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Abstract: This study developed an electronic-nose sensor node based on a polymer-coated 

surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor 

array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was 

fabricated on a large K
2
 128° YX LiNbO3 sensing substrate. On the surface of this 

substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic 

structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) 

was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a 

wireless module to transmit sensor data to a base station for data storage and analysis. This 

sensor node is applicable for wireless sensor network (WSN) applications. 

Keywords: electronic nose; wireless sensor network; sensor node; SAW sensor array 

 

1. Introduction  

Wireless sensor networks (WSNs) [1,2] comprise a number of light-weight low-power sensor nodes. 

Each node is equipped with a number of sensors, interface electronics, and a wireless communication 

module to deliver the collected data. Applications of WSNs have been proposed in areas as diverse as 

health care [3], monitoring of industrial equipment [4], precision horticulture [5], volcanology [6], 

habitat observation [7] and monitoring of engines [8]. Issues associated with air pollution have been 
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attracting increased attention because air quality has a direct influence on human health. Combining 

gas sensors within a WSN is an effective means to monitor urban air pollution [9]. However, it has 

proven unfeasible for general applications because each gas sensor has a corresponding target gas, 

requiring the installation of numerous sensors to monitor multiple gases. Electronic nose (E-Nose) 

systems have shown great potential in odor detection, analysis, and recognition. E-Noses first appeared 

in 1987, and were designed to mimic mammalian olfactory systems [10]. Olfactory processes do not 

perceive odors using only a single receptor, but rather detect and recognize scents according to an 

array of multiple receptors, with each combination representing a different odor. The permutations and 

combinations enable the recognition of complex gasses such as volatile organic compounds  

(VOCs) [11,12] and the odor of fruits [13]. Incorporating a WSN with an E-Nose to form a sensor 

array would greatly expand the scope of odor classification and practical applicability.  

A polymer-coated surface acoustic wave (SAW) array is one of the best choices to achieve high 

sensitivity in applications requiring the detection of organic gasses [14,15]. Currently SAW devices are 

being used for a variety of chemical applications because of their high sensitivity, fully reversible 

behavior, and high signal-to-noise ratio [16]. For example, piezoelectric substrates are used to 

transform energy from mechanical strain to electric signals. Interdigital transducers (IDTs) are input 

and output comb-like metal electrodes, used as energy transformation structures on the surface of 

selected substrates. When an AC voltage is applied to an input IDT, dynamic strain is induced, 

launching a wave across the surface of the substrate. The induced surface wave propagates through the 

active sensing region, to be received and transformed into electrical signals by the output IDT. A 

change in mass on the active sensing region can be detected, according to changes in magnitude and 

phase shift in the AC signal between the input and output IDTs. To increase the selectivity and 

sensitivity of the sensor, a variety of polymers are used to coat the active sensing region of the SAW 

sensors to absorb molecules of the target gas. The traditional approach to building up a SAW-based  

E-Nose system has been to connect the SAW array to a spectrum analyzer or a frequency counter to 

monitor frequency shifts in the SAW devices. Unfortunately, neither of these options is practical for 

portable or WSN applications, due to their bulk and high price. To resolve this problem, a small, 

inexpensive frequency readout scheme is required.  

Fabricating frequency readout circuitry using integrated circuits (IC) not only reduces the size of the 

system, but also the cost of mass production [17]. In recent years, designers have had the option to 

integrate general WSN platforms [18,19] with sensor devices for a variety of applications. In this 

study, we report an efficient E-Nose sensor node comprising a 2  2 non-continuous chemical SAW 

sensor array chip using MEMS technology self-assembled with polymer coatings on the active sensing 

region [20,21], application specific integrated circuit (ASIC) chip for a mixed signal interface, and a 

WSN platform (Octopus II). The low-power, high-resolution ASIC chip was fabricated using a TSMC 

0.18 μm 1P6M standard CMOS process. The ASIC chip was connected directly to an array of four 

SAW sensors, outputting frequency data representative of the sensor response. The output data was 

transmitted to a base station using an Octopus II wireless module. Results of measuring the chip and 

experimental data are presented in the following sections. 

In Section 2, we introduce the proposed E-Nose gas sensor node and the experimental setup. In 

Section 3, we show the experimental results of the SAW sensor, the ASIC interface, and the fabricated 

sensor node. A brief conclusion is provided in Section 4. 
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2. Proposed E-Nose Sensor Node 

Figure 1 presents a block diagram of the proposed E-Nose sensor node. The Sensor node comprises 

three major parts: an SAW sensor array, a mixed signal ASIC chip, and a WSN platform (Octopus II). 

