
Sensors 2011, 11, 4043-4059; doi:10.3390/s110404043 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Detection, Composition and Treatment of Volatile Organic 

Compounds from Waste Treatment Plants 

Xavier Font, Adriana Artola * and Antoni Sánchez 

Composting Research Group, Department of Chemical Engineering, Universitat Autònoma de 

Barcelona, 08193-Bellaterra (Cerdanyola del Vallès), Barcelona, Spain;  

E-Mails: xavier.font@uab.cat (X.F.); antoni.sanchez@uab.cat (A.S.) 

* Author to whom correspondence should be addressed; E-Mail: adriana.artola@uab.cat;  

Tel.: +34-935-814-480; Fax: +34-935-812-013. 

Received: 23 February 2011; in revised form: 18 March 2011 / Accepted: 1 April 2011 /  

Published: 6 April 2011 

 

Abstract: Environmental policies at the European and global level support the diversion of 

wastes from landfills for their treatment in different facilities. Organic waste is mainly 

treated or valorized through composting, anaerobic digestion or a combination of both 

treatments. Thus, there are an increasing number of waste treatment plants using this type 

of biological treatment. During waste handling and biological decomposition steps a 

number of gaseous compounds are generated or removed from the organic matrix and 

emitted. Different families of Volatile Organic Compounds (VOC) can be found in these 

emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are 

the main source of complaints and social impacts of any waste treatment plant. This work 

presents a summary of the main types of VOC emitted in organic waste treatment facilities 

and the methods used to detect and quantify these compounds, together with the treatment 

methods applied to gaseous emissions commonly used in composting and anaerobic 

digestion facilities. 
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1. Organic Waste Treatment Plants and Gaseous Emissions 

Solid waste management is becoming a global problem in developed countries. According to 

international recommendations and legislation, different technologies are being used to reduce landfill 

disposal of organic wastes, improving recycling of organic matter and nutrients [1]. Among the 

technologies used to treat the source-separated organic fraction of municipal solid wastes (OFMSW), 

anaerobic digestion and composting are widely recommended as environmentally friendly 

technologies. Regarding this, although the objective of composting and anaerobic digestion, as well as 

other waste treatment technologies, is to safely transform wastes into less polluting and/or hazardous 

substances or, when possible, useful products reducing their possible impact on the environment, there 

are some inherent environmental impacts associated with waste recycling in large-scale facilities. 

Odorous compound emissions and atmospheric pollution are the most common of these impacts. In 

fact, composting plants present numerous odor and pollution sources, including reception and 

materials handling, forced aerated composting, stockpiling, etc. Gaseous emissions in composting 

facilities are typically constituted by nitrogen-based compounds, sulphur-based compounds and a wide 

group of compounds denominated Volatile Organic Compounds (VOCs) [2]. VOCs are also produced 

during the anaerobic digestion process [3], although their composition can be very different from that 

of aerobic processes.  

Volatile Organic Compounds is a denomination used to refer to a wide group of organic compounds 

whose vapor pressure is at least 0.01 kPa at 20 °C [4]. VOCs are also characterized by their low water 

solubility. Once in the atmosphere, VOCs participate in photochemical reactions producing 

photochemical oxidants. According to Eitzer [2], who undertook a pioneering study on the exhaustive 

characterization of the different VOCs emitted at the different stages of the composting process, most 

VOCs in composting plants are emitted during the early stages of process: i.e., at the tipping floors, at 

the shredder and during the initial forced aeration composting period. Also, incomplete or insufficient 

aeration during composting can produce sulphur compounds of intense odor, whereas incomplete 

aerobic degradation processes result in the emission of alcohols, ketones, esters and organic acids [5]. 

Van Durme et al. [6] identified dimethyl sulphide, dimethyl disulphide, limonene and α-pinene as the 

most significant odorous VOC in a wastewater sludge composting facility. According to this study, the 

latter two compounds were released from the wood chips used as bulking agent. In fact, Büyüksönmez 

and Evans [7] also found six different terpenes (-pinene, -pinene, 3-carene, camphene, -myrcene 

and D-limonene) as the major compounds responsible for VOC emissions from green waste 

composting processes (within 33 and 95% of total emissions). These compounds were also 

predominant in feedstock natural breakdown. 

Delgado-Rodríguez et al. [8] reported that volatile compounds emissions are closely related to the 

composting process phases: aldehydes, alcohols, carboxylic acids, esters, ketones, sulphides and 

terpenes are mainly emitted during the initial acid phase, while in the thermophilic phase ketones, 

organosulphur-compounds, terpenes and ammonia become predominant. During the cooling phase 

sulphides, terpenes and ammonia are the main volatile compounds emitted. These authors also 

investigated the effect of the process control parameters (moisture, aeration and C/N ratio) on volatile 

compound emissions in MSW (Municipal Solid Waste) composting. The C/N ratio had the most 

significant effect on VOC emissions, followed by the aeration level and the moisture content. The 
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effect of aeration on emissions from composting mixtures was also highlighted by Staley et al. [9], 

when comparing emissions from aerobic and anaerobic treatments. However, in both cases it must be 

considered that the C/N ratio should be related to the biologically available carbon and nitrogen forms, 

a point that is not often considered [10]. At the laboratory scale, total VOC concentration in exhaust 

gases from composting processes of different wastes has been also studied and it was concluded that 

the highest concentrations of VOCs were emitted during the first 48 h of the process [11]. These 

authors also stated that total VOC emissions could not be correlated with the biological activity of the 

process as measured by respirometry. Pierucci et al. [12] found the same emission pattern (main VOC 

release during the first days of process), although the possible correlation with the biological activity 

was not studied. 

