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Abstract: This paper investigates the issue of tuning the Proportional Integral and Derivative
(PID) controller parameters for a greenhouse climate control system using an Evolutionary
Algorithm (EA) based on multiple performance measures such as good static-dynamic
performance specifications and the smooth process of control. A model of nonlinear
thermodynamic laws between numerous system variables affecting the greenhouse climate
is formulated. The proposed tuning scheme is tested for greenhouse climate control by
minimizing the integrated time square error (ITSE) and the control increment or rate in a
simulation experiment. The results show that by tuning the gain parameters the controllers
can achieve good control performance through step responses such as small overshoot,
fast settling time, and less rise time and steady state error. Besides, it can be applied to
tuning the system with different properties, such as strong interactions among variables,
nonlinearities and conflicting performance criteria. The results implicate that it is a quite
effective and promising tuning method using multi-objective optimization algorithms in the
complex greenhouse production.

Keywords: greenhouse environment control; PID control; feedback control; multi-objective
optimization; evolutionary algorithms; nonlinear systems
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1. Introduction

The greenhouse environment control problem is to create a favorable environment for the crop in
order to reach predetermined results for high yield, high quality and low costs. It is a very difficult
control problem to implement in practice due to the complexity of the greenhouse environments. For
example, they are highly nonlinear, strong coupled and Multi-Input Multi-Output (MIMO) systems, they
present dynamic behaviors and they are largely perturbed by the outside weather (wind velocity, outside
temperature and humidity, etc.) and also by many other practical constraints (actuators, moistening
cycle, etc.). In recent years, various advanced control techniques and related strategies, such as
predictive control [1–3], adaptive control [4], nonlinear feedback control [5], fuzzy control [6–8], robust
control [9], optimal control [10,11] and compatible control [12] are widely proposed for different
types of greenhouse environment control. These studies are important to real-world engineering
application in greenhouse production. However, most of these approaches are either theoretically
complex or difficult to implement in the actual greenhouse production, and the controller designs in the
greenhouse engineering application mostly adopt the conventional proportional, integral, and derivative
(PID) controllers owing to the simple architecture, easy implementation and excellent performance.
Even so, they do not generally give an overall consideration of various properties, such as strong
interactions among variables, nonlinearities, multiple constrains and conflicting objectives, that may
exist in greenhouse climate control systems. Naturally, it is difficult for such controllers to achieve a
satisfactory control effect, and the tuning of such controllers is still a challenge to process engineers and
operators in the greenhouse production.

Furthermore, about 95% of the regulatory controllers of the process control, motor drives, automotive,
fight control and instrumentation industries have PID structures. In spite of this widespread usage, the
effectiveness is often limited owing to poor tuning, and tuning PID controllers efficiently is up to this time
an interesting research. A lot of tuning methods have been presented in the extant literatures [13–16],
which include designs based on guess-and-check (such as trial and error tuning method), linear control
theory (such as Ziegler-Nichols (Z-N) and Cohen-Coon methods (C-C)), etc. Nevertheless, it is hard
for these conventional tuning methods to achieve the desired performance of the controlled greenhouse
because there is nearly no effective analytical way of finding the optimal set of gain parameters, and
they are mostly based on linear models, which are usually adjusted around operating points. Empirical
methods such as Z-N, which can be used for the tuning a simple problem, nearly fail to deal with the
complex systems like greenhouse environment, owing to the lack of empirical data for a wide range
of problems. Hence, new designs for tuning the PID parameters have to be explored to regulate the
greenhouse environment.

Recently, an optimal tuning method of PID controller by employing Evolutionary Algorithms (EAs)
has been proposed and successfully used in a wide range of plants. For example, Chang [13] proposed
a modified crossover formula in genetic algorithms (GAs) to determine PID controller gains for
multivariable processes. Arruda et al. [14] proposed an automatic tool to tune PID controllers in a
MIMO process based on a Rank Niching Genetic Algorithm. The proposed scheme can be applied
into a coupled MIMO process with several control loops, which are tuned in a unified way as a full
MIMO controller. Herrero et al. [15] proposed a tuning scheme for robust PID controllers by adopting
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a specific multi-objective evolutionary algorithm. The scheme considers parametric uncertainty and
can deal with model uncertainty by using a robust identification method. Ayala et al. [16] presented
the design and the tuning of two PID controllers through Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) [17]. It is simple but effective to implement the robust solutions providing a good reference
tracking performance in closed loop. These works mentioned above have obtained a certain effect by
taking different approaches to different characteristics of their respective problems.