Figure 1. Block diagram of SAW sensor node. 
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2.1. Surface Acoustic Wave (SAW) Sensor 

In the late 1970s, various gas sensors were developed based on a variety of operational principles. 

Compared with other gas sensors, SAW-based gas sensors provide a high degree of sensitivity, 

reproducibility, and stability [22]. The sensing mechanism is based on the fact that volatile organic 

compounds are adsorbed on the surface of a substrate and an increase in mass loading causes a shift in 

frequency. The mechanism behind SAW sensors involves the input of voltage inducing an electric 

field between the IDTs. The piezoelectric effect induces dynamic strain on the substrate to launch the 

SAW, propagating across the surface of the substrate. At the receiving end, the IDT converts the 

mechanical signals to electric signals. Finally, fluctuations in the output frequency are measured. 

According to the design parameters from the simulation data of delta function model and the cross 

field model shown in Table 1, LiNbO3-based. SAW devices with IDTs of Cr/Au (20 nm/100 nm) were 

fabricated in a photolithography process with a center frequency of 117.4 MHz. The size of the SAW 

sensors was 3 mm × 2 mm.  

Table 1. Design parameters of the SAW chip. 

 

Piezoelectric 

Substrate 

C. F. 

(MHz) 

 

(μm) 

W 

(μm) 

D 

(μm) 

d 

(μm) 

N1 N2 

Pair(s) 

Au/LiNbO3(YX) 117.4 34 2074 4420 8.5 50 50 
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Figure 2. (A) The SAW device was fabricated using the standard photolithography process. 

(B) An enlarged optical image of interdigital transducers (IDTs). (C) Optical image of the 

SAW chip. 

 

2.2. SAW Sensor Array 

 

A SAW array was employed to fabricate a gas sensor with the advantages of small size, low cost, 

high sensitivity, and rapid response. As shown in Figure 3, the 2 × 2 non-continuous working 

oscillators were controlled by a multiplexing technique as a switching element [23]. 

The film of the sensor operated like a smart skin, responsible for generating chemical signals from 

interactions between molecules and the film [24]. The sensing polymer film acted as the mucosa of the 

nasal cavity, playing an important role in the detection of gases. To enhance sensitivity and selectivity, 

seven polymers were selected as materials to be used in the sensitive film, spin-coated on the surface 

of the resonators of the array (Figure 4). These polymers included poly-N-vinylpyrrolidone (PNVP), 

poly-4-vinylphenol (P4VP), polyvinyl acetate (PVAc), polyethylene-glycol (PEG), polystyrene (PS), 

polystyrene-co-maleic anhydride (PSMA) and polysulfone (Psu). 

Figure 3. (A) The schematic array circuit and (B) The photo of a SAW array with 2 × 2 

non-continuous working oscillators and SAW chips. 
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Figure 4. Seven polymer formulas selected as the sensitive films. 

PNVP P4VP PVAc PEG

PS PSMA Psu
 

In the E-Nose system, a sensor array was used to form patterns for use in the recognition of gases. 

In this study, the sensor array comprised four SAW sensor devices. These four sensors did not operate 

at the same time by controlling the oscillators non-continuously to minimize power consumption and 

interference from crosstalk [23]. In addition, by operating the SAW array non-continuously, all sensor 

outputs could be connected, thereby only one interface readout circuit was needed, saving chip area 

and total cost. In this study, the non-continuous SAW sensor reached a stable output within 0.2 s after 

being switched on. Therefore, each sensor was switched on for 1s to ensure stable sensor output. 

2.3. Mixed Signal Interface ASIC 

There are many kinds of circuit implementations to detect SAW frequencies and/or phases. One 

way is to convert the SAW frequency into a voltage signal. This approach wastes a large portion of the 

voltage range because the shift in the frequency of the sensor does not exceed a certain amount [25]. 

Another way measures phase differences, but the resolution is only at the level of MHz [26]. In this 

study, the center frequency was at 117.4 MHz, and the maximum frequency shift did not exceed  

1 MHz, representing as little less than 1% that of the center frequency. Therefore, if a direct frequency 

to voltage converter was adopted, assuming a linear conversion from frequency to voltage, 

approximately 99% of the voltage range was wasted, making it difficult to improve resolution. 

