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Abstract: Koa (Acacia koa) forests are found across broad environmental gradients in the 

Hawai„ian Islands. Previous studies have identified koa forest health problems and dieback 

at the plot level, but landscape level patterns remain unstudied. The availability of  

high-resolution satellite images from the new GeoEye1 satellite offers the opportunity to 

conduct landscape-level assessments of forest health. The goal of this study was to develop 

integrated remote sensing and geographic information systems (GIS) methodologies to 

characterize the health of koa forests and model the spatial distribution and variability of 

koa forest dieback patterns across an elevation range of 600–1,000 m asl in the island of 

Kaua„i, which correspond to gradients of temperature and rainfall ranging from 17–20 °C 

mean annual temperature and 750–1,500 mm mean annual precipitation. GeoEye1 satellite 

imagery of koa stands was analyzed using supervised classification techniques based on the 

analysis of 0.5-m pixel multispectral bands. There was clear differentiation of native koa 

forest from areas dominated by introduced tree species and differentiation of healthy koa 

stands from those exhibiting dieback symptoms. The area ratio of healthy koa to koa 

dieback corresponded linearly to changes in temperature across the environmental gradient, 

with koa dieback at higher relative abundance in warmer areas. A landscape-scale map of 

healthy koa forest and dieback distribution demonstrated both the general trend with 

elevation and the small-scale heterogeneity that exists within particular elevations. The 

application of these classification techniques with fine spatial resolution imagery can 
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improve the accuracy of koa forest inventory and mapping across the islands of Hawai„i. 

Such findings should also improve ecological restoration, conservation and silviculture of 

this important native tree species. 

Keywords: forest health; dieback; Acacia koa; Hawaii; GeoEye; remote sensing; GIS  

 

1. Introduction  

Acacia koa Gray (koa) is a large evergreen forest tree in the Fabaceae family. For established trees 

the true leaf is replaced a phyllode, which is the expanded rachis of the true leaf. These are thought to 

aid in drought tolerance [1]. Koa is an important native tree species in Hawai„i due to its high 

economic, ecological and cultural values. Koa serves as the preferred and critical habitat for native 

insects [1] and threatened and endangered bird species [2], improves soil nitrogen content [3], and 

creates favorable understory conditions for native plant regeneration [4]. Because of its recognized fine 

wood quality and conservation values, there is growing interest in establishing koa plantations and 

forests in former agricultural and grazing lands. Koa exists on most of the main Hawaiian Islands in 

remaining native forest areas and regenerating second-growth stands across a wide range of elevation 

(600–2,300 m asl), mean annual precipitation (850–5,000 mm), and soil types [5]. Several studies have 

found that these environmental gradients have direct effects on various aspects of productivity and 

ecosystem function. For example, koa productivity generally increases with precipitation, but nutrient 

availability becomes more limiting due to increased leaching and plant demand [6-8].  

Through ground-based inventories of forest cover and health status, investigators have detected 

instances of koa dieback throughout the ecological range of koa forests on several of the main 

Hawai„ian Islands [9,10]. Whether the dieback represents a new disease or a naturally occurring 

phenomenon is unknown, but field observations indicate that it is becoming increasingly frequent. One 

pathogen identified in many areas of dieback is the soil-borne fungus, Fusarium oxysporum f. sp. koae. 

Upon infection, the fungus blocks the vascular tissue and inhibits movement of resources between 

shoots and roots. Typical symptoms include yellowing of the phyllodes with subsequent crown 

thinning until complete defoliation and tree death [9]. Young trees typically die rapidly after the first 

symptoms appear, but older trees often survive because they successfully isolate the infected tissue and 

continue to produce new growth from uninfected parts of the tree [10]. In addition, insects such as the 

koa psyllid (Psylla uncatoides) and the coffee twig borer (Xylosandrus compactus) are generally not 

lethal but can impair koa forest health through partial defoliation and cause serious economic damage 

by altering the stem form [11].  

