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Abstract: The terahertz (THz) spectral region, covering frequencies from 1 to 10 THz, is
highly interesting for chemical sensing. The energy of rotational and vibrational transitions
of molecules lies within this frequency range. Therefore, chemical fingerprints can be
derived, allowing for a simple detection scheme. Here, we present an optical sensor based
on active photonic crystals (PhCs), i.e., the pillars are fabricated directly from an active THz
quantum-cascade laser medium. The individual pillars are pumped electrically leading to
laser emission at cryogenic temperatures. There is no need to couple light into the resonant
structure because the PhC itself is used as the light source. An injected gas changes the
resonance condition of the PhC and thereby the laser emission frequency. We achieve
an experimental frequency shift of 10−3 times the center lasing frequency. The minimum
detectable refractive index change is 1.6× 10−5 RIU.
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1. Introduction

Optical microsensors based on high-Q cavities are very attractive for a wide range of chemical,
biomedical or environmental applications. They offer high sensitivity, fast system response, low
detection limit and simple fabrication. Different types of microresonators are used: cylinders [1],
rings [2], toroids [3], spheres [4] and photonic crystals (PhCs) [5]. The mentioned resonators except
for PhCs confine the optical mode by total internal reflection; whispering gallery modes are created.
In PhC cavities, the mode is confined by multiple Bragg reflections. Both mechanisms ensure a strong
modal confinement and a high-Q factor of the resonator.

These microcavities are used as local sensors. The analyte is brought into close distance to the
resonator. More precisely, it is brought into the evanescent field of the cavity mode. Thereby, the
optical properties of the resonator are altered. Two different schemes are used for the optical read-out.
If the analyte shows an absorption in the frequency range of interest, the imaginary part of the refractive
index and thereby the width of the resonance is varied [6]. More frequently, changes in the real part of
the refractive index are sensed via shifts in the position of the resonance [6]. This explains also the use of
high-Q cavities for sensing. The resonator linewidth determines the detection limit, as it is the smallest
detectable frequency shift due to changes in the refractive index [7].

The standard detection scheme typically uses a passive, high-Q resonator. One way to improve the
sensor’s performance are active cavities. Thereby, optical gain is directly included into the resonator
which reduces the linewidth and thereby improves the sensitivity and the detection limit [8]. This is
done typically by incorporating fluorescent dyes [4] or quantum dots [9] into the resonator. These gain
media work excellently in the visible or near-infrared part of the spectrum. The same detection scheme
can be extended to the mid-infrared and terahertz (THz) part of the electromagnetic spectrum. Different
molecules show a characteristic absorption in these frequency regimes, they can be identified easily by
their chemical fingerprint. Details on the THz range are discussed in Section 2.

Here, we present an active PhC microsensor operating in the THz spectral regime. The active PhC
acts as an electrically pumped semiconductor laser operating at cryogenic temperature [10]. Therefore,
no external light source has to be coupled into the cavity. The emission frequency is a function of the
gas concentration. As the gain medium, we use an active THz quantum-cascade layer sequence, which
is incorporated directly into the PhC cavity. The size of the resonator is on the order a few hundred
micrometers, which is comparable to ultra-high-Q microsensors in the visible [3,11]. However, the
wavelength is two orders of magnitude larger than in the visible, which dramatically reduces the ratio of
modal volume and effective wavelength. Our resonators achieve a ratio Vres/λ3eff of 7.5, where Vres is
the total volume of the resonator and λeff the effective wavelength in the active medium. If the mode
distribution is taken into account to calculate the true modal volume Vmodal, the ration Vmodal/λ

3
eff is

reduced to 2.5. Details on the THz gain medium are given in Section 2, and the device is described in
Section 3.