Tolvanen et al. [13] and Komilis et al. [14] studied VOC emissions from the composting  

process considering the possible negative effects on plant workers and the nearby population.  

Tolvanen et al. [13] stated that VOC concentrations detected at a composting plant treating  

source-separated catering waste were much lower than the national threshold limit values, thus 

avoiding primary health effects, although many of the compounds exceeded their threshold odor 

concentrations; thus secondary symptoms as nausea and hypersensibility might be expected from 

exposure to unpleasant odors. In fact, the effect of workers’ simultaneous exposure to several VOCs is 

not very well known since synergic effects should be also considered. On the other hand,  

Komilis et al. [14] found various xenobiotic VOCs in gaseous emissions during laboratory scale 

composting of different MSW components. 

VOC emissions in biological treatment processes have also been studied as environmental loads 

related to these processes. Regarding this, VOC emissions have been reported as emission factors  

(i.e., amount of VOC emitted per weight of waste treated) or from a Life Cycle Assessment (LCA) 

perspective, since their contribution is mainly related to the Photochemical Oxidation Potential (POP). 

Emission factor values of 1.70 and 0.59 kg of VOC Mg
−1

 of OFMSW treated were reported by Baky 

and Eriksson [15] and Smet [3] from studies at laboratory scale, while Cadena et al. [16] found 0.2  

and 7.3 kg VOC Mg
−1

 of OFMSW treated in two different full scale composting plants using different 

technologies. In LCA studies, emissions of VOC to the atmosphere are expressed in kg ethylene 

equivalent/kg of emission and included in the POP category [17]. 

The presence of VOCs in gaseous emissions from waste treatment plants has been reported as total 

VOCs emitted [16-19], as concentration of different families of VOCs [14,19] or as individual VOC 

concentrations [3,20]. Table 1 summarizes some values reported for VOC emissions in biological 

treatment processes of organic wastes by different authors. Some values in Table 1 are reported as a 

range of VOC concentrations obtained in a same plant during different sampling days or as different 

values obtained by the same authors in different plants. As seen in Table 1, values of VOC 

concentration are very variable, even for the same facility and the same type of waste. In the case of 

total terpenes, for instance, values reported in Table 1 for an effluent of a biofilter in a composting 

plant range between 20 and 12,350 μg/m
3
, while the same type of compounds for an anaerobic 

digestion plant show concentrations between 683 and 4,750 ppbv for non-treated OFMSW and 414 

and 1,151 ppbv for the anaerobically digested residue. As a general trend observed from the wastes 

and treatments reported, the compounds with the highest presence in the emissions are terpenes and 

alcohols followed by ketones. 
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Table 1. VOC emissions from waste treatment plants. 

Compound Concentration Units Waste Type of plant/measurement area Reference 

Hydrocarbons (total) 30/560 µg m−3 VFG1 Effluent of biofilter [20] 

Pentene nd/26.20 

nd/75 

ppb 

µg m−3 

Food waste 

Food waste 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

[21] 

[22] 

Hexene 8.02/16.13 

28/55 

ppb 

ppb 

Food waste 

Food waste 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

[21] 

[22] 

Benzene 1.04/17.52 

3/56 

ppb 

ppb 

Food waste 

Food waste 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

[21] 

[22] 

Toluene  5.24/16.90 

20/64 

ppb 

ppb 

Food waste 

Food waste 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

[21] 

[22] 

Ethylbenzene 1.29/6.74 

6/29 

ppb 

ppb 

Food waste 

Food waste 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

[21] 

[22] 

p,m-Xylene 1.95/10.56 

8/46 

ppb 

ppb 

Food waste 

Food waste 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

[21] 

[22] 

Styrene 68.50/113.58 

291/482 

ppb 

ppb 

Food waste 

Food waste 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

[21] 

[22] 

o-Xylene 1.00/8.01 

360/842 

ppb 

ppb 

Food waste 

Food waste 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

[21] 

[22] 

Aliphatic Hydrocarbons (total) 2.07–30.2/0.48–14 ppbv OFMSW Anaerobic digestion plant F/D2 [19] 

Aromatic Hydrocarbons (total) 19.3–39.1/22.3–55.1 ppbv OFMSW Anaerobic digestion plant F/D2 [19] 

Ketones (total) nd-2820 µg m−3 VFG1 Effluent of biofilter [20] 