Field studies within diseased tree patches have improved our understanding of the role of pathogens 

through characterizations of crown symptoms and physiological condition of diseased trees, stand 

structure and soil conditions. Findings have been limited to plot-level assessments, mainly in 

accessible areas. There is a need to study the spatial distribution and spread of dieback across broad 

geographic regions in order to focus restoration and monitoring strategies for early and efficient 

control and management. Significant koa forest mortality would not only reduce critical habitat for 

native flora and fauna and allow for invasion by non-native species but would also cause severe 
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economic damage to the timber industry. Because very large plots are often required to quantify  

large-scale impacts of forest mortality, additional research needs to be done to achieve a more 

complete assessment of koa forest dieback across the environmental gradients in Hawai„i, especially in 

inaccessible areas. Forest pests and diseases commonly disperse at large scales depending on the 

distribution of the host plant and the presence of suitable environmental conditions for pathogen 

reproduction and spread. Although it is generally believed that koa dieback distribution is associated 

with climatic factors, findings have not been reported in the literature. Therefore, in the study of koa 

dieback, it is crucial to understand the interactions between koa forests and their physical and 

biological environment. 

The analysis of fine spatial resolution multispectral and panchromatic satellite imagery has provided 

a way to study large areas by allowing visualization of entire landscapes and regions and identification 

of individual tree species. Due to high temporal frequency of flights over the same area (3 to 4 days), 

fine resolution satellites such as IKONOS (4 m MS (multispectral), 1 m Pan (panchromatic)) and 

Quickbird (2.4 m MS, 0.5 m Pan) have facilitated assessments of forest structure, condition and health 

across multiple spatial and temporal scales [12]. Imagery from these satellites has improved the 

identification and mapping of individual forest species across entire landscapes. The high spatial 

resolution allows for delineation of single tree crowns. The multispectral bands allow for 

determination of variations of canopy greenness within forest stands [13]. This technology is being 

increasingly applied at the landscape level to quantify and model larger spatial patterns of forest 

dieback [14]. In particular, the IKONOS satellite has been successfully applied for forest inventory in 

tropical environments. It has allowed for the mapping of tree crown sizes [15], tree density, species 

identification, and assessment of temporal changes in individual tree growth and mortality [16]. Other 

studies have used these data to calculate texture parameters and several vegetation indices as a measure 

of vegetation greenness and related those to biophysical indices of forest productivity such as tree 

height, basal area and leaf area index for spatial prediction at the landscape scale [17]. Therefore, 

similar applications of this technology could facilitate spatial and temporal assessments of koa forest 

health through detection of forest structure and greenness changes due to forest dieback and to 

accurately predict its potential distribution at the stand and landscape scales in the islands of Hawai„i.  

The purpose of this study was to apply remote sensing and geographic information systems (GIS) 

methodologies to characterize the health of koa forests and the spatial distribution of koa forest 

dieback across an elevation gradient on the island of Kaua„i. Affected trees largely comprise the forest 

overstory, which is viewed by satellites. In most cases, as unhealthy trees die, the entire crown 

gradually changes from healthy green to brown before complete defoliation. We hypothesized that the 

analysis of high spatial resolution imagery from the new Geoeye1 satellite (2 m MS, 0.5 m Pan) would 

allow for delineation of not only single-tree crowns but also detection of trees experiencing dieback 

phases, including complete defoliation on mature trees with dense branching. We also hypothesized 

that koa forest health and dieback dynamics are largely influenced by changes in environmental 

conditions such as temperature, rainfall, and relative humidity across the elevation gradient. Therefore, 

a more thorough and meaningful analysis was carried out through the integration of climatic and 

remote sensing data using GIS tools in order to illustrate complex environmental interactions that 

influence koa forest health across environmental gradients in Hawai„i. A better understanding of the 
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relationship of koa dieback to environmental factors will help foresters and land managers select better 

sites for restoration of koa forests. 

