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Abstract: Sparse representation (SR) algorithms can be implemented for high-resolution 

direction of arrival (DOA) estimation. Additionally, SR can effectively separate the 

coherent signal sources because the spectrum estimation is based on the optimization 

technique, such as the 1L  norm minimization, but not on subspace orthogonality. However, 

in the actual source localization scenario, an unknown gain/phase error between the array 

sensors is inevitable. Due to this nonideal factor, the predefined overcomplete basis 

mismatches the actual array manifold so that the estimation performance is degraded in SR. 

In this paper, an adaptive SR algorithm is proposed to improve the robustness with respect 

to the gain/phase error, where the overcomplete basis is dynamically adjusted using 

multiple snapshots and the sparse solution is adaptively acquired to match with the actual 

scenario. The simulation results demonstrate the estimation robustness to the gain/phase 

error using the proposed method.  

Keywords: direction-of-arrival estimation; adaptive sparse representation; adaptive 

overcomplete basis learning 

 

1. Introduction  

Direction of arrival (DOA) estimation has long been a useful method for signal detection in sonar, 

radar and communication applications [1,2]. Subspace-based methods such as minimum variance 
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distortionless response (MVDR) and multiple signal classification (MUSIC) [3,4] require sufficient 

stationary snapshots to guarantee the high-resolution estimation performance. These methods exploit 

the orthogonality between the signal and noise subspaces to achieve high-resolution spectrum 

estimation. In addition, calibration techniques are added to improve the performance in the gain/phase 

error scenario [1,2]. However, even with appropriate calibration, subspace-based methods are unable 

to deal with the coherent signal sources because the statistical properties, i.e., the subspace 

orthogonality cannot provide useful information for separating coherent sources [3,4]. In addition, 

sufficient snapshots are often unavailable in fast-changing scenarios, which results in inappropriate 

estimation of the subspaces, and thus, the performance of the DOA estimation is also degraded. 

Focusing on the problems of coherent sources and the requirements for sufficient stationary snapshots, 

the sparse representation (SR) method is proposed [5,6]. The key assumption is that the signal sources 

can be viewed as far-field point sources, and their number is quite small compared with the whole 

spatial domain. When this assumption is valid, the underlying spatial spectrum is sparse (i.e., has only 

a few nonzero elements), and we can solve the inverse problem with sparse constraint to approximate 

the actual sparse signal. Additionally, SR has also been widely used in a variety of other problems, 

including image reconstruction [7,8], feature selection [9] in machine learning, radar imaging [10,11], 

and penalized regression [12,13]. In the most basic form, SR attempts to find the sparsest signal α  

satisfying x Φα , where m nC Φ  is an overcomplete basis, i.e., m n  and x  is the observation data. 

Without the prior knowledge that α  is sparse, the equation x Φα  is ill-posed and has many solutions. 

Additional information that α  should be sparse allows one to eliminate this ill-posedness [14-16]. 

Solving the ill-posed problem involving sparsity typically requires combinatorial optimization, which 

is intractable even for modest data size. A number of practical algorithms such as convex optimization 

(including the 1L  norm minimization) [5] and iterative reweighted least squares [6] have been 

proposed to approximate the actual solution to this problem. However, in the actual array scenario, the 

unknown gain/phase error between sensors is inevitable. At this case, a mismatch exists between the 

actual array manifold and the corresponding columns of the predefined basis, which causes 

performance degradation in DOA estimation [5]. Therefore it is indispensable to design an adaptive 

SR algorithm where the overcomplete basis is dynamically adjusted to better fit the received data. 

In this paper, an adaptive SR algorithm to dynamically adjust both the overcomplete basis and the 

sparse solution so that the solution can better match the actual scenario is proposed. The remainder of 

this paper is organized as follows. Section 2 describes the basic model of the received data. In  

Section 3, an adaptive SR method to deal with the gain/phase error scenario is illustrated. In Section 4, 

the performance analysis is implemented to illustrate the robustness of adaptive SR with the simulated 

data. Section 5 presents our concluding remarks about the proposed algorithm. 

2. Problem Description and Modeling 

Source localization using sensor arrays is a problem with important practical applications including 

radar, sonar, exploration seismology and many other applications [1,2]. In many source localization 

applications, the physical dimensions of the sources are quite small or the sources are far enough from 

the array sensors so that they can be viewed as far-field point sources. Although the non-uniform and 

nonlinear configurations such as conformal array sensors (CFA) have certain advantages over uniform 
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linear array (ULA), in this paper, the discussion is just implemented with the widely-used ULA 

deployment for simplicity. Next the signal model received by ULA is first given. 