Acetone 211.17/187.15 

500/443 

ppb 

ppb 

Food waste 

Food waste 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

[21] 

[22] 

Butanone 15.17/10.34 

45/30 

0.002–0.56 

12–337/311–556 

ppb 

ppb 

mg·m−3 

ppbv 

Food waste 

Food waste 

Food waste 

OFMSW 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

Composting plant-Composting hall 

Anaerobic digestion plant F/D2 

[21] 

[22] 

[13] 

[19] 

2,3-Butanedione 0.009–1.15 mg·m−3 Food waste Composting plant-Composting hall [13] 

Alcohols (total) nd-4150 

413–762/38.5–82.6 

µg·m−3 

ppbv 

VFG1 

OFMSW 

Effluent of biofilter 

Anaerobic digestion plant F/D2 

[20] 

[19] 
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Table 1. Cont. 

2-Butanol nd-0.69 

105–208/17–75 

mg·m−3 

ppbv 

Food waste 

OFMSW 

Composting plant-Composting hall 

Anaerobic digestion plant F/D2 

[13] 

[19] 

3-Methyl-1-butanol 0.02–0.13 mg·m−3 Food waste Composting plant-Composting hall [13] 

Ethanol 176–365/4–7 ppbv OFMSW Anaerobic digestion plant F/D2 [19] 

Propanol 36–121/0 ppbv OFMSW Anaerobic digestion plant F/D2 [19] 

Aldehydes (total) nd-3460 µg·m−3 VFG1 Effluent of biofilter [20] 

3-Methylbutanal 0.003–0.03 mg·m−3 Food waste Composting plant-Composting hall [13] 

Ethers (total) nd-270 

0–78.8/1.72–6.4 

µg·m−3 

ppbv 

VFG1 

OFMSW 

Effluent of biofilter 

Anaerobic digestion plant F/D2 

[20] 

[19] 

Esters (total) nd-3270 µg·m−3 VFG1 Effluent of biofilter [20] 

 224.3–355.3/0.00–12.7 ppbv OFMSW Anaerobic digestion plant F/D2 [19] 

Methyl acetate 1.31/5.24 

4/16 

0.003–0.11 

55–158 

ppb 

ppb 

mg·m−3 

ppbv 

Food waste 

Food waste 

Food waste 

OFMSW 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

Composting plant-Composting hall 

Anaerobic digestion plant F/D2 

[21] 

[22] 

[13] 

[19] 

Ethyl acetate 2.49/nd 

9/nd 

0.02–0.49 

ppb 

ppb 

mg·m−3 

Food waste 

Food waste 

Food waste 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

Composting plant-Composting hall 

[21] 

[22] 

[13] 

Ethyl hexanate 0.001–0.07 mg·m−3 Food waste Composting plant-Composting hall [13] 

Terpenes (total) 20–12350 

683–4750/414–1151 

µg·m−3 

ppbv 

VFG1 

OFMSW 

Effluent of biofilter 

Anaerobic digestion plant F/D2 

[20] 

[19] 

-Pinene 

 

nd/2.56 

nd/14 

0.002–0.12 

26–80/0 

ppb 

ppb 

mg·m−3 

ppbv 

Food waste 

Food waste 

Food waste 

OFMSW 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

Composting plant-Composting hall 

Anaerobic digestion plant F/D2 

[21] 

[22] 

[13] 

[19] 

-Pinene 7.29/7.71 

41/43 

0.02–0.04 

ppb 

ppb 

mg·m−3 

Food waste 

Food waste 

Food waste 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

Composting plant-Composting hall 

[21] 

[22] 

[13] 
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Table 1. Cont. 

Limonene 43.29/66.29 

240/368 

0.02–1.40 

433–4389/178–920 

ppb 

ppb 

mg·m−3 

ppbv 

Food waste 

Food waste 

Food waste 

OFMSW 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

Composting plant-Composting hall 

Anaerobic digestion plant F/D2 

[21] 

[22] 

[13] 

[19] 

p-Cymene 9.00/11.57 

49/63 

64–80/53–134 

ppb 

ppb 

ppbv 

Food waste 

Food waste 

OFMSW 

2 composting plants-Composting hall 

2 composting plants-Composting hall 

Anaerobic digestion plant F/D2 

[21] 

[22] 

[19] 

-Myrcene 0.04–0.11 mg·m−3 Food waste Composting plant-Composting hall [13] 

3-Carene 0.007–0.03 mg·m−3 Food waste Composting plant-Composting hall [13] 

Nitrogen compounds (total) 1000/30000a 

0.00–3.42/0.00–7.11 

ppb 

ppbv 

Food waste 

OFMSW 

2 composting plants-Composting hall 

Anaerobic digestion plant F/D2 

[21] 

[19] 

Sulphur compounds (total) nd-290 

0–79.6/0–8.1 

µg·m−3 

ppbv 

VFG1 

OFMSW 

Effluent of biofilter 

Anaerobic digestion plant F/D2 

[20] 

[19] 