2. Materials and Methods 

2.1. Site Description 

Areas of koa dieback have been increasingly observed in the Pu„u Ka Pele and Nā Pali Kona Forest 

Reserves on the Island of Kaua„i (Figure 1). The study area included koa stands growing on highly 

weathered soils along an elevational gradient of 600–1,200 m asl. Mean annual temperature  

declines with elevation from 20–17 °C. Mean annual precipitation increases with elevation from 750 to 

1,500 mm [18]. Monthly precipitation increases with elevation from about 60–90 mm in the dry 

summer months and 100–200 mm in the wet winter months. Koa remains evergreen despite seasonal 

variations in rainfall. Koa stands in this area are highly mixed with several introduced tree species 

including Eucalyptus spp. (eucalyptus), Pinus elliottii Engelm. (slash pine) and Grevillea robusta A. 

Cunningham ex R. Br. (silk-oak).  

Figure 1. Landsat satellite image of the Island of Kaua„i (top) and GeoEye1 satellite image 

(bottom) overlaid on a digital elevation model 3D surface view depicting the elevation 

gradient. 
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2.2. Image Analysis and Classification 

Land cover types were classified into healthy koa stands, unhealthy koa stands (those exhibiting 

dieback symptoms), other tree species, and other land cover types. This classification followed a 

progression from data collection in the field for image training, processing of raw data from satellite 

images, exploratory analysis of spectral properties for each designated cover class and final 

classification based on differentiation of the unique reflectance characteristics of each class across the 

MS bands using supervised methods.  

2.2.1. Satellite Imagery 

A set of cloud-free images with a near-nadir view from the GeoEye1 satellite (GeoEye, Inc., Dulles, 

VA, USA) covering potential areas of koa forest dieback across the environmental gradient was 

obtained on July 2009 (Figure 1). The images consist of 2.0-m pixel MS bands in the visible spectrum 

including the blue (450–510 nm), green (510–580 nm), red (655–690 nm) and near-infrared (NIR)  

(780–920 nm), and a 0.5-m pixel panchromatic band that includes the visible and NIR spectral regions 

(450–829 nm) (Figure 2). All bands were orthorectified to a horizontal accuracy of less than 5 m using 

a 10-m-pixel resolution digital elevation model (DEM) obtained from the Hawai„i Statewide GIS and 

the nearest-neighbor resampling method using rational polynomial coefficients in ENVI (ITT Visual 

Information Solutions, Boulder, CO, USA). The orthorectified images allowed for more accurate 

location of targeted trees and did not show geometric artifacts that are typically found in images over 

terrain with steep topographic changes. Therefore, the quality of the remote sensing data used for this 

study ensures the highest pixel resolution available with highly accurate geometric and topographic 

corrections important in sloped areas. Since the spectral range of the single Pan image and the four MS 

bands is similar, the MS bands were fused with the Pan band to produce four MS pan-sharpened bands 

(MSPan) at 0.5 m pixel resolution using the spectral-sharpening technique of [19,20], who demonstrated 

that a pan-sharpened multispectral image maintained the radiometric accuracy of the original bands. 

Figure 2. GeoEye1 satellite relative spectral response in the visible and NIR spectral regions. 
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2.2.2. Selection of Training Sites 

Previous to the image analysis process, an initial field survey was conducted during October 2008 

for landscape recognition and collection of ground-truth information that allowed for identification of 

land cover classes existing across the entire area (tree and shrub species and grasses). The survey 

included the collaboration of forest health experts and managers from the Hawai„i State Division of 

Forestry and Wildlife (DOFAW) for the identification of koa trees and stands experiencing dieback. 

This procedure was also necessary to determine and select training sites (groups of pixels representing 

a class) at known locations. Ten dying and/or dead koa stands were identified and geolocated across 

the environmental gradient using a Trimble GeoXT GPS with sub-meter accuracy. Koa trees were 

selected on the basis of showing symptoms of leaf chlorosis, defoliation, and death without any 

determination being made of the cause of dieback, whether biotic or abiotic. Ideal koa dieback sites 

were surrounded by healthy koa stands to ensure that the identified dying or dead trees were koa. 

Additional sites that represented 100% coverage of healthy koa and other abundant species in the area 

such as eucalyptus, pine, silk-oak, and other cover classes such as grass-soil mixture, bare soil, 

asphalted roads and water bodies were also geo-located. Geo-located points were overlaid on a natural 

color image composite in order to delineate training sites by drawing polygons around the GPS mark. 