2.1. Signal Model 

As shown in Figure 1, the array geometry is assumed to be ULA with N  sensors, labeled as 

  ,1ix t i N  , where t  and i  indicate the snapshot and sensor indexes, respectively. The inter-sensor 

spacing was d , the radar wavelength is  and the incoming far-field point sources are   ,1ks t k K  , 

where K  indicates the number of sources, which is less than the number of sensors.  

Figure 1. An illustration of the array geometry of source localization. 
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Starting with the ideal model with no gain/phase error, we have , x Ψs n  where  1N x  

represents one received snapshot,  1N n  is the noise vector,  1K s  is the source vector, and the 

matrix  N KΨ  is the steering vectors of the actual sources, i.e., the array manifold as [1,2]: 
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where the vector: 

    exp sin 0 ,exp sin 1 , exp sin 1 ,k k k k

d d d
N   

  
                      

s   (2) 

indicates the steering vector of the actual source with angle k . Once the actual array manifold Ψ  is 

known, the technique of data fitting can be used to estimate the signal amplitudes of the actual  

sources [1,2]. However, in the actual radar array environment, the actual manifold is unavailable and 
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needs to be estimated. To avoid this problem, we deign an overcomplete basis containing all the 

steering vectors. Then the spectrum estimation can be implemented by solving the underdetermined 

equation instead of finding the actual array manifold. Discretize the angle axis into 

 grids so that 
2

,1i s
s

i
i N

N

     denotes the uniformly-discretized angles. Then 

the sN N  overcomplete basis is given as [5]: 

      1 2, , , , ,
sN     Φ s s s   (3) 

where  is  is the steering vector corresponding to angle i . Then the snapshot x  can be rewritten in 

matrix form as: 

 , x Φα n  (4) 

where  1sN α  represents for the actual spectral distribution. The actual array manifold Ψ  

corresponds to the steering vectors of the significant elements in α  , and ideally, is the subset of the 

overcomplete basis Φ . Therefore finding the actual array manifold is equal to picking up the 

corresponding columns from the overcomplete basis. Because sN N , the underdetermined problem 

of solving α  in (4) is generally ill-posed. Prior works have illustrated that with the additional 

information that the spatial spectrum, i.e., the solution α  is sparse, this ill-posedness can be effectively 

removed [5,6]. Solving problems involving sparsity typically requires combinatorial optimization, 

which is intractable even for modest data sizes, therefore, a number of approximations have been 

considered [14,15]. Next we give a brief synopsis of relevant ideas in sparse representation. 

2.2. Sparse Representation 

Recently, the techniques of SR have been illustrated as effective methods for DOA estimation [5,6]. 

The SR technique, by its nature, can separate coherent sources because the spectrum estimation is 

based on the optimization technique, but not on subspace orthogonality. Moreover, when multiple 

stationary snapshots are available, further improvements on estimation performance are expected with 

the “joint-sparse” characteristic [5,6].  

2.2.1. Single Snapshot Case 

With the constraint of sparsity on α  (only a small subset is nonzero), the problem in (4) can be 

efficiently solved by SR [5] as: 

 
1 2

ˆ arg min    ,subject to   α α x Φα  (5) 

where 
p

  stands for the pL  norm and   is the error allowance in sparse representation. During the 

optimization, the 2L  norm constraint by   guarantees the residual 
2

x Φα  to be small, whereas the 

1L  norm enforces the sparsity of the estimated spectrum α . In fact, the exact sparsity, i.e., the number 

of the nonzero elements should be originally given by the 0L  norm. However, this optimization is  

NP-hard and is unrealizable even for modest data size [14,15]. Unlike the 0L  norm, the 1L  norm 

minimization can be efficiently implemented via convex optimization. The fundamental contribution 
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of SR is to illustrate the equivalence between these two optimizations. It is proven that SR 
implemented by the 1L  norm minimization can approximate the actual solution as 

2
ˆ ,   0α α  

where 0α  indicates the actual sparse solution,   is the stability coefficient related to the maximal 

mutual coherence in the matrix Φ  [15]. The detailed illustration of the 1L  norm characteristic is given 

in [16]. Therefore SR has the ability of high-resolution estimation. Furthermore, when several 

stationary snapshots are available, we can combine these snapshots to improve the estimation 

performance. 