Dimethyl sulfide nd/300a 

nd-0.003 

ppb 

mg·m−3 

Food waste 

Food waste 

2 composting plants-Composting hall 

Composting plant-Composting hall  

[21] 

[13] 

Dimethyl disulfide 0.001–0.004 mg·m−3 Food waste Composting plant-Composting hall [13] 

Halogenated compounds (total)  nd-40 

0–0.08/0 

µg·m−3 

ppbv 

VFG1 

OFMSW 

Effluent of biofilter 

Anaerobic digestion plant F/D2 

[20] 

[19] 

Carboxylic acids 0–164.7/0 ppbv OFMSW Anaerobic digestion plant F/D2 [19] 

Acetic acid 250/nda 

0.05–1.02 

ppb 

mg·m−3 

Food waste 

Food waste 

2 composting plants-Composting hall  

Composting plant-Composting hall 

[21] 

[13] 

Butanoic acid 0.0005–0.14 mg·m−3 Food waste Composting plant-Composting hall [13] 

Furans nd-270 µg·m−3 VFG1 Effluent of biofilter [20] 

TOTAL VOC 0.71–10.10 

1672–6005/1178–1694 

612–63 

0.08–1.4 

mg·m−3 

ppbv 

mg·C·m−3 

g·C·m−3 

Food waste 

OFMSW 

OFMSW 

OFMSW 

Composting plant-Composting hall 

Anaerobic digestion plant F/D2 

Composting pilot scale reactor 

Composting plant (in vessel)-biofilter input 

[13] 

[19] 

[11] 

[18] 
1 VFG: vegetable, fruit and garden waste. 2 F/D: fresh, non digested waste/digested waste. a Measured with gas detector tubes. nd: not detected.  

The symbol ―-― in concentration values means the range of VOC detected. The symbol ―/― in concentration values means the results of different plants or measurement 

areas in the same plant (see fifth column for specific locations). 
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Sulphur compounds, with a relatively low concentration, are significant for their contribution to the 

odor level. In fact, dimethyl sulfide and dimethyl disulfide together with carbon disulfide and methyl 

and ethyl mercaptan have been found in gaseous emissions from aerobic and anaerobic waste 

treatments. Actually, these compounds are very common in organic waste decomposition processes, 

originating mainly in the microbial degradation of sulphur-containing amino acids found in  

proteins [3,23].  

Regarding nitrogen compounds, there is an important difference within values reported resulting 

from the analysis of samples using GC-MS (Gas Chromatography-Mass Spectrometry) and gas 

detection tubes, with those obtained with tubes being higher (plants studied in both cases correspond to 

different treatments). It is clear that both analytical methodologies need a deeper and more complete 

comparison to be fully reliable being, at present, GC-MS the most powerful tool to quantify  

VOC emissions. 

There are also other compounds that have not been listed in Table 1 but have been detected by some 

authors in low concentrations. This is the case, for instance, of halogenated and aromatic compounds 

such as trichlorofluoromethane, 1,1,1-trichloroethane, dicloromethane, 1,3-dichlorobenzene, naphthalene 

or p-isopropyltoluene [2,14,20] or other terpenes such as camphene or thujone [3,20]. 

The presence of VOCs has also been investigated in landfill gas and ambient air surrounding 

landfill facilities [24,25]. Aromatic VOCs (benzene, toluene, ethylbenzene and xylene) and reduced 

sulphur compounds (RSC) were found in these studies, with their concentration and relative 

percentages in landfill gas being strongly dependant on landfill aging [26]. Among the RSCs found in 

these emissions, hydrogen sulfide was predominant both in emissions from active and inactive landfill 

stages [27]. In addition to this, the conditions of the waste in the landfill, which are mainly anaerobic, 

must be related to the composition of the emitted gas [9]. 

VOC and Odors 

The presence of odors is the main concern associated with VOC emissions and it has been 

investigated by a wide number of researchers. 2-butanone, α-pinene, tetrachloroethylene, dimethyl 

disulfide, β-pinene, limonene, phenol and benzoic acid were included in the study of  

Bruno et al. [28] as representative compounds of some important classes related to high odor impact. 

Pierucci et al. [12] found that odorimetric tests (olfactometry measurements) were in agreement 

with GC-MS analysis of VOCs, especially for terpenes when VOCs and odors from MSW composting 

were monitored. Defoer et al. [20] concluded that the relationship between chemical (GC-MS 

measurements) and odor concentration (olfactometry) is specific for each type of odor and cannot be 

generalized. These authors established a good linear relationship between odor concentration and total 

VOC concentration at a biofilter output during the composting of vegetable, fruit and garden wastes. 

Odor concentration was also well correlated with esters and ketones content. However, in an animal 

rendering plant, VOCs emitted from the biofilter were a poor indicator of the odor level. In this case, 

the best relationship was found for compounds containing organic sulphur. 