A true color composite allowed more accurate visual inspections to clearly define training site 

boundaries. Ten polygons that included about 150 contiguous pixels (~37 m
2
) were drawn per cover 

class across the entire image area. The total number of training pixel values (digital numbers, DNs) per 

cover class (about 1,500) were extracted per band and used for exploratory analysis to determine the 

spectral separation prior to image classification. The Shapiro-Wilk method was used to test how well a 

Normal distribution fit the DNs of the four bands across all training sites. Homogeneity of variance of 

all DNs among classes was determined with O‟Brien‟s test [21]. Both tests were carried out using JMP 

software (SAS Institute Inc., Cary, NC, USA).  

2.2.3. Spectral Analysis 

An exploratory analysis was carried out to determine which MS and/or MSPan bands could 

maximize separation between training classes (koa dieback, healthy koa, pine, eucalyptus, silk-oak and 

other land cover types). Due to the high correlation between contiguous MS bands, a feature selection 

procedure prior to image classification was done using analysis of divergence among classes. This 

allowed for selection of important bands that maximized differentiation of classes and optimized 

classification by reducing the amount of redundant information. Two feature selection procedures that 

included all training classes and spectral bands were tested. The first was the Jeffreys-Matusita (J-M) 

distance analysis, which provides a listing report of the divergence values for every possible pair of 

classes for the bands being studied. A calculated divergence close or equal to two indicates maximum 

separation, and a zero value means that the classes are inseparable [22]. These numbers were compared 

to determine which set of bands was the most useful for classification. The second procedure included 

the average of the total DNs values for each training class per band in order to determine and 

graphically illustrate their pseudo-spectral signatures. This procedure allowed a better depiction and 

comparison of the DNs range unique to each class and the amount of overlap across the spectral bands.  
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2.2.4. Image Classification 

The Maximum Likelihood Classifier (MLC) included in ENVI was used for detailed classification 

of koa stands by health status across the elevation gradient. The classifiers assign every individual 

pixel in the image to a training class based on spectral pattern similarities across the bands using 

Bayesian probability theory [23]. The algorithm estimates a probability distribution which describes 

the chance of a given pixel value being a member of a particular class. Pixels are assigned on the basis 

of the shortest probabilistic distance from class means, depending on the shape, size and orientation of 

training samples. MLC results in fewer classification errors if the assumption of a normal distribution 

for each training class is met across all spectral bands [24,25]. To validate the image classification, a 

second field survey was made on December 2009 for the identification and geo-location of a set of ten 

testing sites that included a mixture of healthy koa stands, unhealthy koa stands and the remaining 

cover classes. The procedure used to define and extract training DNs was applied to obtain testing 

pixel values for each class from the classified image. Thus, a testing site included about 150 pixels per 

class. Across the 10 testing sites, this resulted in 1,500 testing pixels per class. A confusion matrix was 

then calculated to determine the classification accuracy. The matrix determined the percentage of 

pixels that were classified into each class.  

2.3. GIS Analysis  

2.3.1. Climate Data 

Climatic maps of mean monthly temperature (°C), precipitation (mm) and maximum and minimum 

relative humidity (%) were obtained in raster format at a resolution of 200 m per pixel from The 

Rainfall Atlas of Hawaii [18]. Using the temperature data, the monthly potential evapotranspiration 

(mm) (PET) was calculated with the algorithm of Thornthwaite (1944) (Formula 1), which defines 

potential evaporation as “the water loss which will occur if at no time there is a deficiency of water in 

the soil for use of vegetation”.  

PET (mm/month) = dl × (dm ÷ 360) × 16 × (10 × T ÷ I)
a
   (1) 

where: 

dl = daylength in hours 

dm = days in a month 

T = mean monthly temperature (°C) 

I = monthly heat index given by (T ÷ 5)
1.5

 

a = 0.49 + 0.0179 × (I − 7.71
−5

)×(I
2
 + 6.75

−7
) × I

3
  

Maps of mean annual temperature (MAT) and precipitation (MAP) were also obtained at a 

resolution of 200 m per pixel [18]. Therefore, PET was calculated both annually and monthly. The 

difference between monthly PET and MAP was calculated to determine the number of dry months 

over the year. The annual PET/MAP ratio was calculated since it is used as an indicator of vegetation 

health and productivity to classify vegetation world life zones [26] and has been applied to Hawai„i‟s 

diverse climatic and vegetation zones [27].  