The main objective of this work is to develop an intelligent tuning method for greenhouse climate
control with two PID loops of a MIMO process, which is characterized by strong interactions among
process variables, nonlinearities and conflicting performance criteria. The problem is stated as a
multi-objective optimization problem where the two PID controllers are simultaneously tuned based
on different and possibly conflicting specifications, such as good static-dynamic performance, as smooth
control signals as possible. The populations are encoded the gain parameters and the corresponding
objective (cost) functions or fitness functions are formulated based on the specifications of disturbances
rejections, static-dynamic performance and smooth control.

The rest of the paper is organized as follows. Section 2 describes the considered greenhouse climate
model and the corresponding nonlinear differential equations. In Section 3, the PID controller structure is
proposed based on performance criteria. Section 4 describes the multi-objective evolutionary algorithm
used in this work. The simulations and results are presented in Section 5. Finally, a conclusion and
prospects are given in Section 6.

2. Description and Problem Formulation

2.1. Greenhouse Climate Dynamic Model

The greenhouse environment is a complex dynamical system. Over the past decades, people have
gained a considerable understanding of greenhouse climate dynamics, and many methods describing
the dynamic process of greenhouse climate have been proposed. Traditionally, there are two
different approaches to describe it; one is based on energy and mass flows equations describing the
process [5,18–20], and the other is based on the analysis of input-output data from the process by using a
system identification approach [21–23]. This paper deals with the first method for inside air temperature
and humidity of a greenhouse, and its physical model describes the flow and mass transfers generated by
the differences in energy and mass content between the inside and outside air [24]. Most of the analytic
models on analysis and control of the environment inside greenhouses have been based on the following
state space form:

ẋ = f(t, x, u, v)

where x are states variables like indoor temperature, humidity and carbon dioxide concentration, u are
control inputs like energy input by the heating system, fogging systems, ventilation system and CO2

supply flux, v are external disturbances like solar radiation, outdoor temperature, humidity and wind
speed, t denotes time, and f(·) is a nonlinear function.

In order to effectively validate the performance of the proposed algorithm below, the considered
greenhouse analytic expression is based on the heating/cooling/ventilating model in this work, which can
be obtained from many extant literatures [5,18]. It can be summarized in the functional block diagram
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given in Figure 1. Considering the associated high costs, CO2 supply systems do not have an extensive
use, therefore the related variables are not taken into account in this work. To simplify the model,
we consider only some primary disturbance variables, such as solar radiation, outside temperature and
humidity. After normalizing the control variables, we consider the greenhouse dynamic model presented
in [5] by using the following differential equations:

dTin(t)

dt
=

1

C0

[Si(t)− λ′Q%,fog(t)]− (
VR,%(t)

tv
+

UA

C0

) · [Tin(t)− Tout(t)] (1)

dHin(t)

dt
=

Q%,fog(t)

V ′ + α′Si(t)−
VR,%(t)

tv
· [Hin(t)−Hout(t)] (2)

where
Tin/Tout is the indoor/outdoor air temperature(◦C),
Hin/Hout is the interior/exterior humidity ratios (g[H2O]kg−1[dry air]),
UA is the heat transfer coefficient of enclosure(WK−1),
C0 = ρCpVTH , here ρ and Cp are the air density (1.2 kgm−3) and the specific heat of air

(1,006 Jkg−1K−1), respectively. VTH is the actively mixing air volume of temperature and humidity.
Generally speaking, VTH is small as 60%–70% of the geometric volume V (m3) of the greenhouse.
Si is the intercepted solar radiant energy (W ),
λ′ = λQmax

fog , here λ is the latent heat of vaporization (2257 Jg−1) and Qmax
fog is the maximum water

capacity of fog system (gH2Os−1),
α′ = α(λVH)

−1, here α is scaling parameter, which is considered as constant over a short period due
to its relatively low-frequency variation,
V ′ = VTH/Q

max
fog ,

tv represents the time needed for one air change the sampling period.