Mao et al. [22] determined ammonia, amines, dimethyl sulfide and acetic acid as the responsible for 

most odors in food waste composting plants compared to numerous VOC. These authors  
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identified 29 compounds in the odor from this type of waste treatment plants although no correlation 

attempt between chemical analyses and odor concentration measurements was reported. 

Tsai et al. [21] investigated the relationship of the critical odorants from food waste composting 

plants with their human olfactory effect (olfactometry results). These authors found six critical 

odorants: ethylbenzene, dimethyl sulfide, trimethylamine, p-cymene, ammonia and acetic acid. 

Correlations found were different when low or high concentrations of these compounds were 

considered. For ethylbenzene, dimethyl sulfide, trimethylamine and p-cymene, which presented a very 

low olfactory threshold (0.002 ppm), a linear relationship between concentration and odor was only 

found for concentration values within the 0.25–100 ppm range. A linear correlation was also found for 

odors and acetic acid (in the 0.1–50 ppm range), while it was not possible for ammonia when 

concentrations within 5 and 100 ppm were considered. 

On the other hand, D’Imporzano et al. [29] and Orzi et al. [19] tried to correlate VOC emissions 

with odors measured by an electronic nose and also with the biological activity during the biological 

treatment process. D’Imporzano et al. [29] found a good correlation between odor molecules detected 

by the electronic nose and the Dynamic Respiration Index (DRI), used as a measure of the biological 

activity during a food-waste composting process at pilot scale. Even if an adequate oxygen 

concentration was maintained during the biological treatment process, anaerobic conditions were 

developed during the highest microbial activity stage resulting in a high level of sulphur compounds, 

methane and hydrogen in the outlet gas stream. Orzi et al. [19] studied odors (measured by the 

electronic nose and by olfactometry) and VOC concentration (using GC-MS) also relating them to the 

biological activity (measured using aerobic and anaerobic indices) in an anaerobic digestion treatment 

plant processing the organic fraction of municipal solid waste. These authors state that as the 

biological stability increases (during the entire anaerobic digestion process represented by the 

sampling points, i.e., not digested waste, digested waste and post-digested waste) odor emissions 

measured by olfactometry decrease, although no correlation between total VOC concentration and 

olfactometry measurements could be established. Data obtained from the electronic nose measures 

showed that odor reduction due to the increment of biological stability was accompanied by a change 

in the organic compounds present in air samples. Further measurements using GC-MS confirmed these 

results as VOC mainly present in air samples obtained for the air surrounding fresh waste were 

terpenes (61%), alcohols (18%) and esters (9%), while air samples from digested waste still presented 

a high presence of terpenes (51%) and carbonyl compounds (40%), being these same compounds 

predominant in post-digested waste (58% of terpenes and 34% of carbonyl compounds). Regarding 

this point, it is evident that a reliable correlation between the odor values obtained from electronic 

noses or olfactometry measurements and the chemical composition determined by CG-MS still has not 

been established. Consequently, no international consensus about the suitability of these techniques 

has been reached.  

2. VOC Sampling and Detection 

The main sources of VOCs and other gaseous contaminants in composting plants are area emission 

sources. Composting or, in general, waste treatment plants, can be completely confined with process 

emissions treated through scrubbers and/or biofilters or completely open, where the composting 
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process takes place commonly in windrows (static, aerated and/or turned), or a mixture of both 

situations. Then, biofilter and composting windrows surfaces are the sources of VOCs. In addition, 

emissions from reception and storage areas should be considered if not confined. Also the emissions of 

VOCs during some pre (waste conditioning) and post treatment (compost sieving) operations can be 

significant. In fact, Albretch et al. [30] stated that odors emission during turning, sieving and shredding 

may exceed those from biofilters. Also, Pagans et al. [11] showed a continuous emissions of VOCs 

from the biofilter even when this was not working. In anaerobic digestion treatment plants, area 

emission sources also exist as a focus of VOCs (biofilters external surfaces), together with some point 

emission sources, such as safety flares for biogas. 

2.1. VOC Sampling: Obtaining Representative Samples from Area Sources 

As can be deduced from the nature of the emitting surfaces, obtaining representative and 

comparable samples of gaseous emissions is not straightforward. In addition, no impact on the 

characteristics and conditions of the source should be caused when sampling and no influence of the 

equipment used on the sample should be guaranteed [31]. In the case of area sources, it is generally 

very difficult to cover the entire emission area during sampling. Representative sampling sites have to 

be established, but there are no regulations on how to select the sites [31]. Hudson et al. [32] located 

odor sampling points according to a regular array at the surface of different shape piggery anaerobic 

treatment ponds, being the number of points related to the pond surface area. Odor monitoring was 

conducted at different periods during a year to take into consideration the possible seasonal variations 

in the waste characteristics and climatic conditions. Average values were calculated for each pond. A 

wind tunnel device was used to collect air samples forcing carbon filtered ambient air into the tunnel 

and measuring air velocity with a hot wire anemometer. Sironi et al. [33] also used the wind tunnel to 

obtain air samples for odor analysis at different points of mechanical-biological treatment plants of 

MSW. These authors also reported the use of a flux chamber and a static hood in the study of a 

composting plant [34]. The flux chamber was positioned on the heaps during sufficient time to reach 

equilibrium conditions between the gas and the solid phase. Afterwards, the air sample was collected 

sucking the air by means of a depression pump inside Nalophan
TM

 bags. The static hood was used to 

obtain air samples on a biofilter surface with the function of isolating the sampling point from the 

external conditions and to channel the air stream in a separated stack. To obtain representative air 

samples from a biofilter surface, Defoer et al. [20] covered the entire surface with a polyethylene foil 

fixing three of the four sides on the biofilter material. Gaseous samples were obtained by a PTFE tube 

from the open side of the covering foil. 

