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Abstract: This paper proposes an extension of the weak classifiers derived from the  

Haar-like features for their use in the Viola-Jones object detection system. These weak 

classifiers differ from the traditional single threshold ones, in that no specific threshold is 

needed and these classifiers give a more general solution to the non-trivial task of finding 

thresholds for the Haar-like features. The proposed quadratic discriminant analysis based 

extension prominently improves the ability of the weak classifiers to discriminate objects 

and non-objects. The proposed weak classifiers were evaluated by boosting a single stage 

classifier to detect rear of car. The experiments demonstrate that the object detector based 

on the proposed weak classifiers yields higher classification performance with less number 

of weak classifiers than the detector built with traditional single threshold weak classifiers.  

Keywords: weak classifiers; Haar-like features; AdaBoost; quadratic discriminant analysis 

 

1. Introduction  

In pattern recognition, object detection generally is a two-class classification problem with two 

essential issues of feature selection and classifier design based on the selected features. Classifiers 

based on Haar-like features [1] have been successfully used for object detection. Viola and Jones [2] 

proposed an object detection framework where these Haar-like features are selected and classifier is 
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trained using AdaBoost [3]. This approach has become a popular framework for object detection and 

several extensions of this framework have been proposed. One of the extensions is the improvement in 

the boosting algorithm. Modified versions of AdaBoost such as Real AdaBoost [4], FloatBoost [5] and 

KLBoosting [6] are available. Real AdaBoost is used for multi-view face detection [7]. In addition to 

face detection [5] Float Boost is also applied to hand shape detection [8]. The other extension of the 

original framework is to use an extended set of Haar-like features so that different image patterns can 

be evaluated. In addition to the basic feature set of Figure 1(a), an extended set of Haar-like features as 

shown in Figure 1(b,c) are introduced in [9,10], and [11]. Mita et al. [12] have selected multiple  

co-occurring linear weak classifiers to form a more efficient classifier. Boosting in a hierarchical 

feature space where the local Haar-like features are replaced by global features derived from PCA in 

later stages of boosting is introduced in [13]. An extension of Haar-like features in which different 

weights, determined by techniques like Brute force search, Genetic algorithms and Fischer’s linear 

discriminant analysis, are assigned to the rectangles of Haar-like features is proposed in [14]. Hybrid 

features composed of gradient features, Edgelet features and Haar-like features are used in [15] for  

pedestrian detection. 

Figure 1. Examples of the Haar-like feature set. (a) Basic feature set which consists of two 

adjacent rectangles. (b) and (c) Extended feature sets which consist of different number 

and arrangement of rectangles, respectively. 

   

(a)    (b)     (c) 

 

The selection of threshold for the Haar-like features is not a trivial task and has not been explained 

in detail in [2]. The weak classifiers based on single threshold Haar-like features are sub-optimal and 

not efficient for discriminating object and non-object. At later stages of the cascade these single 

threshold Haar-like features become too weak for discrimination and make boosting ineffective [13]. 

In this paper, we propose a different set of weak classifiers for boosting that achieves higher 

classification accuracy with less number of weak classifiers. Unlike in [2], the proposed weak 

classifiers do not require explicit thresholds be calculated for the Haar-like features and present a more 

general solution to the threshold selection problem. The proposed weak classifiers are equally efficient 

for discrimination at later stages of boosting also. 

The rest of the paper is organized as follows: Section 2 describes the AdaBoost learning of the 

Haar-like features. Section 3 presents the proposed method for realizing efficient weak classifiers. 

Experimental setup and results are presented in Section 4, followed by concluding remarks in Section 5. 