Figure 1. Greenhouse climate dynamic model.
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The ventilation rate VR is measured as a percentage of the maximum ventilation rate V max
R (i.e.,

VR = VR,%V
max
R ); Similar to VR,%, we define Q%,fog as a percentage of the maximum capacity of the

fog system Qmax
fog .
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2.2. Problem Formulation

The climate model provided above can be used in summer operation, and two variables have to be
regulated, namely the indoor air temperature (Tin) and the humidity ratio (Hin), through the processes of
ventilation (VR,%(t)) and fogging (Q%,fog(t)). The purposes of ventilation are to exhaust moist air and
to replace it with outside fresh air, to regulate high temperatures caused by the influx of solar radiation,
to dehumidify the greenhouse air when the humidity of the outside air is very low, to provide uniform
air flow throughout the entire greenhouse, and to maintain acceptable levels of gas concentration in
the greenhouse. Fogging systems (such as misters, fog units, or roof sprinklers) are primarily used for
humidification of the greenhouse. In fact, fogging systems also play a cooling role due to evaporative
cooling. Moreover, fresh air must be continually ventilated into the greenhouse while warmed and
humidified air is exhausted. When humidifying is occurred under sunny conditions, ventilation is
necessary since the greenhouse would soon become a steam bath without providing fresh dry air.

In order to effectively express the state-space form, we define the inside temperature and absolute
humidity as the dynamic state variables, x1(t) and x2(t), respectively, the ventilation rate and the water
capacity of the fog system as the control (actuator) variables, u1(t) and u2(t), respectively, and the
intercepted solar radiant energy, the outside temperature, and the outside absolute humidity as the
disturbances, vi(t), i = 1, 2, 3. Equations (1) and (2) can alternatively be written in the following
state-space form:

ẋ1(t) = −UA

C0

x1(t)−
1

tv
x1(t)u1(t)−

λ′

C0

u2(t) +
1

C0

v1(t) +
UA

C0

v2(t) +
1

tv
u1(t)v2(t) (3)

ẋ2(t) = − 1

tv
x2(t)u1(t) +

1

V ′u2(t) + α′v1(t) +
1

tv
u1(t)v3(t) (4)

Owing to the complexity appearing as the cross-product terms between control and disturbance
variables, Equations (3) and (4) are obviously coupled nonlinear equations, which cannot be put into
the rather familiar form of an affine analytic nonlinear system.

3. PID Controller Structure

A typical structure of a PID controller involves three separate elements: the proportional, integral
and derivative values. The proportional value determines the reaction to the current error, the integral
value determines the reaction based on the sum of recent errors, and the derivative value determines the
reaction based on the rate at which the error has been changing. The mathematical description of its
control law is generally written in the ideal form in (5) or in the parallel form in (6)

u(t) = Kp(e(t) +
1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt
) (5)

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(6)

where Kp is the proportional gain, Ti is the integral time constant, Td is the derivative time constant,
Ki = Kp/Ti is the integral gain and Kd = KpTd is the derivative gain. And e(t) is the current error
signal, which is defined as

e(t) = r(t)− y(t) (7)
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where r(t) and y(t) are the reference signal and process output, respectively.

3.1. PID Controller for Greenhouse Climate System

Note that the greenhouse dynamic system mentioned above is a two-input and two-output continuous
time nonlinear system. We consider a multi-variable PID control structure as shown in Figure 2. In
order to simulate its behavior on a digital computer, we adopt a fourth-order Runge-Kutta method with
a sufficiently small integration step, and we select the sampling time as a time step. Hence, considering
a typical digital incremental PID control algorithm, the corresponding control law of each loop is given
as:

u(k) = u(k − 1) +Kp(e(k)− e(k − 1)) +Kie(k) +Kd(e(k)− 2e(k − 1) + e(k − 2)) (8)

where k is iterative step.