Cadena et al. [35] proposed a methodology to obtain gaseous emission samples from windrows and 

biofilters surfaces in waste treatment plants. The methodology consists of determining the air velocity 

and the concentration of selected compounds in a matrix of points on the emitting surface defined on 

the basis of the emitting surface dimensions (although different sampling points at the top and both 

sides of the composting windrows were considered, maximum emission was always found at the top). 

Air velocity was directly measured at field by means of a thermo anemometer, which limited 

sensitivity was overcome using a home-made Venturi, protected by a plastic box [18,36]. Air samples 

were collected in Tedlar
TM

 bags for VOC analysis. The product of VOC concentration (mg·m
−3

) and 
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air velocity (m·s
−1

) results in VOC mass flow released per windrow surface area unit (mg·s
−1

·m
−2

). 

Measures of VOC emissions were repeated at different days. Data obtained from emission 

measurements during a single sampling day were represented in a three dimensional graph with 

windrow length and perimeter in x and y axes respectively (or alternatively the biofilter dimensions). 

VOC mass flow values per square meter were placed in the z-axis to obtain an emission surface. The 

three dimension emission surface was then projected in a two-dimension graph (windrow perimeter at 

x-axis and windrow length at y-axis). Multiplying the pollutant mass flow per area unit by the 

corresponding area in the graph resulted in the compound mass flow and the sum of the different 

quantities obtained corresponds to the total mass flow of VOC (g·s
−1

). VOCs were determined as total 

carbon concentration by GC using a FID (flame ionization detector). 

2.2. VOC Samples Preparation and Detection 

Detection and quantification of VOCs has been performed by different techniques. Although the gas 

chromatography is preferred by a number of researchers, gas detection tubes, electronic noses and 

olfactometry have also been used for VOC determination in gaseous samples.  

VOC Detection by Gas Chromatography 

The most common technique used in VOC detection and quantification is gas chromatography. 

However, in most of the cases due to the low concentration of these compounds in the samples to 

analyze, a pre-concentration step is needed to ensure the complete detection of all VOCs present and 

the accuracy of the analysis. Different materials and settings are used with this purpose. Defoer et al. [20] 

pre-concentrated gaseous samples from a biofilter surface by sorption onto Tenax TA prior to their 

analysis by GC-MS preceded by thermal desorption (220 °C) and cold trapping using liquid nitrogen. 

A 60 m dimethylpolysiloxane column (film thickness 1.5 µm, internal diameter 0.53 mm) was used. 

The GC was provided with a splitter that allows analyzing part of the eluate in a FID detector for VOC 

quantification and the other part in a MS for VOC identification. Tolvanen et al. [13] collected air 

samples from a composting hall in a full scale plant into Tenax-GR adsorption tubes using an air 

pump. VOC analyses were performed in the laboratory with a thermal desorption/gas 

chromatograph/mass spectrometer system in combination with simultaneous sniffing. Desorption 

temperature was maintained during 10 min at 250 °C and during this time desorbed compounds were 

concentrated in a cold trap (−120 °C). The GC was equipped with a double column system  

(HP 5, 30 m, 1 µm film) with compounds eluted from one column diverted to MS and those from the 

other column sniffed. Concentration of single VOCs (25 different compounds) were calculated 

according to an external standard. Adsorption onto Tenax cartridges was also suggested and used by 

Bruno et al. [28], who state that the low water affinity of this material and the high number of 

substances that is able to adsorb make them an ideal material for the sampling of heterogeneous 

organic compounds such as those produced in waste treatment plants. These authors use diffusive 

samplers made up of a cylindrical adsorbing cartridge coaxially put inside a cylindrical diffusive body 

(polycarbonate and microporous polyethylene) holding a known amount of Tenax. The analysis of the 

compounds was undertaken by GC-MS with previous desorption. 
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Komilis et al. [14] used activated coconut charcoal traps to obtain gaseous samples for VOC 

determination in composting experiments at laboratory level. VOCs were then extracted with high 

purity carbon disulfide under agitation and then analyzed using GC-FID (60 m × 0.32 mm SPB-5 

capillary column). GC-MS determinations were performed using a 30 m × 0.25 mm HP-5MS capillary 

column. Pierucci et al. [12] collected VOCs from the headspace of MSW samples (kept in vials and 

heated to 85 °C) and also from air bag samples using solid phase microextraction (SPME).  