Sensors 2011, 11  

 

 

5684 

2.3.2. Climatic Zones 

In order to estimate percent of the koa forest affected by dieback and to compare it with the 

environmental factors, the study area was divided in environmental zones across the gradient using 

MAT and MAP values. Maximum and minimum relative humidity were similar across the study area 

(97% and 68%, respectively). The various levels of rainfall and temperature were combined to create 

climatic zones. Pixels from each layer were reclassified to unique numbers representing three levels of 

MAP: low (750–1,000 mm, Plow), medium (1,000–1,250 mm, Pmid) and high (1,250–1,500 mm, Phigh) 

and three levels of MAT: low (17–18 °C, Tlow), medium (18–19 °C, Tmid), and high (19–20 °C, Thigh) 

for a total of nine classes. Reclassified layers were added to obtain nine climatic zones ordered by 

levels of increasing temperature (Tlow + Plow to high, Tmid + Plow to high and Thigh + Plow to high) using ArcGIS 

(ESRI, Redlands, CA, USA). Because the climatic zones represented relatively broad areas, three  

sub-zones encompassing a similar number of pixels were delineated within each climatic zone 

resulting in a total of 27 sub-zones. All pixel values of MAP, MAT, PET and PET/MAP were 

extracted per sub-zone for calculation of averages.  

2.4. Environmental Effects Assessment  

In order to investigate important environmental controls over koa health and dieback, the classified 

image was overlaid on the climatic zones map to calculate the total area of pixels classified as healthy 

koa and koa dieback per sub-zone. Since climatic zones varied in size, the ratio of healthy to unhealthy 

koa cover (healthy koa:unhealthy koa ratio) within sub-zones was calculated to allow an equivalent 

comparison of the distribution of koa dieback across climatic zones in the elevation gradient. Smaller 

ratio values indicate a higher prevalence of koa forest dieback. To quantify the relationship of 

environmental variables to the magnitude of the ratio, the average values of MAP, MAT, PET and 

PET/MAP were extracted from each sub-zone and analyzed by two statistical procedures using JMP 

software. The first included the identification of individual environmental variables (MAP, MAT, PET 

and PET/MAP) that could be related to the healthy koa:unhealthy koa ratio through linear regression 

and analysis of R
2
 and error distribution to determine the strength of the relationship. The second 

procedure included the selection of best prediction models of the ratio from all possible combinations 

of MAP, MAT, PET and PET/MAP using forward stepwise regression. Two model-selection 

parameters were used to determine a parsimonious number of environmental variables. The adjusted 

R
2
 from linear regression provides a proportion of variability in a data set that is accounted for by the 

statistical model, adjusted according to the number of environmental variables. It provides a measure 

of how well future healthy koa:unhealthy koa ratio estimations are likely to be predicted by the model. 

Therefore, a higher R
2
 indicates more accurate model predictions. The Akaike Information Criterion 

(AIC), based on maximum likelihood to minimize the error sum of squares with the minimum number 

of parameters, was used to select the optimal number of parameters to include in a model. The model 

that has the smallest AIC value is considered optimal. 
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3. Results  

While the J-M distance feature selection procedure from the analysis of MS bands resulted in values 

<1.5 for the class pair unhealthy koa and grass-soil mixture, the analysis of MSPan bands resulted in 

values from 1.99 to 2 for most pairs of cover classes across the gradient. Therefore, this analysis 

indicated that the MS bands did not allow accurate classification of koa dieback due to large overlap 

with grasses, but that all MSPan bands were important to differentiate cover classes. Individual koa 

crowns were generally less than 10 m
2
, so only the MSPan imagery provided enough detail to 

characterize them. Therefore, only MSPan were further analyzed to determine class pseudo-spectral 

signatures.  