Figure 2. The diagram of a greenhouse climate control system.
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3.2. Performance Criteria

Integral error is the most commonly used as a good measure for system performance. All kinds
of such performance criteria, such as integrated absolute error (IAE), integrated square error (ISE),
integrated time square error (ITSE) and integrated time absolute error (ITAE), are often employed in
control system design. Killingsworth et al. [25] have demonstrated that ITSE can produce superior closed
loop performance such as smallest overshoot, fastest settling time and less time required to initially reach
the set point. It can represent well output specifications in the time domain. Hence, we consider the ITSE
as one of performance criteria in this work, which is given as

ITSE =

∫ ∞

0

te2(t)dt (9)

In addition, the performance criterion for one loop of MIMO process may be different from the other
and some outputs may have the highest priority among the others. In this work, we only consider the
same priority for the same class of performance criteria. Consequently, to be convenient for a digital
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simulation of the system, the performance index in (9) for the MIMO system in the greenhouse is
rewritten as follows:

J1 =
∞∑
k=1

(t(k)
2∑

i=1

e2i (k)) (10)

where i is the ith close loop, t(k) represents the time of the kth iterative.
Another aspect, the seriously oscillatory of control signals can do great damage to the actuators, and

it is not acceptable in the design of controllers. Therefore, to avoid such case and perform a smoothing
operation, we consider another performance index defined as

J2 =
∞∑
k=1

1

2
∆u2(k) =

∞∑
k=1

1

2
(u(k)− u(k − 1))2 (11)

It is worthy to notice that minimizing the first performance index J1 will provide good static-dynamic
performance and better disturbance rejection, while minimizing the second J2 will perform a smoothing
operation and avoid the serious oscillating of the actuators.

4. Multi-Objective Evolutionary Algorithms

Evolutionary algorithms simulate the survival of the fittest in biological evolution by means
of algorithms, and they are becoming increasingly valuable in solving real-world engineering
problems. Compared with single-objective evolutionary algorithms, multi-objective techniques have
many advantages, especially for the problem with multiple conflicting objectives. For example, they
can search for a set of solutions with different trade-offs from a family of equivalent solutions, which are
superior to other solutions and are considered equal from the perspective of simultaneous optimization of
multiple competing objective functions. Such solutions are generally called non-inferior, non-dominated
or Pareto optimal solutions.

The design of the controller usually need to satisfy multiple performance requirements such as good
static-dynamic performance and smoothing control operation. However, it is almost impossible to
attend the above requirements simultaneously. For instance, in many cases, seeking for some dynamic
specifications usually causes the large variance of control law and the serious oscillating of the actuators.
Consequently, a satisfactory tradeoff must be found and a set of optimal solutions must be provided
by minimizing the performance index J1 and J2. That is, J1 and J2 are taken as two objective (cost)
functions or fitness functions for the optimization process.

Multi-objective optimization methods are used to obtain Pareto solutions for multiple conflicting
objectives. Many algorithms, such as NSGA-II [17], Strength Pareto Evolutionary Approach 2
(SPEA2) [26] and the Pareto Archived Evolution Strategy (PAES) [27], appear to be very promising ways
to approximate Pareto fronts. Considering newly developed and versatile multi-objective evolutionary
algorithms, we adopt NSGA-II to optimize the performance criteria in this work, because it is a
computationally efficient algorithm implementing the idea of a selection method based on classes of
dominance of all the solutions. Each individual ind in the evolutionary algorithm represents the gain
parameters of PID controllers. Therefore, the problem can be formulated as follows:

Find ind = [Kp1, Ki1, Kd1, Kp2, Ki2, Kd2]

to optimize J1(ind, u), J2(ind, u)
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subject to ai ≤ ind(i) ≤ bi, cj ≤ uj ≤ dj

for i = 1, · · · , 6, j = 1, 2

where ai and bi are bound constraints of the gain parameters, which are chosen by trial and error
simulation experiments. cj and dj are bound constraints of the control inputs.

