal from the sensors is
depicted in Figure 2. In this test, the time difference between the peak positions corresponding to the
sensor and the reference are computed for each strain level. Since the signal is time-based, the time axis
must be converted to wavelength using the reference peak.

Figure 1. System schematic diagram for the interrogation of FBG sensors, FBG1 and FBG2,
with an Erbium-doped fiber laser (EDFL), a tunable Fabry-Perot filter, EDF in a ring cavity
and electronic tuning control.
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Another test verified the usage of the algorithms for peak detection of experimental data. The
experimental data were acquired with an FBG sensor interrogation system based on a tunable
Erbium-doped fiber laser. Two sensors were periodically monitored at a sweeping frequency of 10 Hz
along a wavelength interval of 10nm. A triangular waveform with a 50% duty-cycle was used as the
tuning signal in the laser, while the processing of the acquired signal could be applied during the fall
time of the triangular tuning waveform. The data is composed of 20 measurements, where the signal is
acquired by a photo-detector circuit during the rise time of the triangular waveform that sweeps the laser
wavelength. The acquired data comprise a signal containing the information from the two FBGs, the
sensor and the reference FBG, with Bragg wavelength at 1, 542.9 nm and 1, 547 nm. One example of the

tuning signal and the photo-detected signal from the sensors is depicted in Figure 2.
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Figure 2. Representation of the tuning waveform and the photo-detected signal
corresponding to the two FBG sensors. The signal is time-based and must be converted
to wavelength based on the FBG sensors Bragg wavelength.
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Similar to the simulated data, the algorithms were evaluated with respect to their accuracy and
precision. Seeing that the data is experimental there is no expected peak to calculate the accuracy
statistics. Since the relation between strain and peak shift is expected to be linear, the accuracy of
the algorithms is defined here as the mean square error between the obtained points in the experimental
setup and the linear fitted line.

Simulated AWGN were added to a base data set that already incorporates noise, generating spectra
with additional SNR values of 16 dB up to 60 dB in steps of 2dB. Each SNR group is composed by 100
data sets, each formed by 20 spectra, one spectra per strain. The accuracy computed by the previously
exposed method is presented for each SNR along with the precision (sample standard deviation instead

of the mean value).
3. Peak Detection Algorithms

If the FBG sensor is subjected to uniform disturbances along its length, the sensor’s modulation
index profile will be uniformly altered; this causes the FBG reflectivity spectrum to be uniformly shifted
towards lower or higher wavelengths, meaning that any point close to the spectrum peak will determine
how the sensor behaves. Due to intrinsic characteristics of the hardware in interrogation systems, the
spectrum can incorporate noise and the actual peak wavelength may differ from the peak found in a
simple search for the highest value in the photo-detected signal, making it necessary to have suitable
peak detection algorithms. In a fiber Bragg grating sensor, the spectrum profile of the light reflected by
the sensor also depends on the refractive index modulation profile in the fiber optic core. Due to specific
fabrication process characteristics, the modulation index envelope may not be uniform. To explore the
behavior of the algorithms, two different spectra will be used: one with symmetrical side-lobes around
the spectrum peak (uniform index modulation); and the other with non-symmetrical side-lobes produced

by an FBG with a gaussian modulation index profile. An example of a simulated FBG spectrum resulting
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from the light reflected by a sensor with uniform modulation index profile and signal-to-noise ratio of
30dB (SNR) is depicted in Figure 3, while Figure 4 shows the spectrum of the light reflected by a sensor
with gaussian modulation index profile. Both signals include AWGN.

Figure 3. Example of optical spectrum for an FBG with uniform modulation index profile
and AWGN.
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Figure 4. Example of optical spectrum for an FBG with gaussian modulation index profile
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3.1. Maximum

The maximum algorithm is based on the search for the wavelength with the highest amplitude in the
input data. This method is used as a reference of time execution performance but not of accuracy and

precision, due to the naturally high inherent noise sensitivity.
3.2.  Discrete-Time Filter

This algorithm uses a linear phase finite impulse response (FIR) low-pass filter to attenuate the high
frequency noise and then uses the maximum algorithm to find the peak. This algorithm is designed to
have a relatively low order and complexity. The low-pass filter was designed based on a Fourier analysis

of the noiseless spectrum signal from uniform and gaussian modulation profiles of FBG sensors. It is an
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equiripple FIR filter with a normalized passband cutoff frequency at the first zero crossing point of the
sensor signal Fourier transform. The FIR filter has an attenuation stopband of 80 dB. This resulted in
a filter with order M = 36. Time domain convolution was used to filter the sensor signal since M was
sufficiently small to justify its use instead of a frequency domain filtering technique. With respect to the
used input data, to enhance the computational performance those points whose amplitude is lower than
0.4 are discarded.