There was a clear spectral separation between healthy and unhealthy koa, as the latter had higher 

reflectance values across the four bands (Figure 3). Koa stands experiencing dieback had also 

consistently lower reflectance values than the grass-soil mixture class, indicating that the four bands 

contained important information to accurately differentiate them. The NIR followed by the green and 

blue bands provided the best spectral separation of healthy koa forests from all other classes, as the koa 

pseudo-spectral signature was the lowest in these bands. The red band contained the lowest spectral 

values for all vegetation classes and a large degree of overlap, especially among tree species. Although 

this band separated healthy from unhealthy koa stands and the grass-soil mixture, a large spectral 

overlap was observed between healthy koa with the other major tree species (Figure 3). Therefore, the 

red band was discarded from the classification process using MLC, since an accurate classification of 

healthy koa stands was also needed. 

Figure 3. Pseudo-spectral signatures of tree species and land cover classes across the 

visible and NIR spectral bands in digital numbers (DN). 

 

The use of MSPan bands and the analysis of their relative contributions to optimally differentiate 

healthy and unhealthy koa allowed the classification of these two classes from other vegetation classes 

across the environmental gradient (Figure 4). The visual comparison of the natural color composite of 

an area that was included in the analysis of testing sites with the classified image illustrated separation 

of healthy koa forests from pine, eucalyptus and silk-oak even if they were highly mixed (Figure 5(a)). 
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grass-soil mixture was also clear and consistent with the position of validation sites (Figure 5(b)). The 

confusion matrix indicated that MLC accurately differentiated healthy from unhealthy koa stands 

(Table 1). While most pixels representing unhealthy koa in the testing site were accurately classified 

(98.6%), a small percentage of pixels representing other classes were misclassified as unhealthy koa 

(<0.03% for tree species and 2.30% for shadow-asphalt). The majority of pixels representing healthy 

koa in the testing sites were accurately classified (87.10%), but 11.30% and 1.50% of those pixels 

were misclassified as pine and eucalyptus, respectively. Only 0.77% and 3.80% of pixels representing 

eucalyptus and pine were misclassified as healthy koa. Pixels representing pine, eucalyptus and  

silk-oak were in general classified with high accuracy (88.5%, 94.3% and 99.9%, respectively).  

Figure 4. Image classification of the entire elevation gradient overlaid on a digital 

elevation model 3D surface view. Black lines represent isohyets in millimeters of rainfall 

and white lines are elevation contours in meters.  
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Figure 5. Close up of a natural color composite (left) showing the location of geo-located 

testing sites (colored circles) for comparison with resulting classes in the classified image 

(right). Circle colors match class colors in the classified image. Black circles in the color 

composite represent areas containing a mixture of unhealthy (brown) and healthy koa 

(green) stands. 

 

Table 1. Assessment of class overlap among cover classes. Numbers in bold represent the 

particular class to which the greatest percentage of pixels in the testing site were classified. 

Columns add up to 100%. 

Class 
Unhealthy 

Koa  

Healthy 

Koa 
Pine Eucalyptus Silk-Oak Soil 

Grass-

Soil 

Shadow-

Asphalt 

Unhealthy Koa 98.6 0 0.03 0.02 0 0.03 0 2.3 

Healthy Koa 0 87.1 3.8 0.77 0 0 0 0.04 

Pine 0 11.3 88.5 1.36 0 0 0 0 

Eucalyptus 0 1.5 7.5 94.3 0.03 0 0 0 

Silk-Oak 0 0.04 0.14 3.16 99.97 0 0 0 

Soil 0 0.06 0 0.04 0 94.5 0 1.99 

Grass-Soil 1.4 0 0 0 0 5.44 100 1.37 

Shadow, 

Asphalt 
0 0 0.03 0.35 0 0.03 0 94.3 

Total 100 100 100 100 100 100 100 100 

 