In this study, we implemented a mixed-signal interface chip, as shown in Figure 5. The first stage of 

the chip was analog, including a mixer, low-pass filter, and comparator. The function of the analog 

stage was to modulate, filter, and convert the signal from the sensor into a square wave. The second 

stage of the chip was a digital readout to detect changes in sensor frequency. To read out the sensor 

signal (frequency change), the frequency of the sensor fin was subtracted from that of a reference 

sensor fref. This resulted in a decrease in the frequency change fref−fin compared to fref. Because the 

amplitude of the signal requiring conversion was smaller, resolution could be improved and power 

consumption could be reduced. The reference sensor was not coated with a polymer membrane; 

therefore, the variations in its frequency due to input gas were very small. Nevertheless, the reference 

sensor was still influenced by the same environment parameters as the sensing sensor, such as 
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temperature and humidity. Subtracting fin from fref helped to eliminate the background effect of  

the sensor. 

Figure 5. Block diagram of the mixed-signal interface chip. 

 

We integrated a mixer into the frontend of the analog section, the output of which had a high 

frequency term fref + fin and a low frequency term fref−fin. After the mixer, a low-pass filter passed the 

low frequency term fref −fin, to a comparator to generate a square wave output to the digital stage.  

A digital frequency readout circuit received the output from the comparator and reported the 

frequency data. The main idea was to use three counters with D flip-flops (DFF) for storage, as shown 

in Figure 6. 

Figure 6. Schematic of digital frequency readout circuit. 

 

Counter 2 provided a fixed sampling time TS = 2
17

 × TCLK2, where TCLK2 was the clock period of 

CLK2. The input signal (Fin) went into Counter 3 as the clock. When Counter 3 counted for the time 

2
17

 × TCLK2, the MSB of Counter 2 triggered the DFF and stored the output data (D) of Counter 3 at 
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this moment. Counter 1 generated control signals for the multiplexor (MUX), the reset signal of 

Counter 3, and the Read signal for the Octopus II. The multiplexor (MUX) output the data stored in the 

DFF. The input signal (Fin) could be calculated later by: 

    
 

   
       

 

  
 (1)  

According to Equation (1), the resolution of the mixed-signal interface chip depends on the 

sampling time TS. Theoretically, a finer resolution can be achieved by a longer sampling time. For 

example, a sample time of one second corresponds to a resolution of 1 Hz (each bit in Counter 3 

represents 1 Hz), and a sampling time of 100 ms corresponds to a resolution of 10 Hz (each bit in 

Counter 3 represents 10 Hz). Since each sensor was switched on for 1 s, a sampling time of 1 s would 

be too long. Moreover, 10 Hz resolution was enough for detection. Consequently, a sampling time of 

100 ms was chosen in this work. 

2.4. WSN Platform 

The Octopus II [27,28] WSN platform was selected to transmit sensing data. Because the output of 

the frequency readout circuitry was not a fast-changing signal, it could be connected directly to the 

Octopus 50-pin extension connector. Octopus II includes MSP430F1611, a USB Interface, Inverted F, 

and SMA Type Antenna. The basic features of Octopus II are as follows: RF range is approximately 

450 m, board size is 80 mm  31 mm, maximum output power is approximately 10 dBm,  

compatible with IEEE 802.15.4 (ZigBee), and operates using 2 × AA batteries (3.3 V 2,700 mAh). 

Detailed information can be obtained from the website (http://www.wsnc.ntu.edu.tw/Files/ 

Octopus--_0913_V1_2%20[----].pdf). 

2.5. Gas Experimental Setup 

The sensor data was transmitted through a wireless module to a personal computer operating as a 

base station for data storage, processing, and analysis. To verify the E-Nose sensor node, three tests 

had to be performed: (1) a gas experiment to validate the SAW sensor array; (2) a configuration test to 

verify the accuracy of the mixed-signal readout chip; (3) a verification test to determine the correctness 

of the wireless transmission. 

Figure 7 illustrates the gas experimental setup, in which seven different sensing membranes were 

used in the SAW sensor array. The array was tested using ethanol and acetone, and the complete 

system was tested in a 1L 4-neck bottle chamber. The four windows were for the vacuum pump, test 

gas input, wire connection, and air flow valve. Considering that the membrane may have absorbed 

excessive water vapors, we first baked the sensor array for 20 minutes at 90 °C, prior to measurement, 

to reduce the water vapor interference from inside the membrane. One cycle of gas testing involved 

four steps:  

(1) Pumping: The system was operated stably under vacuum pumping for 5 minutes. 

(2) Injection: Following the stabilization of frequency, the vacuum pump was turned off and the air 

flow valve was closed. Test gas was injected into the chamber, and the device responded for  

5 minutes. 
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(3) Air: The vacuum pump was turned on and the air flow valve was opened to clean the chamber 

for 5 minutes. 

(4) The air flow valve closed, returning to step (1). 