2.2.2. Multiple Snapshots Case 

When multiple measurements are available, the data model is extended as: 

 , X ΦS N  (6) 

where    1 , , L   X x x  are multiple snapshots,    1 , , L   N n n  and    1 , , L   S α α  are the 

corresponding noise and spectrum matrixes, respectively. The rows of S  indicate the spatial dimension 

and the columns indicate the temporal dimension. One natural approach using multiple snapshots is to 

exploit the joint sparse representation characteristic, which assumes that the positions of the significant 

sources keep identical among different snapshots and the difference is only reflected on their 
amplitude variations. Chen et al. proposed the mixed 1,2L  norm minimization to implement the joint  

optimization [17-19]. 

The mixed 1,2L  norm minimization is implemented on the solution matrix S , with the definition 

as
2

,
1 1

1
L N

i j
j i

SL
 

 
  

 
  .  

Based on this, the 1,2L  norm minimization combines the multiple snapshots using the 2L  norm and 

the sparsity is only enforced in the spatial dimension via the 1L  norm. Therefore the solution matrix S  

is parameterized temporally and spatially, but the sparse constraint has only been enforced in spatial 

dimension because the signal is not generally sparse in temporal domain. However, this joint 

optimization is quite complicate and has a huge computation load. When the number of the snapshots 

L  increases, the required computational effort increases superlinearly. Therefore, when the number of 

the snapshots is large, this approach is not practical for real-time source localization. 

A. Noncoherent Average 

To decrease the computation load, a simple method is to separate the joint problem in (6) into a 

series of independent subproblems [5] as: 

       ,  1 .l l l l L   x Ψα n  (7) 

Each subproblem can be solved via the 1L  norm minimization using (5) to obtain the sparse 

spectrum estimation. Then, the average result of these estimated spectrums  ˆ ,  1l l L α  can be taken 

as: 

  

1

1
ˆ ˆ .

L
l

lL 

 α α  (8) 
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This method implements noncoherent average and its main attraction is its simplicity. However, by 

turning to fully coherent combined processing, as described in the following sections, we expect to 

achieve greater accuracy and robustness to noise.  

B. L1-SVD 

A typical coherent sparse representation algorithm using multiple snapshots is the 1-SVD   

method [5,20]. It implements the sparse estimation only in the signal subspace, and thus, the 

robustness to noise is improved and the computation load of the optimization is quite low. In its basic 

form, the received data is decomposed into the signal and noise subspaces using the singular value 

decomposition (SVD) of the N L  data matrix X . Then the spectrum estimation is molded with 

reduced dimension only in the signal subspace. Mathematically, this translates into the following 

representation. Take SVD of the data matrix as: 

 ,HX ULV  (9) 

where the diagonal entries of L  indicate the singular values of X , the columns of U  and V  are  

left- and right-singular vectors, respectively. Suppose the number of actual sources is , the 
reduced dimension N K  matrix denotes the signal subspace as SV K K X ULD XVD , where 

 ,K KD I 0 . Obtain SV KS SVD  and SV KN NVD  similarly, and then, the data can be molded in 

the signal subspace as: 

 .SV SV SV X AS N  (10) 

Then the 1L  norm minimization can be similarly implemented like (5), however, only in the signal 

subspace. In the 1-SVD  method, the noise level is reduced and the spectrum estimation is improved. 

In addition, the size of the joint optimization is reduced from N L  into N K , and thus, the 

computation load is greatly reduced. The simulation results in [5] illustrate that 1-SVD  has the 

advantages of both lower computation load and more robustness to the noise. Therefore, in the 

simulation part of this paper, the 1-SVD  method is chosen as a performance reference. 

However, there are some nonideal factors, which is inevitable in a practical radar array system. 