2. Boosting of Weak Classifiers  

This section describes the conventional weak classifiers and AdaBoost learning algorithm for 

constructing a strong classifier by selecting the weak classifiers. 
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2.1. Boosting of Weak Classifiers  

The Haar-like features have scalar values that represent the difference in the sum of intensities 

between the adjacent rectangular regions. To capture the ad hoc knowledge about the domain, these 

features are evaluated at different positions and with different sizes exhaustively according to the base 

resolution of the classifier. For example, when the classifier resolution is 24 × 18 pixels, 91,620 features 

are generated from the five features in Figure 1(a,b). Each feature is evaluated on all the training 

samples and the probability density for each of the object and non-object class is calculated as shown 

in Figure 2. In [2], a single threshold that separates these two distributions is selected for each feature. 

These features along with their respective thresholds and polarity form the weak classifiers for the 

learning algorithm.  

Figure 2. Example of feature value distributions. In [2] a single threshold that separates the 

two distributions is used. 

 

 

A weak classifier can be mathematically described as: 

1 if ( )
( , , , )

-1  otherwise     

pf x p
h x f p





 


     (1) 

where x is the base resolution of the classifier, f the Haar-like feature, θ the threshold for the feature 

and p the polarity indicating the direction of inequality. The choice of optimal threshold for the 

features is not stated clearly in [2] and shows to be a non-trivial task.  

2.2. AdaBoost  

AdaBoost is a machine learning boosting algorithm that constructs a strong classifier by combining 

a set of weak classifiers. A small number of discriminative weak classifiers are selected by updating 

the sample distribution. The prediction of the strong classifier is produced through a weighted majority 

voting of the weak classifiers. Pseudo code of a variant of AdaBoost used in the implementation is 

given in Algorithm 1. 
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Algorithm 1. Pseudo code of Discrete AdaBoost. 

1 1

1,
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3. Proposed Weak Classifiers  

This section describes the proposed weak classifiers which eliminate the need of explicit threshold 

for the Haar-like features. First we formulate the definition of the new weak classifiers based on 

Bayesian decision theory and quadratic discriminant analysis [16]. Later we discuss the motivation to 

use and the relative advantage of the proposed weak classifiers over the traditional single threshold 

weak classifiers. 

3.1. Bayesian Decision Rule 

Given a set of features, the Bayesian decision theory for classification requires decision boundaries 

that minimize the error rate on the training data. Let us consider a two class problem with ω1 and ω2 as 

the state of nature. If x is the observed feature value, the decision boundary that minimizes the 

classification error is given in terms of the posterior probabilities as P(ω1|x) = P(ω2|x). The 

corresponding decision rule is: decide ω1 if P(ω1|x) > P(ω2|x); else decide ω2. 
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3.2. Discriminant Function for Normal Density 

One of the most useful ways to represent pattern classifiers is in terms of a set of discriminant 

functions gi(x); i = 1, 2,…, c, where c is the number of categories to discriminate. The classifier is said 

to assign a feature x to class ωi if: 

( ) ( )i jg x g x  for all j i       (2) 

The effect of the decision rule is to divide the feature space into c decision regions. The regions are 

separated by decision boundaries, surfaces in the feature space where ties occur among the largest 

discriminant functions [16]. Assuming the distribution of the univariate Haar-like features to be 

normal, i.e., p(x|ωi) ~ N(μi, Σi), the minimum error rate classification can be achieved by the use of 

discriminant function of the form given in Equation (3) [16]: 

11 1 1
( ) ( ) ( ) ln 2 ln | | ln ( )

2 2 2

t

i i i ii i
g x x x P   

           (3) 

where P(ωi) is the priori probability of class ωi. Taking a general univariate normal case with different 

variances for each category, the resulting discriminant function is given as:  

0
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The discriminant functions of Equation (4) are inherently quadratic. The decision surfaces are 

hyperquadrics and in one dimensional case the decision regions needn’t be simply connected as shown 

in Figure 3. This observation motivates us to formulate new kind of weak classifiers without explicitly 

specifying the threshold for each weak classifier. 

Figure 3. Non-simply connected decision regions in one dimension. 
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3.3. Proposed Weak Classifiers 

The proposed weak classifiers are based on the quadratic discriminant functions described above. 