Out of the nine possible climatic zones only PlowTlow did not exist in the study area. Of the other 

eight climatic zones, one (PhighThigh ) did not contain pixels representing healthy or unhealthy koa 

stands. Therefore only 7 zones (21 sub-zones) were included in the analysis (Table 2). The 
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healthy:unhealthy koa ratio gradually decreased as MAT increased (R
2
 = 0.5, p < 0.01, Figure 6(a)), 

indicating that koa dieback was greater at warmer temperatures. The ratio also gradually decreased 

with increasing PET (R
2
 = 0.4, p < 0.01, Figure 6(b)). The ratio of potential evapotranspiration to 

precipitation (PET/MAP), calculated as an index of drought stress, was significantly correlated to koa 

dieback (R
2
 = 0.3, p < 0.05, Figure 6(c)), but not as strongly as PET alone. The overall distribution of 

the healthy:unhealthy koa ratio was highly scattered when related to climatic zones ordered by 

increasing MAP (R
2
 = 0.03, p > 0.05) and the number of dry months over the year (R

2
 = 0.02,  

p > 0.05), indicating that rainfall by itself was not a strong controlling factor for koa forest health. The 

model selection procedure indicated that the inclusion of MAT, MAP and PET resulted in the optimal 

prediction of the healthy:unhealthy koa ratio (Table 3), even though the model including MAP alone 

was not significant. Inclusion of the PET/MAP ratio did little to improve the models. 

Table 2. Sub-zone averages of healthy:unhealthy koa ratios (KR) and environmental 

variables per climatic zone. 

ID 
Climatic 

Zones 
KR MAT (°C) MAP(mm) PET(mm) PET/MAP 

1 PmidTlow 5.2 17.8 1,183.4 1,403.1 1.2 

2 PhighTlow 5.7 17.4 1,317.9 1,395.0 1.1 

3 PlowTmid 3.0 18.8 971.1 1,423.9 1.5 

4 PmidTmid 3.2 18.4 1,096.8 1,415.9 1.3 

5 PhighTmid 0.8 18.5 1,304.3 1,416.9 1.1 

6 PlowThigh 2.5 19.5 897.0 1,440.5 1.6 

7 PmidThigh 1.1 19.2 1,092.7 1,432.3 1.3 

Table 3. Model selection through stepwise regression for healthy:unhealthy koa ratio (KR) 

predictions using optimum combinations of environmental factors. k = number of factors, 

AIC = Akaike Information Criterion. 

Model k Intercept R
2
 AIC p 

KR = MAT 1 41.2 0.42 22.3 p < 0.01 

KR = PET 1 137.4 0.41 22.9 p < 0.05 

KR = PET/MAP 1 5.7 0.02 34.3 p > 0.05 

KR = MAP 1 0.57 0.02 34.5 p > 0.05 

KR = MAP + MAT 2 88.5 0.71 8.70 p < 0.01 

KR = PET + (PET/MAP) 2 271.6 0.72 7.86 p < 0.01 

KR = MAP + MAT + (PET/MAP) 3 47.8 0.74 7.30 p < 0.01 

KR = MAP + MAT + (MAP x MAT) 3 81.8 0.74 6.90 p < 0.01 

KR = MAT + (PET/MAP) 2 68.8 0.74 6.20 p < 0.01 

KR = MAP + MAT + PET + (PET/MAP) 4 −1298.4 0.77 5.13 p < 0.01 

KR = MAT + PET + (PET/MAP) 3 −937.5 0.78 3.80 p < 0.01 

KR = MAP + MAT + PET 3 −1229.3 0.79 3.16 p < 0.01 
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Figure 6. Relationship between healthy:unhealthy koa ratio and climatic zones of 

increasing temperature (a) MAT, (b) PET and (c) PET/MAP.  
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Figure 7. Actual vs. predicted healthy:unhealthy koa ratios using the best model selected 

from the stepwise regression analysis that included MAT, MAP and PET. Dotted lines 

represent 95% confidence limits. 