The specifications in the time domain, such as overshoot, rise time, settling time and steady-state
error, are incorporated into NSGA-II and are calculated at each iteration, just the same as the objective
functions (i.e., J1 and J2) of the optimization process. When the obtained performance measures are
infeasible during the process of step response, for example, there are not enough data to find rise time
(tr) and settling time (ts), that is to say, the system is unstable, we formulate the penalty for the objective
functions J1 and J2 as follows:

J1 =

∞, if ts == ∞ || tr == ∞,

J1, otherwise,

J2 =

∞, if ts == ∞ || tr == ∞,

J2, otherwise,

where the performance measures tr and ts are given with infinity, respectively, when they are not found.
Therefore, the infeasible solutions are immediately discarded upon creation, and not considered further
during evolution, owing to the infinity of objective functions. Conversely, there exist no influence on the
normal situation.

5. Simulations and Results

In the present section, a simulation experiment is presented to demonstrate the validity of the proposed
method. For this example, we consider a greenhouse of surface area 1,000 m2 and a height of 4 m.
The greenhouse has a shading screen that reduces the incident solar radiation energy by 60%. The
maximum water capacity of the fogging system is 26 g[H2O]min−1m−3. The maximum ventilation
rate corresponds to 20 air changes per hour.

Table 1. Identified greenhouse model parameters.

Parameters name unit expression values
C0 minW ◦C−1 –324.67
UA W ◦C−1 29.81
tv min 3.41
λ′ W 465
α′ gm−3min−1W−1 0.0033

1/V ′ gm−3min−1 13.3

The active mixing air volume of the temperature and humidity is given as VTH = 0.65 V . The
greenhouse model parameters (shown in Table 1) are presented by [5] through identifying method,
which are expressed per square meter (m2) of greenhouse area. Moreover, the initial values of indoor air
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temperature and humidity ratio are 32 ◦C and 12 g[H2O]/kg[air], respectively. The set points of indoor
air temperature and humidity ratio are 25 ◦C and 21 g[H2O]/kg[air](the corresponding relative humidity
about 70%), respectively. The external disturbances are shown in Figure 3. We consider the real-coded
NSGA-II for the optimization. The corresponding operators and parameters are shown in Table 2.
Simulations are performed under the environment of Matlab R2010a (version 7.10.0.499) and Microsoft
Windows XP Professional SP2 OS. Computer used for these simulations is Intel(R) Core(TM)2 Duo
CPU, 1.83 GHz, 2 GB of RAM.

Figure 3. Changes of outdoor air temperature, humidity ratio and solar radiation.
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Step signals are given for the inputs of controllers, and it takes about 11 minutes for each simulation.
Figure 4 shows the Pareto front of simulation results using NSGA-II, and the results indicate that the
performance objectives are conflicting decision criteria with each other. As can be seen from the Figure,
the value of the index J2 drops sharply as that of the index J1 increases on the left of point A, whereas the
index J2 remains almost unchanged with the increase of the index J1 on the right of point B. It suggests
the Pareto Front AB is the optimal desired region for most situations. Therefore, a satisfactory tradeoff
may be found from the region, and Decision Maker (DM) can select the best final solution according to
his or her preference.
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Table 2. Operators and parameters of real-coded NSGA-II.

Description values
Population size 80
Number of generations 50
Probability of crossover of real variable 0.9
Probability of mutation of real variable 0.5
Distribution index for crossover 10
Distribution index for mutation 20
Lower limits of the gain parameters(i.e., ai) [0, 0, 0, 0, 0, 0]
Upper limits of the gain parameters(i.e., bi) [0.5,0.1,0.1,0.2,0.1,0.1]
Lower limits of the control inputs(i.e., cj) [0, 0]
Upper limits of the control inputs(i.e., dj) [1, 1]
Sampling time (min) 0.2

Figure 5 shows the effectiveness of step responses with PID control at each individual. The top plot
shows the response from 32 ◦C to 25 ◦C for the inside air temperature, and the curve distribution is
centralized and it reveal similar responses for each individual of population. The bottom plot shows
the humidity change from 12 k/kg to 21 k/kg, and the rising time and setting time of some responses
are longer than others and it shows the different response characters. Besides, both figures show the
steady-state error is very small and reveal that they have good steady state performance. Moreover, the
tuning scheme can achieve very good control performance as a whole. The corresponding control signals
are illustrated in Figure 6. There are hardly oscillating process and the control signals are smooth. To
achieve the desired climatic condition, the fogging systems should operate at high power, while low
power for ventilation systems in the initial stage of control process. Then, the fogging systems maintain
low power to operate, while high power for ventilation systems.