Each Haar-like feature from the pool of 91,620 features is evaluated on the training samples and  

one-dimensional probability densities for object and non-object classes are calculated. Assuming the 

density of each feature to be normal, the distributions of feature on the object and non-object classes 

are parameterized by their maximum likelihood estimators, i.e., mean μ and variance Σ. The 

distribution for the object (positive) class is p(x|ωp) ~ N(μp, Σp), and for non-object (negative) class is 

p(x|ωn) ~ N(μn, Σn). The decision regions for the two distributions are given from Equation (2), i.e., 

assign the observed feature value x to class ωp if: 

( ) ( )p ng x g x       (5) 

This decision rule divides the feature space into decision regions which needn’t be simply 

connected for the same class. The proposed weak classifiers for the Haar-like features are defined as: 

1 if ( ( )) ( ( ))
( , , , , , )

-1                        otherwise

p n

p n p n

g f x g f x
h x f  


   


   (6) 

where x is the base resolution of the classifier and f is the Haar-like feature. Since a more general 

model of the distribution is considered, the proposed weak classifiers are expected to perform better 

than the single threshold weak classifier. 

For the weak classifiers of Equation (1), each feature produces a single scalar value and the decision 

boundary corresponds to a scalar threshold. But the choice of this threshold is not stated clearly in [2] 

and determination of an optimal threshold is a nontrivial task. The proposed weak classifiers of 

Equation (6) are more general and do not require any explicit representation of the threshold. In fact, 

the weak classifiers of Equation (1) are a special case of the proposed weak classifiers when Σp and Σn 

are identical. The weak classifiers based on single threshold commonly employ “average of means” of 

the two distributions, i.e., (p + n)/2, as decision threshold. Under this hypothesis, it is statistically 

observed that most of the Haar-like features are non-discriminative and inefficient for boosting. 

Figure 4. Typical distribution of feature values in later stages of boosting on the training 

data (described later). 
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The error rates of these single threshold weak classifiers selected at later stages of the boosting 

process become large as the sample distribution consists of samples which are difficult to discriminate 

as shown in Figure 4. The single threshold weak classifiers are not efficient in discriminating such 

distributions. The proposed weak classifiers are expected to efficiently discriminate the underlying 

distribution of Figure 4, as disjoint decision regions are also supported as shown in Figure 3. 

4. Experimental Results  

4.1. Data Preparation 

The experiments were carried out for detection of rear of cars. The experiments were done  

using 1,500 positive and 3,500 negative samples. The positive samples consisted of instances of rear of 

cars cropped from a video taken from a camera mounted at the front of a host car while driving in an 

urban environment. Each instance was resized to a base size of 24 × 18 pixels. The negative samples 

consisted of images cropped from random high resolution images that did not contain any instance of 

rear of car. Each negative sample was also resized to base size of 24 × 18 pixels. 1,000 positives  

and 3,000 negative samples were used for training the classifiers while the remaining 500 positive  

and 500 negative samples were used for validation. Figure 5 shows some of the positive and negative 

samples used for the experiment. 

Figure 5. Example of the rear-of-car images (left) and the non-car images (right) used for training. 

 

4.2. Performance Comparison between Proposed Weak Classifiers and Single Threshold Weak 

Classifiers  

A single stage classifier was trained by AdaBoost on the training data using the proposed weak 

classifiers to achieve 100% hit rate on the positive samples and zero false positive on the negative 

samples. The final strong classifier achieved the required performance on the training data with a total 

of 69 proposed weak classifiers. The first weak classifier selected by AdaBoost yielded an error rate  

of 0.2. The subsequent selected weak classifiers yielded comparatively higher error rates. The worst 

error rate among the selected classifiers was 0.37 for the 66th classifier. The error rates of subsequent 

selected classifiers can be seen in Figure 6. Another strong classifier was trained on the same training 

data using the conventional single threshold based weak classifiers. These classifiers employed the 

average of means as the threshold. The final strong classifier required 225 weak classifiers to achieve 

similar performance on the training data. The error rate of the first selected weak classifier was 0.21 
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but it increased rapidly for the subsequent classifiers and the worst was 0.44 for the 208th classifier. A 

third strong classifier was trained on the same training data using single threshold based weak 

classifiers which employed Otsu’s method [17] for optimal threshold selection. The final classifier 

consisted of 125 weak classifiers. The error rate of the first weak classifier was 0.22 and the highest 

error rate was 0.41 for the 124th classifier. Figure 6 shows that the error rates of the proposed weak 

classifiers are consistently lower than the single threshold based counterparts.  