3.3. Centroid

The centroid algorithm produces a point corresponding to the geometric centroid of a spectrum,
calculated by Equation 1, where N is the size of the spectrum points vector, \; is the i-th point
wavelength, and A; is the i-th point amplitude. This method has already been used in other works [6,11].

SN NA;
Ay = =L
Zi:l Ai

In this algorithm, the spectrum centroid determines how the spectrum is being shifted. Before being

(1

fed to the centroid, the input spectrum is centered by removing those points with amplitude lower
than 0.4.

3.4. Least Squares Fitting

Another currently used peak detection algorithm consists of adjusting models to fit the spectrum.
With fiber Bragg grating sensors it is natural to use a gaussian or a polynomial function as a model [6],
since such functions may well approximate at least the peak region of the spectrum of the light reflected
by an FBG.

In this work, the gaussian fitting is implemented by minimizing the squared errors using the
Gauss-Newton algorithm. The adjusted gaussian function is shown in Equation 2, where A, C, and
V' are the adjusted parameters (amplitude, center, and deviation) and y; is the calculated amplitude for
the \; wavelength.

©— ) W) )

As shown in Figure 5, the gaussian fitting of an optical spectrum from an FBG with uniform
modulation does not result in a signal with the same shape, but there is a correlation between their peaks,
which makes this procedure interesting for peak detection in FBG sensors. For the gaussian fitting, only
those points with amplitude equal to or greater than (0.4 were used.

The polynomial fitting was also implemented using the Gauss-Newton algorithm. A third order
polynomial was used (Equation 3 with n equal to 3), where n is the order, y; is the calculated amplitude
for point 4, A; is the wavelength of point 7, and ¢; are the polynomial coefficients. Since the derivative of
Equation 3 with respect to a specific coefficient ¢; is a constant, the system is said to be linear and only
one iteration of the Gauss-Newton algorithm is needed to optimize the coefficients [12].

n

Yi = Z ch? 3)

J=0
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In the polynomial fitting, the amplitudes of the input spectrum are also normalized between 0 and 1,
discarding the points with amplitude lower than 0.8. An example of polynomial fitting for a spectrum

with gaussian modulation is shown in Figure 6.

Figure 5. Example of gaussian fitting for a spectrum from an FBG with uniform modulation

index profile.
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Figure 6. Example of polynomial fitting for a spectrum from a gaussian apodized FBG.
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3.5. Neural Network

A properly constructed artificial neural network is a universal function approximator, as seen in
the literature [13—15]; in a previous work [4] an ADALINE neural network was employed for peak
detection, removing unwanted interferometric signals. These facts contributed to the proposal of this
new peak detection algorithm, using a fully connected cascade (FCC) artificial neural network [16], but
now the computational performance may be improved, with the additional advantage of maintaining the
capacity of the algorithm to correct some types of distortions in the approximated spectrum. Similar
to the gaussian and polynomial fittings, the neural network tries to approximate the general shape of
the target function, ignoring the noise. In addition the algorithm allows the use of symmetrical and

non-symmetrical profiles without causing more pronounced systematic errors in the peak determination
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process. The unwanted noise approximation is handled by using a reduced number of neurons and
synaptic connections, preventing such over-fitting to occur. As an example, Figure 7 depicts the fitting
of a noisy spectrum with the proposed algorithm. Depending on the training method of the neural
network, different techniques may be used to relax the training phase, avoiding noise fitting [3].

The proposed neural network is composed of four neurons, disposed in three layers, as shown in
Figure 8. The first layer comprises two neurons, one being the input neuron and the other a bias neuron,
with the second and third layers having one neuron each. All neurons have forward connections with
every neuron in the next layers, resulting in a total of 5 synaptic connections. The connection between
the neuron in the second layer and the output neuron uses a sigmoid activation function, while the output

neuron uses a linear activation function.

Figure 7. Example of neural network fitting for a spectrum from a gaussian modulated FBG.

1

: T
(W Neural Network
! : Original ---- _|

0.95 i '
e N
] N'
0.9 A 5
Y G
0.85 !

0.8
/ \
0.75 !

07 ' ,

Amplitude

0.65 L
1550 1550.05 1550.1 1550.15 1550.2

Wavelength [nm]

Figure 8. Topology of the proposed FCC neural network.

Input layer

Hidden layer Output layer

The network was trained by the Neuron by Neuron (NBN) algorithm [16], using a previously
implemented and publicly available library [7]. The NBN algorithm consists of a performance
optimization of the Levenberg-Marquardt algorithm [17]. When applied in neural network training,
the LM algorithm adjusts the synaptic weights of the trained network using Equation 4, where w is the
weight matrix, H is the Quasi-Hessian matrix, G is the error gradient and y is a normalization factor.