Different fibers were compared presenting different coating materials and a three-phase fiber 

polydimethylsiloxan-carboxen-divinylbenzene (PDMS-Carboxen-DVB) was finally selected. GC-MS 

was then used for analysis and VOC identification. This type of fibers was also used by Orzi et al. [19] 

when determining odors and VOCs in an anaerobic digestion treatment plant. In this case, solid 

samples were carried to the laboratory and gaseous samples collected using a flux chamber. The waste 

sample was put in a tray container and covered with a Plexiglas chamber continuously flushed with a 

known air flow. Gas samples were collected from the output port of the chamber in Nalophane bags. 

The SPME fiber was exposed in the bags for VOC adsorption. VOCs were desorbed for GC-MS 

analysis exposing the fiber in the GC injection port for 3 min at 250 °C. Some authors have also used 

gas chromatography without samples pre-concentration to determine VOC emissions from the 

composting process of several wastes, although they are mainly focused on the composting of olive oil 

wastes and their effect on carbon sequestration in soil [37,38]. 

Other VOC Detection Techniques 

In addition to the use of GC-MS for VOC determination, there is the possibility of using gas 

detection tubes. In fact, Mao et al. [22] and Tsai et al. [21] present their results on VOC emissions 

from food waste composting plants using both analytical procedures. Mao et al. [22] also used two 

different brands for gas detection tubes resulting in differences in analytical results around 20%. Gas 

detection tubes permit the measure of many critical odorants when these are present in relatively high 

concentrations in a quicker and cheaper way when compared to GC-MS. For this reason, gas detection 

tubes can be a practical tool for the self management of odor problems in waste treatment plants. Gas 

samples were obtained in these studies at different points of the composting plants at 1.2 m of the floor 

using a pump to collect samples for GC-MS analysis in Tedlar bags and the specific gas sampling 

pump provided with the gas detection tubes. 

The electronic nose (EN) has been also used for odor determination and VOC families’ 

identification [19,29]. An electronic nose is configured by a number of sensors each of them sensitive 

to a grouped class of compounds. In the case of the authors cited, the electronic nose used was 

equipped with ten sensors corresponding to S1: aromatic compounds, S2: polar compounds and 

nitrogen oxides, S3: aromatic compounds, ketones and aldehydes, S4: H2, S5: low polarity aromatic 

and alkane compounds, S6: methane, S7: sulphur compounds and terpenes, S8: alcohols, ketones and 

partially aromatic compounds, S9: sulphur containing and aromatic compounds and S10: methane at 

high concentration (PEN2 electronic nose, Airsense Analytics, Schwerin, Germany). Although very 

attractive, this methodology still needs a scientific validation for a large number of odors and sources. 

As stated above in this paper (Section 1.1), olfactometric techniques have also been used for VOC 

measurement although their suitability for VOC quantification still has not been demonstrated.  
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3. Treatment Approaches for Gaseous VOC Emissions 

Although gaseous emissions can be directly released to the atmosphere in non-confined waste 

biological treatment facilities [16], effective gas treatment equipment is usually required in most cases, 

especially when the distance to inhabited areas is low [18]. As can be deduced from the numerous 

VOC detected in gaseous emissions from waste treatment plants reported above, the selection of the 

adequate equipment for gaseous pollutants abatement in these installations is not an easy task. There is 

no specific technology developed for this application and normally a combination of the available 

options must be studied. Adsorption, absorption (scrubbing), thermal/catalytic oxidation and biological 

treatments have been used for VOC removal in gaseous emissions [39]. Adsorption and scrubbing 

involve the generation of a liquid or solid effluent containing the contaminants removed from gaseous 

flows and thus further treatment will be needed for these waste flows. Sulphur oxides could be 

generated in a thermal treatment depending on VOCs present in the gaseous effluent from a waste 

treatment plant. Although presenting acceptable VOC removal rates, physico-chemical treatments 

involve higher economical costs than biological treatments. 

Biological treatments of waste gases are based on the use of naturally selected microbial strains 

capable of contaminant removal which act as carbon source, energy source or both [39]. Different 

types of bioreactors are used in VOC contaminated gas treatment including biofilters, biotrickling 

filters and bioscrubbers. Contaminant removal mechanisms are similar in these bioreactors differences 

relying in the use of microorganisms, either suspended or immobilized, packing media, pollutant 

concentration and others [40]. Among the available options, biofiltration is the most commonly used 

technology to reduce emissions from the biological waste treatment processes [41]. At large facilities 

biofiltration is usually preceded by an absorption step under acidic conditions, mainly to remove 

ammonia that is produced in large amounts during the composting process and that can inhibit the 

biological activity of the biofilter [42]. Biofiltration is considered economically and environmentally 

viable and a suitable technology in terms of waste recycling and filtering effect [43]. 

Biofilters are a type of bioreactors in which a humidified polluted air stream is passed through a 

porous packed bed on which a mixed culture of pollutant-degrading organisms is immobilized. 