These factors include gain/phase error, mutual coupling between sensors and so forth [1,2]. When 

these happen, the predefined overcomplete basis in SR cannot effectively express the actual array 

manifold, which causes performance degradation in spectrum estimation. Similar problems also appear 

in other spectrum estimation methods like MVDR and MUSIC [3,4]. In this paper, we only focus on 

the gain/phase error scenario and propose an effective method to adaptively calibrate the overcomplete 

basis so that the robustness of the spectrum estimation is improved. Similar treatments can also be 

made to deal with the mutual coupling scenario, however, the optimization procedure is more 

complicate. Without considering the mutual coupling between sensors, the error matrix can be given  

as [21-23]:  

  1
1 , , ,Njj

Ndiag a e a e    Γ   (11) 

where ij
ia e   indicates the gain/phase error at the ith  sensor. In this scenario, the data model is 

correspondingly modified as: 

 ,m   x ΓΨs n Ψ s n  (12) 
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where m Ψ ΓΨ  denotes the actual array manifold with the gain/phase error. In SR, the overcomplete 

basis Φ  is constructed without considering the gain/phase error since the error matrix Γ  is unknown 

in advance. The mismatch exists between mΨ  and the corresponding columns of the predefined basis 

Φ , and thus, the estimation performance is degraded. Concerning the 1-SVD  algorithm, the 

mismatch caused by the gain/phase error still exists in the signal subspace so that the degraded 

performance is inevitable. Focused on this, an adaptive SR algorithm is proposed in this paper, which 

dynamically calibrates the overcomplete basis so that the sparse solution can better fit the actual 

scenario. 

3. Adaptive Sparse Representation 

The key feature of adaptive SR is the adaptive adjustment of the overcomplete basis. This process 

generally learns the uncertainty of the overcomplete basis, which is not available from the prior 

knowledge, but rather has to be estimated using multiple snapshots. Prior works on basis learning take 

the strategy that the whole overcomplete basis is optimized to better represent the data of multiple 

snapshots [24-26]. However, this optimization has to solve a large amount of variables, i.e., all the 

elements in the overcomplete basis, and thus, the computation load is quite large. Furthermore, the 

optimization may deviates from the actual solution because no knowledge is added to guarantee the 

structure in the basis estimation. In this paper, when only gain/phase error is considered, the unknown 

error matrix Γ  is a diagonal matrix [21-23]. Then the actual overcomplete basis has specific structure 

and can be decomposed into two parts: one is the predefined overcomplete basis Φ , the other is the 

unknown error matrix Γ . Therefore, the estimation of the actual overcomplete basis can be 

implemented only in the error matrix part, where the number of the variables to be solved is greatly 

reduced and the estimated basis is more robust. In addition, in the presence of gain/phase error, the 

spectrum estimation in SR is degraded, reflected as spurious peaks and missing of small actual sources. 

When this error is small or moderate, the positions of the estimated significant sources are still  

reliable [5,6]. Therefore the steering vectors corresponding to the significant sources in the spectrum 

estimation of SR can still be served as an effective approximation of the original array manifold Ψ . 

With the aid of the multiple received snapshots, the covariance matrix estimation is obtained as: 

 
1

1ˆ ,
L

H
l l

lL 

 R x x  (13) 

where L  is the number of the snapshots, lx  is the lth  snapshot. Then the signal and noise subspaces 

can be effectively obtained using EVD of the covariance matrix estimation as: 

 ˆ ,HR UΛU  (14) 

where  1, , NU u u  are the eigenvectors corresponding to the eigenvalues ,1i i N   . Suppose the 

number of the actual sources is K , and the eigenvalues ,1i i N    is sorted in the descending order, 

the signal subspace is represented as  1, ,s KU u u  and the noise subspace is given as 

 1,n K NU u u . The signal subspace provides a range space of the actual array manifold ΓΨ , i.e., 

   sspan spanU ΓΨ  [21]. Furthermore, with the orthogonality between the signal and noise 

subspaces, we have: 
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   .nspan ΓΨ U  (15) 

Once reliable estimations of Ψ  and nU  can be obtained, a reasonable estimate Γ̂  is given by 

minimizing: 

 
2

1 1

ˆ ˆ ˆˆ ˆ ˆ ˆmin min ,
K K

H H H H
n k k n n k

k k 

       
   
 

Γ Γ
Γ U ΓΨ Ψ Γ U U ΓΨ  (16) 

where the matrix ˆ ,1k k K Ψ  indicates the manifold estimation, i.e., the columns corresponding to 

the significant elements in the spectrum estimation using SR. Additionally, the noise subspace 

estimation ˆ
nU  can also be obtained using EVD. With the aid of these estimations, the error matrix 

estimation Γ̂  can be effectively given using (16). Even though some small sources might be not 

included in the array manifold estimation, the subspace orthogonality is still valid between the 

subspace of the significant sources and the noise subspace, and thus, the solution in (16) still serves as 

an effective approximation of the error matrix. Although the above optimization is well-defined, the 

corresponding optimization is rather complicate and difficult to implement. Next, simplification is 

implemented to further improve this optimization process. Define that: 