The total time required for one cycle was approximately 15 minutes. The system responded very 

rapidly to the test gas causing a frequency shift within 3 minutes. To test the accuracy of the mixed-

signal readout chip, the output was compared with a frequency counter.   

Figure 7. Gas experimental setup. 

 

3. Experimental Results and Discussion 

3.1. SAW Gas Sensor  

The SAW array was tested using ethanol and acetone. Figure 8 shows a typical response of the 

sensors (coated with PMSA, PEG, and PNVP) exposed to ethanol. The experiment was repeated three 

times. The baseline seemed to drift due to temperature variation. The SAW devices are known to be 

sensitive to its environment parameters, especially temperature [29]. Currently, many SAW devices are 

manufactured with materials such as lithium niobate or lithium tantalite. The advantage of using these 

two materials is their high K
2
 values, at the price of their high temperature coefficients. Our way to 

compensate the temperature effect is to use a reference SAW device without membrane. 

3.2. Sensor Interface Measurement Results 

To verify the accuracy of the interface chip, a signal generator was used to emulate the SAW 

signals. A spectrum analyzer measured the outputs of the mixer and the low-pass filter. The two input 

signals to the mixer were 117 MHz and 118 MHz sinusoidal wave with amplitude 0.5 V. As a result, 

the spectrum analyzer showed that the mixer output spectrum had two frequency components, 1 MHz 
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and 235 MHz, and the low-pass filter output spectrum was 1 MHz. These results verified the function 

of the mixer and the low-pass filter. 

Figure 8. Typical sensor response (gas: ethanol, membrane: PNVP). 

 

The output of the low-pass filter was sent to a comparator to convert the signal into a square wave, 

which was passed to the digital frequency readout circuit. To test the frequency readout circuit, a 

square wave was input to the circuit and into a frequency counter at the same time. The test 

frequencies were 10, 100, 1 k, 10 k, 100 k, and 1 MHz. Each frequency was sampled 1,000 times. The 

total test time was 100 seconds. In all the test results, the frequency readout circuit outputs were the 

same as the frequency counter. The power consumption for the entire chip was 1.48 mW using a power 

supply of 3.3 V. Figure 9 shows a photo of the die used in this low-power mixed-signal SAW interface 

ASIC. Table 2 provides a benchmark with other studies of the SAW interface circuit [25,26]. 

Table 2. Benchmark with other works of SAW interface circuit. 

 [25] [26] This Work 

Year 2005 2000 2010 

Supply Voltage 3.3 V 2.5 V 3.3 V 

Process Technology 0.35 μm GaAs 0.18 μm 

Power Consumption 38.35 mW 225 mW 1.48 mW 

Resolution 10 MHz 3 MHz 10 Hz 

Input Frequency  354 MHz 690 MHz 117.4 MHz 
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Figure 9. Die photo of this low-power mixed-signal SAW interface ASIC. 

 

3.3. Sensor Node 

Figure 10 shows the test setup of the sensor node. The SAW array was connected to the interface 

chip, and the output was connected to the wireless module. Both the interface chip and the wireless 

module were running on two 1.5 V batteries. The wireless module transmitted the sensor data to a base 

station PC. This data was compared with the frequency counter output according to Equation (2):  

       
 
              (2)  

where data list A is the frequency counter output, data list B is the data transmitted to the base station 

PC, n is the data number used for comparison. Table 3 summarizes the mean error and standard 

deviation of the two data lists. Both the mean error and standard deviation between the transmitted data 

from the sensor node and the frequency counter output are less than 4 Hz. 

Table 3. Mean error and standard deviation of the two lists of data. 

                               Gas 

Readout data 

       (Hz) 

 

Membrane 

Ethanol Acetone 

Mean Error 
Standard 

deviation 
Mean Error 

Standard 

deviation 

PNVP 2.18 2.56 2.41 2.47 

PS 2.47 3.24 1.24 1.89 

PSMA 2.48 3.39 2.17 2.52 

PEG 2.13 3.25 1.25 1.44 

P4VP 2.31 3.54 0.74 0.94 

PVAc 1.53 2.69 1.23 1.85 

PSu 1.97 2.58 3.68 2.94 
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Figure 10. Test setup of the sensor node. 

 

4. Conclusions 

We have reported a low-cost sensor node comprising a SAW sensor array, an interface chip, and 

wireless transmission module (Octopus II). The SAW sensor array comprised four SAW sensors with 

different sensing membranes operating non-continuously. The interface chip provided resolution in the 

frequency readout as low as 10 Hz. The wireless module transmitted sensor data to a remote computer 

for storage and analysis. This compact sensor node achieved high resolution, low power consumption, 

and is suitable for mass production and wireless sensor network applications. 
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