Figures 7 and 8 show the distributions of PID gain parameters at each individual. From the results,
the controller I has small derivative gain, or even it may be implemented by adopting PI loop under
the most conditions, whereas the proportional gains are large for two control loops. Moreover, the gain
parameters tend to the same value with the evolution process, which reveals evolution completely during
optimization processes and can find the optimal gain parameters.

Table 3. The corresponding performance criteria (mean of two loops).

XXXXXXXXXXXXXXDescription
Performance criteria Overshoot

(%)
Rise time

(min)
Settling time

(min)
Steady-state error

Maximum 3.6475 11.0482 15.4252 0.0285
Minimum 0.0618 3.2781 4.6522 0.0018

Mean 0.9980 5.2858 7.6943 0.0110
Standard deviation 1.0429 2.1129 2.9504 0.0054
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Figure 4. Pareto Front of performance index J1 and J2.
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Figure 5. Step responses with PID control at each individual.
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Figure 6. The corresponding control signals.
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Figure 8. PID gain parameters of 2th loop at each individual.
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In order to demonstrate the effectiveness of the proposed tuning method, we consider other
performance criteria such as overshoot, rise time, settling time and steady-state error. For simplification
of analysis, a simple mean for the respective type performance criteria at each individual is implemented.
Table 3 shows the maximum, minimum, mean and standard deviation of these specifications in the
time domain. As can be seen, the maximum values of overshoot, rise time, settling time and steady
state error are 3.6475%, 11.0482 minutes, 15.4252 minutes and 0.0285, respectively. Compared with
other systems, the rise time and settling time are large, but the values are small enough for greenhouse
production. It is worth notice that the values of minimum, mean and standard deviation are 0.0618%,
0.998% and 1.0429% in the column of overshoot, respectively. Nevertheless, there exist many curves
without overshoot in the two responses of Figure 5, which implies that at least one of the two loops has
overshoot. On the whole, these specifications shown in Table 3 reveal the system has good static-dynamic
performance, and are completely acceptable for greenhouse climate control system.

6. Conclusions

PID controllers have been extensively used in the greenhouse production process owing to their simple
architecture, easy implementation and excellent performance. However, the tuning of several controllers
in the complex greenhouse environment is a challenge to process engineers and operators. Many
controllers are poorly tuned in practice due to the complexity of the controlled greenhouse such as the
dynamical behavior of greenhouse climate and control requirements, which present strong interactions
among variables, non-linearities, multiple constrains and conflicting objectives.
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This paper presented the tuning of two PID controllers through NSGA-II based on multiple
performance measures such as good static-dynamic performance and smooth control signals. The
proposed tuning scheme has been tested for greenhouse climate control by minimizing ITSE and control
increment or rate in a simulation experiment. Results show the effectiveness and usability of the proposed
method for step responses. The obtained gains are applied in PID controllers and can achieve good
control performance such as small overshoot, fast settling time, and less rise time and steady state error.

The results suggest that the proposed tuning scheme using multi-objective optimization algorithms
is a quite promising method and it presents the following features: (i) it can be applied in the cases
that the empirical methods fail to be used; (ii) it can effectively solve the strong interactions among
process variables; (iii) it can be applied into certain strong nonlinear control system including nonconvex
problems due to adopting global optimization algorithms.

It should be noted that this study has only examined the analytic greenhouse model. We have to
point out that it is not suitable using such an approach if an analytic model is not provided, because
there is nearly no effective way to formulate the objective (cost) functions or fitness functions of
evolutionary algorithms required. Besides, this approach is time-consuming and heavily dependent on
the computation time. It is not suitable for an online real time control requirement. Not withstanding its
limitation, this study does suggest that the online optimal operation for greenhouse production process
will be further studies.

Certainly, the method is not limited to greenhouse applications, but could easily be extended to other
applications, and we expect that it will become more widely used in the future for other types of systems
and controllers.
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