 ˆ ,k kΓΨ a δ  (17) 

where ka  is a diagonal matrix given by: 

  ˆ ,k kdiaga Ψ  (18) 

and δ  is a vector given by: 

  11 22, , , ,
T

MM   δ   (19) 

where ij  indicates the element located at the ith  row and the jth  column of matrix Γ . Then the 

minimization in (16) can be rewritten as:  

 
1

ˆ ˆ ˆmin .
K

H H H
k n n k

k

   
 


Γ
Γ δ a U U a δ  (20) 

Similarly, we need to minimize (20) with respect to δ  under the energy constraint 1H δ w , where 

 1, ,1
Tw  . The result of this problem is well solved using quadratic optimization and is given by: 

  1 1 ,H δ Q w w Q w  (21) 

where the matrix Q  is given as: 

 
1

ˆ ˆ .
K

H H
k n n k

k

Q a U U a  (22) 

Then the error matrix estimation can be effectively given as  diagΓ δ . Unlike (16), the matrix 

Q  can be calculated in advance, and thus, the optimization in Equations (21,22) can be directly 

implemented. The detailed procedures of the adaptive SR algorithm are given as follows: 

1. Let 1n   and set the initial error matrix as  0ˆ Γ I  . 

2. Calculate the covariance matrix estimation using (13) and obtain the noise subspace as 

 1,n K NU u u  using SVD. 
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3. At the nth  iteration, the sparse solution  ˆ nα  is estimated by the 1L  norm minimization with the 

overcomplete basis  1ˆ nΓ Φ  as: 

    1

1 2

ˆˆ arg min    .n nsubject to   α α x Γ Φα  (23) 

where   represents a small matching allowance. This optimization can be effectively solved by 

convex optimization or other approximation algorithms [27]. Then if the solution is converged as 
   

 

1ˆ ˆ
,

ˆ

n n

n





α α

α
 where   is a small constant, end the iteration process, otherwise, continue to 

steps 4–5. 

4. Based on the current solution  ˆ nα , only significant peaks (local maxima) are extracted from the 

spectrum estimation and the manifold estimation is given as    
1

ˆ , , ,
Kp p    Ψ s s  where K  is 

the number of the extracted peaks, and Kp  represents the corresponding column indexes. 

5. Update the error matrix using the optimization in Equations (21,22). Then the 1n   iteration is 

implemented as steps 3–5.  

In the adaptive SR, the choice of K  is quite important because either adding spurious peaks or 

missing actual sources may cause a subspace deviation and this impacts the estimation performance of 

the error matrix. Although the K  value is generally unknown in the actual array scenario, there are 

several effective methods, such as the Akaike information criterion (AIC) or minimum description 

length (MDL) for estimating it [28,29]. Therefore, even if K is unknown, we can still obtain estimation 

of the signal subspace by only extracting the subspaces corresponding to the significant eigenvalues. 

The detailed process of estimating K  is not discussed in this paper.  

4. Simulation Result 

4.1. Robustness to Gain/Phase Error 

In our simulations, a ULA with 20N   sensors is deployed. The inter-sensor spacing is  

half-wavelength and three far-field sources coming from angles 0°, 18°, 27° are considered. The 

number of the snapshots is 20L  , and the error matrix is given as  1
1 , , Njj

Ndiag a e a e    Γ  , 

where the gain error obeys  and the phase error i  is uniformly distributed between 

(−2°,2°). Here, SR implemented the 1L  norm minimization at each snapshot separately and then 

averages them to obtain the overall performance. The 1L SVD  algorithm is also introduced in this 

part, which utilizes multiple snapshots and implements the 1L  norm minimization only on the signal 

subspace [5]. Figure 2 gives the spectrum estimation using different methods, where the arrows 

indicate the positions of the actual sources. In SR, a high-resolution spectrum is expected, but it is not 
robust to the gain/phase error and contains spurious peaks. 1L SVD  can reduce the impact of the 

gain/phase error to some extent, but the performance is limited because the gain/phase error is  

still inevitable in the signal subspace. The proposed adaptive SR estimates the error matrix and adjusts 

the overcomplete basis. Therefore it can better match the received snapshot and owns higher  

estimation accuracy. 
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Figure 2. Spectrum estimation result. 
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Next, the quantitative results are given to illustrate the advantages of adaptive SR. All the 

performance comparisons are based on 50 Monte Carlo simulations. Figure 3 depicts the mean square 

error (MSE) of the DOA estimation against the number of snapshots, where only peaks are extracted to 

evaluate the position accuracy.  