Most of the features selected using the proposed weak classifiers have overlapping distributions of 

the object and non-object classes. Though these features have lower error rates and are boostable under 

the proposed hypothesis, they would have been rendered useless for boosting under the single 

threshold hypothesis. Some of the feature distributions are shown in Figure 7. 

Figure 6. Error rates of the weak classifiers selected by boosting using proposed weak 

classifiers and the single threshold weak classifiers. 

 

Figure 7. Distributions of feature values of the 6th (left) and the 9th (right) features 

selected by AdaBoost using the proposed weak classifiers. The features have error rate  

of 0.27 and 0.3 respectively under the proposed hypothesis. The single threshold approach 

will reject these features as inefficient since a single threshold is not sufficient to 

discriminate these types of distributions which are unimodal or close to unimodal. 
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The selection of efficient classifiers at each round of boosting helps the learning algorithm to 

converge faster (in terms of the number of weak classifiers) on the training data as can be seen in 

Figure 8. Similar performance (in terms of hit rate and false positive rate) on the training data can be 

achieved with a significant reduction in the total number of weak classifiers by using the proposed 

weak classifiers over the conventional single threshold weak classifiers.  

Figure 8. Plot of training error and the number of weak classifiers: the proposed weak 

classifiers and the single threshold (derived from average of means and Otsu’s optimal 

thresholding method) based weak classifiers. 

 

Figure 9. ROC curves for one stage classifiers trained using the proposed weak classifiers 

and single threshold (derived from average of means and Otsu’s optimal thresholding 

method) based weak classifiers.  

 

 

To investigate the generalization performance of the proposed weak classifiers, the strong classifiers 

were tested on a validation dataset. The validation data set consisted of 500 positive and 500 negative 

sample images that were not used for training. ROC curves were generated using the validation dataset. 

The points in the ROC curves were obtained by evaluating each of the strong classifiers against the 

validation dataset by sliding the stage threshold from −10 to +10 at step of 0.25. The thresholds for the 

stage were chosen because varying the thresholds in this range proved to be sufficient to generate the 

whole range in the ROC curves. The plot of the hit rate versus the false alarm rate for all the methods 
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is given in Figure 9. From the ROC curves in Figure 9, we can see that the classifier trained using the 

proposed weak classifiers perform consistently better than the classifier trained using single threshold 

weak classifiers. The detection rate of the classifier based on the proposed weak classifiers is always 

higher than the classifier based on single threshold weak classifiers. And for a given detection rate, the 

classifier using the proposed weak classifier always has less false alarm rate than the classifiers using 

single threshold weak classifiers. The higher performance of the proposed method reflects the benefit 

of the usage of discriminant function based weak classifiers, which are more effective at discriminating 

car and non-car examples. 

4.3. Performance Comparison on Relatively Difficult Samples 

In this experiment, the classifiers were trained on relatively difficult samples than those of  

Section 4.2. The positive samples contained 500 positive images from the original training set. The 

negative samples contained 2,000 negative images. The negative samples were the false positives 

generated when a 10 stage cascade was evaluated on random high resolution images. The 10 stage 

cascade was trained on the original training set using the single threshold weak classifiers. In this 

sense, the negative samples are relatively difficult for the single threshold weak classifiers to 

discriminate. Three different classifiers were trained using the three types of weak classifiers on this 

data to achieve 100% hit rate and zero false positives. The classifier using the proposed weak 

classifiers required only 36 features whereas the classifier using single threshold weak classifier 

employing average of means required 236 features and the classifier employing Otsu’s thresholding 

method required 90 features to achieve same performance on the training data. This shows that the 

proposed weak classifiers are equally efficient in discriminating difficult samples than the single 

threshold counterparts. The generalization performance of the trained classifiers was tested on the 

validation set as in Section 4.2. The ROC curves in Figure 10, generated against the validation dataset 

show significant performance improvement of the classifier trained using the proposed weak classifiers 

over the classifier using single threshold weak classifiers. 