 

4. Discussion  

The use of integrated MSPan bands at 0.5-m pixel resolution and the analysis of their relative 

contributions to differentiate healthy from unhealthy koa stands across the climate gradient was an 

effective methodology for large-scale characterization and mapping of koa forest health. The high 

spectral variability characteristic of trees experiencing dieback due to changes from green to yellow to 

brown, small crown sizes and visible gaps between tree canopies, were captured at this pixel resolution 

and were differentiated from similar reflecting objects such as green-dried grass mixtures and soil 
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the area representing pine was misclassified as healthy koa, indicating the need to increase the number 
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of training sites in future classifications. The Shapiro-Wilk normality test revealed that none of the 

bands deviated from a normal distribution across the training sites (p > 0.01), so the MLC 

classification results using the blue, green and NIR bands should be reliable. When normality of 

training classes is met across the spectral bands, other studies have also obtained optimal classification 

results using MLC [24,25].  

Temperature, precipitation, and potential evapotranspiration were highly correlated along the 

elevational gradient. The area of healthy:unhealthy koa corresponded linearly to changes in temperature 

and PET, with koa dieback at higher relative abundance in warmer areas and higher PET. This is in 

agreement with casual ground-level observations of the prevalence of koa dieback, which seems to be 

increasing at the site. Experimental plantings of koa below ~600 m often result in very high mortality 

(80–90%) by 10 years of age [30]. There was no significant correlation of koa dieback with 

precipitation or the use of PET/MAP as an index of drought stress. Past studies have found strong 

positive relationships of koa indices of productivity with MAP [7,8]. The one study along this gradient 

found that koa basal area, but not woody biomass increment or leaf area, increased as precipitation and 

elevation increased [8]. More recent work found that indices of productivity increased with MAT 

along a gradient where precipitation was relatively constant [25]. However, warmer climatic 

conditions also may increase the prevalence and virulence of plant pathogens, especially if the host 

species has low resistance. While wetter conditions generally also favor fungal growth, along this 

gradient the wetter areas were also cooler. At this location, it seems that temperature rather than 

moisture affects the degree of koa forest dieback. Areas of koa dieback can and should be checked for 

the presence of F. oxysporum to determine whether the koa wilt disease or other pests or pathogens or 

abiotic stressors are the cause of dieback. 

The characterization and distribution assessment of healthy and unhealthy koa forests across the 

environmental gradient developed in this study using remote sensing and GIS analysis can support 

mapping of koa health and dieback at various spatial scales, depending upon the expected distribution 

of koa stands. The methodology developed in this project was highly practical, as it required minimal 

image preprocessing and simple exploratory analysis and classification algorithms. The field work 

required to develop training and testing sites was straight-forward and took less than 5 days to 

complete. Comprehensive ground surveys or collection and analysis of aerial imagery would 

undoubtedly take much longer and cost much more. This approach can also be applied to monitoring 

the health of other common native species, such as „ōhi„a lehua (Metrosideros polymorpha). More 

generally, the ability to differentiate tree species suggests this approach can be used for more general 

forest cover mapping. Highly diverse stands may pose a challenge in terms of developing sufficient 

training and testing sites for all possible classes, but the resolution of the satellite images is sufficient 

to detect individual crowns of mature trees. This capability is particularly useful for forest managers 

and government agencies directly in charge of forest restoration and conservation programs. 

5. Conclusions  

The spectral analysis and classification of GeoEye1 satellite imagery proved to be a useful 

methodology for the characterization of koa forest dieback across a 500-m elevation (3 °C MAT) 

gradient on the island of Kaua„i. In spite of the high reflectance variability associated with koa tree 
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crowns experiencing dieback, the high spatial resolution and the multispectral bands allowed for 

separation of healthy from unhealthy koa stands along the gradient. Koa dieback was positively 

correlated with temperature (MAT) and potential evapotranspiration (PET) but was not correlated with 

precipitation (MAP) nor with the ratio of potential evapotranspiration to precipitation (PET/MAP). The 

multispectral bands also helped characterize unique reflectance properties of healthy koa forests as a 

whole, which allowed for clear differentiation from other tree species in the landscape. Therefore, the 

use of fine spatial resolution satellite imagery can improve not only assessments of koa forest health 

but also the accuracy of vegetation cover mapping. Results from this project reinforce local 

government efforts to characterize koa forest dieback distribution across the islands of Hawai„i in 

order to develop management strategies that could improve koa forest restoration and sustainable 

development of koa silviculture.  
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