Figure 3. DOA MSE against the number of snapshots. 
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Since SR deals with each snapshot separately, the addition of snapshots provides no obvious 

benefits for improving the performance. The performance of 1L SVD  does improve with the adding 

of snapshots. However, there are spurious peaks because the signal subspace still contains the 

gain/phase error. In adaptive SR, when the snapshots are not sufficient, i.e., 4L  , the manifold 

estimation Ψ̂  is not accurate. At this case, adaptive SR cannot effectively express the range space of 

the actual sources and results in a large MSE. However, the performance of adaptive SR does improve 
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with the addition of the snapshots and is better than the other two methods when the number of 

snapshots is relatively sufficient ( 6L  ). 

Figure 4 depicts the amplitude MSE against the number of snapshots, where the amplitude is only 

evaluated on the actual source positions. In this case, both adaptive SR and 1L SVD  can achieve 

desirable amplitude estimation, which is better than SR. Because the estimation performance includes 

both the position and amplitude accuracy, the estimation evaluation should be considered including 

both Figures 3 and 4. In this sense, adaptive SR is better than 1L SVD  in the gain/phase error 

scenario.  

Figure 4. Amplitude MSE against the number of snapshots. 

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of snapshots

A
m

p
lit

u
d

e
 M

S
E

 

 

SR
L1-SVD
Adaptive SR

 
4.2. Coherent Sources 

As stated above, compared with traditional SR methods like 1L SVD , adaptive SR can 

significantly improve the estimation robustness of the gain/phase error. In addition, compared with 

subspace-based methods with calibration [1,21], adaptive SR can deal with coherent signal sources 

because the final spectrum estimation is still based on the 1L  norm minimization, but not on subspace 

orthogonality. The following scenario is used to prove the capabilities of dealing with coherent sources 

of adaptive SR, where subspace-based methods with calibration are ineffective. The array parameters 

and the gain/phase error keep identical with that in Section 4.1. Two far-field point sources are located 

at angles −38°, −32°, having a high correlation of 12 0.95  . As a performance comparison, MVDR is 

deployed as the detailed implementation of the subspace-based methods [1]. To improve the 

robustness to the gain/phase error, the array calibration is also employed. The detailed implement of 

calibration technique is given in [21,22]. As shown in Figure 5(a), when there are insufficient 

snapshots ( 4L  ) to obtain the statistical properties, the estimation of gain and phase error is not 

accurate and the calibration performance is limited for both MVDR and adaptive SR. At this case, the 

overcomplete basis mismatches with the actual array manifold and adaptive SR contains many 

spurious peaks. Adding more snapshots ( 20L  ) does help to estimate the gain/phase error matrix to 

calibrate the array sensors, however, the statistical properties dose not improve the estimation 
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performance of MVDR. On the other hand, when adaptive SR has sufficient snapshots to estimate the 

error matrix, the spectrum estimation can be implemented with a more matched overcomplete basis. 

Based on this, the estimation performance is improved using 1L  norm minimization and the coherent 

sources can be effectively separated. Therefore, even though effective calibration is deployed in 

MVDR, it still can not distinguish the coherent sources. On the other hand, adaptive SR can make it 

because the final spectrum estimation is still based on 1L  norm minimization, but not on subspace 

orthogonality.  

Figure 5. (a) Spectrum estimation result with L = 4 snapshots. (b) Spectrum estimation 

result with L = 20 snapshots. 
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5. Conclusions 

This paper focuses on improving the robustness of sparse representation for the DOA estimation 

with the gain/phase error. By dynamically calibrating the overcomplete basis and adaptively estimating 

the sparse solution, the proposed adaptive SR can greatly improve the estimation robustness, and thus, 

the solution better matches the actual scenario. Additionally, it does separate the coherent sources, 

which is unrealizable for subspace-based methods with calibration. The following are several 

considerations for further research: first, the current signal model in SR only considers the far-field 

point sources, however, the near-field source location is also important and meaningful in the actual 

scenario. Second, the convergence of the adaptive SR needs to be proved in a strict mathematical way. 

Finally, more adaptive mechanisms should be added to deal with the mutual coupling scenario.  
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