Figure 10. ROC curves for single stage classifier trained on difficult samples using the 

proposed weak classifiers and the single threshold weak classifiers. Single stage classifiers 

were trained on the negative samples acquired as false positives of an already  

trained 10 stage cascade using the single threshold based weak classifiers. 
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4.4. Comparison of the Speed of the Object Detector 

The speed of a cascaded object detector is directly proportional to the number of features evaluated 

per scanned sub-window in the image. To compare the speed of the detector, we trained three 15 stage 

cascade using the single threshold classifiers and the proposed weak classifiers on the UIUC Image 

database for car detection. The cascades were evaluated on the UIUC car test image set at different 

scales. For the classifier with single threshold employing average of means, an average of 14.5 features 

out of the total 248 features and for the one employing Otsu’s optimal threshold an average  

of 13 features out of the total of 230 were evaluated per sub-window, whereas for the proposed 

classifiers only an average of 8 features out of the total 131 features were evaluated per sub-window. 

Table 1 shows the total number of sub-windows scanned and the total features evaluated for seven 

images randomly sampled from the UIUC car test images at different scales. The feature value 

calculation time for the proposed classifier is the same as that for the single threshold Haar-like 

features. But from Equation (3) we see that the proposed weak classifier requires additional 

multiplication and addition operation to make the class decision. This makes them relatively more 

expensive to compute than the single threshold classifiers. The experiments conducted show that the 

proposed weak classifier requires around 1.6 times more computation time than the single threshold 

classifier to make a class decision. However as seen from Table 1, the single threshold classifiers need 

to evaluate on average around 1.6 times more features per sub-window than the proposed weak 

classifiers. This makes the speed of the proposed detector comparable to that of the conventional single 

threshold based detector.  

Table 1. Comparison of the speed of the detectors in terms of the average number of 

features evaluated per scanned window in the test images. 

S.No. 

Total  

sub-windows 

scanned 

Proposed Method 
Single Threshold Method 

Average of Means Otsu’s Threshold 

Total 

features 

evaluated 

Average 

feature/ 

sub-window 

Total 

features 

evaluated 

Average 

feature/ 

sub-window 

Total 

features 

evaluated 

Average 

feature/ 

sub-window 

1 63,313 521,545 8.23 868,037 13.7 790,047 12.4 

2 63,618 541,644 8.51 929,962 14.61 859,328 13.5 

3 85,106 692,548 8.13 1,173,507 14.9 1,032,627 12.13 

4 87,378 763,826 8.74 1,302,362 14.9 1,122,984 12.85 

5 40,810 366,326 8.97 653,903 16.3 620,030 15.19 

6 82,354 688,846 8.36 1,078,020 13.1 1,052,336 12.77 

7 58,590 492,783 8.41 842,548 14.38 753,639 12.86 

5. Conclusions  

In this paper, we have proposed a new set of weak classifiers for efficient boosting. The proposed 

weak classifiers do not require an explicit decision threshold to be calculated as is required for the 

single threshold weak classifiers and present a general solution for the optimal threshold finding 

problem. The proposed quadratic discriminant analysis based solution significantly improves the 

ability of the weak classifiers to discriminate object and non-object classes. The experimental results 
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demonstrate that the proposed weak classifiers have far less classification error rate than the single 

threshold weak classifiers. An object detector trained using the proposed weak classifiers using 

AdaBoost facilitated efficient boosting and the final classifier yielded higher classification 

performance with less number of weak classifiers than a detector built with traditional single threshold 

weak classifiers.  
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