Generally the pollutants in the air flow are transported from the gaseous phase to the microbial biofilm 

(through liquid phase or moisture) where the biological oxidation of VOCs occurs [40]. The by-products 

of biological oxidation are water, carbon dioxide, mineral salts, some volatile organic compounds and 

microbial biomass [44]. Organic packing materials are commonly used such as wood chips mixed with 

compost or other bulking materials used in the composting process. Figure 1 shows a scheme of a 

biofilter. The performance of a biofilter is not uniform and it is influenced by several important 

variables such as the composition of the gas, the packing material, nutrient supply, temperature, pH, 

pressure drop and gas residence time [45]. Maximum elimination capacities of 100–120 g·m
−3

·h
−1

 have 

been reported for typical biofilters colonized with bacteria [46]. These authors developed a method to 

assess biofilters performance for a wide range of VOCs with different air/water partition coefficients. 

Some authors indicate that the addition of activated carbon improves the biofilter degradation  

capacity [40]. However, the prediction of the biofilters efficiency in the removal of a mixture of VOCs 

such as the one present in the exhaust gases of a waste treatment plant is difficult, being limited by the 

solubility and biodegradability of pollutants. 
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Figure 1. Scheme of a biofilter. 
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Pagans et al. [11] reported biofilter removal efficiencies up to 97% for VOCs generated in the 

composting process of different organic wastes at pilot plant scale with loading rates ranging from 0.55 

to 40 g·C·m
−3

·biofilter·h
−1

. Removal efficiencies were highly dependent on the composted waste. The 

same authors also pointed a biofilter basal emission of VOCs of approximately 50 mg of C·m
−3

. 

However, in the literature, VOC biofiltration is frequently studied in laboratory scale biofilters using 

synthetic gases with two or three mixed compounds or even a single compound [47,48], which can be 

very different from those conditions found in full-scale facilities, as previously commented. 

Another aspect to comment in biofilter operation and maintenance at an industrial level is the need 

for attention to packing material needs for a correct performance of the gas treatment equipment. In 

fact, watering of the material is needed, as well as a periodic replacement of the biofilter material.  

Colón et al. [18] reported real data on two full scale biofilters treating gases from the OFMSW 

composting process during filtering material replacement. Old biofilter material showed lower removal 

efficiencies than the new material. The average VOC removal efficiencies with the old material for the 

two biofilters studied were 42 and 65%, whereas the average values of all data with new material  

were 74 and 71%. These efficiencies correspond to average elimination capacities of 11 and 8.6 g·C·m
−3

 

biofilter h
−1

 for the old material and 17.1 and 27 g·C·m
−3

·biofilter·h
−1

 for the new material. These 

results indicate that the biofilter performance was improved as a result of material replacement. In one 

of the two biofilters the authors observed the pattern reported by Devinny et al. [45] in relation to VOC 

removal in biofilters: a first stage of dominance of the adsorption process followed by a decrease of the 

removal efficiency attributable to the saturation of the adsorption/absorption capacity and to the 

microorganisms acclimation period and, finally, an increase in the removal efficiency because of the 

biodegradation dominance [49]. For the second biofilter, the removal efficiency followed a similar 

pattern to the applied VOC loading rate during the entire period of the study (before and after biofilter 

material replacement). Even though biofilters are widely implemented in full scale treatment plants for 

organic waste treatment facilities, the complete removal of VOC is difficult to achieve [20]. Proper 

maintenance operations are thus needed to maximize biofilter performance. 
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4. Conclusions 

VOCs present in gaseous emissions of biological treatment facilities of organic wastes have been 

investigated and characterized by different researchers. The main VOCs related to organic waste 

handling and treatment are terpenes, although ketones, alcohols and organic acids have also an 

important contribution to the total VOC content measured. The presence of sulphur and nitrogen 

compounds has to be also highlighted. Different relationships have been established between VOC 

concentration and odor level on specific situations and for a specific range of VOCs and odor 

concentrations. There is no universal correlation covering the whole concentration range and the entire 

group of VOC families. 

The analysis of VOCs is mainly performed by GC-MS although other methods such as gas 

detection tubes or electronic noses have been used in some cases. GC-MS appears as the most reliable 

method covering a wide range of VOC concentrations and being capable to identify and quantify a 

large number of compounds from different families. Gas detection tubes permit the measurement of 

many compounds present at relatively high concentrations. As an economical and quick method, it can 

be useful for the self management of gaseous emissions in waste treatment plants. Electronic noses 

permit the characterization of the families of VOC present in a gaseous sample and the comparison 

between VOC emissions from different points of a treatment plant of different installations, although 

they must be considered a first approach. 

Different methods for air emissions sampling in waste treatment plants have been proposed. The 

lack of homogeneity among these methods is one of the drawbacks in VOC emission measurement 

from this type of facilities. 

Finally, it must be highlighted that biofiltration is the gaseous pollutant abatement technology that 

is most widely used in organic waste treatment plants for VOC removal.  
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