Aw= (H+ pl)'G 4)

For the proposed neural network, the Quasi-Hessian matrix is calculated by Equation 5, where J
is a m x n Jacobian matrix and J7T is its transpose, with m equal to the number of data points
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(wavelength-amplitude tuple) and n equal to the number of synaptic weights. Each data point results
in one row of the Jacobian matrix, calculated by back-propagation.

H=JYJ &)

The error gradient is calculated by Equation 6, with the error matrix £ calculated by forward propagation.

G=J'FE (6)

Due to its size, which is a function of the number of data points, the full Jacobian matrix needs more
memory to be stored than the H and G matrices. The optimization resulting from the NBN algorithm
consists of building A and G directly, without storing the full Jacobian matrix [16]. This significantly
reduces the memory needed by the training, since both the Quasi-Hessian and gradient matrices sizes
depend only on the number of synaptic weights, which is usually more than one order of magnitude
smaller than the number of data points. Although this optimization does not reduce the computational
complexity of the algorithm, it results in performance gains due to reduced memory allocations.

The optimization introduced by NBN is based on the fact that matrix multiplication can be
implemented by multiplying the columns of the left operand with the rows of the right operand, resulting
in a summation of partial matrices, that can be added to a result matrix as soon as they are calculated. As
both the Quasi-Hessian and gradient matrices equations involve the transposed Jacobian matrix as left
operand, one can calculate them iteratively, after the calculation of each row of the Jacobian matrix.

Only those data points with amplitude equal to or greater than 0.65 were used, with the wavelengths
scaled between 0 and 1 to match the activation function operation range. Additionally, the method

converged faster when initializing all the weights with random positive values.

3.6. Results

Accuracy results for the FBG with uniform modulation profile are shown in Figure 9, while the
corresponding precision values are shown in Figure 10. For the gaussian modulation profile, the accuracy

results appear in Figure 11, with precision in Figure 12.

Figure 9. Accuracy for the uniform modulation profile.
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Figure 10. Precision for the uniform modulation profile.
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Figure 11. Accuracy for the gaussian modulation profile.
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Figure 12. Precision for the gaussian modulation profile.
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The computational performance of the algorithms is also a critical factor to provide a guideline for
the implementation of the algorithm in a real-time system or in embedded hardware. Table 1 shows

the algorithms execution performance, using a normalized factor, i.e., all values are normalized using
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the execution time of the maximum algorithm as a reference. For reference purposes, the maximum
algorithm runs in approximately 0.5 s on the test hardware.

Table 1. Computational performance of the evaluated implementations.

Algorithm Normalized time
Maximum 1
Centroid 0.67
Filter 27
Polynomial Fitting 340
Gaussian Fitting 943
Neural Network 25,000

3.7.  Experimental Results

The FBG strain sensor shows a linear response, as the perturbation was within the physical strain limit
of the sensor. Examples of experimental calculated points corresponding to the wavelength difference
between the reference FBG peak and the strain sensor peak, as a function of the strain level, are depicted
in Figure 13. Three of the algorithms were chosen based on their characteristics of execution time,
uncertainty and precision, for which the fluctuation of the points would show the behavior of the
algorithm under practical conditions. The chosen algorithm could be used if its execution time was

shorter than the fall time of the tuning triangular waveform in the tunable laser.

Figure 13. Relation between strain and spectrum position by different peak detection
algorithms.
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The values for the different neural network training algorithms are shown in Table 2, where the
resulting mean MSE and mean epochs needed to reach any of the stopping conditions are presented.
As an example, both the iRprop and Incremental algorithms failed to reach the target MSE, reaching the

epoch limit.
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Table 2. Performance of different neural network training algorithms.

Training Algorithm Mean MSE Mean Epochs

NBN 1.45 11
iRprop 1.6 106
Incremental 3.5 106

4. Discussion

With respect to the FBG signal corresponding to the sensor with uniform modulation profile, the
results presented in Figures 9 and 10 support the conclusion that the gaussian fitting and the centroid
are more accurate and precise than the other algorithms, and have a relatively good noise tolerance.
As expected, the naive maximum algorithm shows a higher standard deviation (lower precision). The
polynomial fitting and neural network algorithms demonstrated similar precision, although the neural
network has shown a higher peak difference for different levels of SNR. The filter has shown better
results than the maximum algorithm until 30 dB, with worse results for lower SNR levels. This indicates
that the deteriorated precision level while using the filter to improve peak detection is caused by low
frequency noise which could not be suppressed by the filtering process. However for practical SNR
levels above 30 dB, the filtering may be used.

The results presented in Figures 9 and 10 also support the conclusion that the centroid and gaussian
fittings have the highest precision (lowest deviation) between the algorithms, although they also produce
systematic errors. In fact, the precision of the algorithms for the gaussian profile are similar to the
uniform profile. For the FBG sensor with a gaussian index modulation profile, the proposed neural
network algorithm has also shown a systematic deviation in the accuracy, but less than what was observed
in the centroid and gaussian fitting errors. Even when considering the lack of symmetry in the signal
obtained from a Gaussian-apodized FBG, the precision and accuracy did not show much difference, and
could be considered similar for different spectrum profiles. This is only evidenced when calculating the
statistics with more than 100 input data spectra for each SN R. Considering the gaussian-apodized FBG,
the systematic error produced by the centroid algorithm is related to the spectrum asymmetry, while the
error produced by the gaussian fitting is related to the mismatch between the model being fitted and the
spectrum shape.

The results of the experimental data test presented in Figures 14 and 15 showed a similar behavior
for both simulated and experimental data, in spite of the test methodology and unit differences. Due to
the usage of a reference sensor, the systematic errors shown by the centroid and gaussian algorithms in
the simulations could be canceled, causing these two algorithms to have the best accuracy among the
evaluated algorithms.

The computational performance of the algorithms differs by orders of magnitude, preventing the
usage of some algorithms in applications that require superior performance. As seen in Table 1,
the maximum and centroid algorithms have the best performance. Even though they have the same
computational complexity when considering the vector input size, the centroid performs better due to
implementation details. The filter method is approximately one order of magnitude slower than the
maximum algorithm, followed by the polynomial and gaussian fittings. The neural network algorithm



Sensors 2011, 11 3479

had the worst performance: approximately four orders of magnitude slower than the maximum algorithm
using the highly optimized Neuron-by-Neuron algorithm. However, as shown in the literature, such
neural network algorithms may solve spectrum distortion problems caused by noise and non-uniform
disturbance in the sensors [3]. Additionally, the training algorithm used by the proposed neural network
has demonstrated significant enhancements over currently used algorithms, as shown in Table 2 and
established a lower limit in time performance for use of the neural network in this type of FBG

interrogation.
Figure 14. Accuracy for the experimental data test calculated using the mean square error

between measured points and the fitted straight line.
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Figure 15. Precision for the experimental data test based on the square error standard
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When considering the practical implementation of this training algorithm or the trained neural
network, a specific processor would be required for the implementation of the previously mentioned
matrix calculation algorithms, otherwise the algorithm will not be capable of operating in a real-time
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manner. Hardware implementation of neural network algorithms or its components may be a direction
to the practical implementation of the computationally intelligent signal processing in the interrogation,
since there is a current trend to implement neural algorithms in dedicated hardware, for example, using
modular neural networks (MNN) [18]. The use of digital signal processors with the neuron-by-neuron
algorithm and optimized libraries for the matrix calculations would also be a straightforward suggestion.
The criteria to select the neural network instead of the centroid or the gaussian fitting would be based on
the application and how much information the user would like to extract from the processed data.

One strategy to enhance the performance of the neural network algorithm for specific cases is to
initialize the weights with previously calculated values, where the network training will be responsible
only for the fine-tuning of the weights, performed with a smaller number of training iterations (epochs).

For the FBG sensor with a uniform index modulation profile and the FBGs employed in the
experimental data test, it is clear that the centroid and gaussian fitting algorithms have advantages over
the other algorithms, due to their higher accuracy, precision and computational performance. However,
it is not possible to conclude the same for the gaussian profile. Regarding the FBG with a gaussian index
modulation profile, the optimum algorithm choice depends on application circumstances such as the
expected SNR in the optoelectronic system, and the performance requirements. However, the centroid
and parametric fitting methods can still give good results with applications where the systematic error
can be corrected or does not matter.

Due to the longer training phase time to apply the algorithms in experimental data, ordinary neural
network training algorithms could be used only in off-line processing of the signal, and not at such
tuning frequencies in the laser with this interrogation technique. The largest differences between the
fitted line and the measured processed experimental points were obtained for the maximum algorithm.
The neural network algorithm shows a smaller amplitude fluctuation than the maximum algorithm, and
as previously shown the centroid demonstrates the smallest fluctuations.

5. Conclusions

In this work a benchmark for algorithms used in FBG interrogation systems was implemented. A new
algorithm for training a neural network used as a universal approximator of the FBG reflective spectrum
was proposed, and its performance was compared with other algorithms used for the same purpose. The
Neuron-by-Neuron training algorithm improves the time performance of the neural networks used to
approximate the FBG spectrum. Due to the capacity of neural networks to correct some distortions in the
spectrum, they could be used as an alternative to more elementary algorithms. In addition, this training
algorithm may establish a lower limit in the time performance enhancement when using neural networks
to approximate FBG spectrum, allowing them to be used in real-time processing and embedded systems.
As a general rule, the centroid may be considered the fastest and most precise algorithm, even when
producing a larger systematic error due to the eventual occurrence of non-symmetrical spectrum signals.
This benchmark also provides some guidelines for researchers to choose the proper algorithm for their
own application.
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