2. Working in the Terahertz Spectral Region

The THz spectral region covers frequencies from 1 to 10 THz or, in terms of photon energy, 4
to 40 meV. It is a chemical fingerprinting region, making it highly interesting for sensors. The
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energy of rotational and vibrational transitions of molecules lies within this frequency range, leading
to characteristic resonances. Therefore, it is easy to distinguish different molecules by their optical
absorption. A transmission spectrum of methane, water vapor and carbon-monoxide is presented in
Figure 1(a). The different absorption lines for each molecule are clearly visible. The same scheme can
also be used to detect liquids [12] and solids, e.g., explosives [13,14]. Furthermore, THz radiation is not
ionizing due to the low photon energy. Medical diagnostics is therefore showing a growing interest in
the THz range, e.g., cancerous tissue can be identified [15].

Figure 1. (a) Transmission of water vapor, methane, carbon monoxide at room temperature
and 1 bar [16]. The individual absorption lines are clearly visible. (b) Calculated
bandstructure of the THz-QCL. One cascade is marked with the gray box. The growth
sequence in nanometers is 9.2/3.0/15.5/4.1/6.6/2.7/8.0/5.5, where the Al.15Ga.85As barriers
are marked with bold letters. The lower lasing state is depopulated by a resonant longitudinal
optical phonon.

For the realization of sensors, the THz frequency range offers also a few practical advantages. The
mentioned frequency range of 1 to 10 THz corresponds to a free space wavelength of 300 to 30 µm.
Therefore, the fabrication of high-Q resonators becomes very easy. It is only necessary to ensure
a roughness which is small compared to the wavelength. Standard optical lithography and reactive
ion etching results in smooth structures in the THz range. In addition, the fabrication of resonators
with ultra-small modal volumes is simple. Recently, a THz laser with an effective mode volume
of 0.12(λ/2neff )

3 has been demonstrated [17].
One way to increase the selectivity of optical microsensors are adhesion layers. The resonator is

covered with a thin layer, which increases the selectivity for one particular analyte [18]. The short
evanescent field in the visible requires thin adhesion layers. The detection schemes works only if the
resonator mode interacts with the analyte. Due to the large wavelength of THz radiation its evanescent
field penetrates further outside of the resonator and eases the requirements on the thickness of the
adhesion layers.



Sensors 2011, 11 6006

THz Quantum-Cascade Lasers

The main problem for optical systems in the THz range are the sources. The available solutions
are either bulky, e.g., gas lasers [19], or have very low output power, e.g., difference frequency
generation [20]. The development of the first THz quantum-cascade laser (QCL) in 2002 changed
the situation completely [21]. Now a compact and coherent source exists. The characteristics of a
THz-QCL are: electrical pumping, high output power and designable gain. The active region of every
QCL is based on a semiconductor heterostructure. In contrast to a regular semiconductor laser [22],
where the optical gain is generated by an electron-hole recombination across the bandgap, the QCL uses
only the conduction band. The grown heterostructure creates quantized energy levels for electrons. The
optically active transition takes place between two of those states. The main advantage is the possibility
to control all gain parameters by design. The photon energy and the dipole matrix element of the lasing
transition are completely determined by bandstructure engineering or, in other words, by the thickness
of the individual barriers and wells. This concept allows the realization of THz-QCLs emitting from 1.2
to 5 THz [23,24].

The THz-QCL used throughout this work is based on a gallium-arsenide (GaAs)/
aluminum-gallium-arsenide (AlGaAs) superlattice and is grown by molecular beam epitaxy. The
calculated bandstructure for our device is shown in Figure 1(b). It is based on the so-called resonant
phonon depopulation scheme [25]. The gain maximum is designed around 2.65 THz. A thorough
discussion of the active region is given in [26].

The important parameter for the detection limit is the linewidth of the resonance as it defines the
minimum detectable frequency shift. THz-QCLs in continuous wave operation (CW) at a stabilized
temperature show a linewidth of 0.1 MHz [27]. This is already enough to resolve the pressure broadening
of gas lines [28]. An active stabilization with a frequency reference narrows the linewidth further
to 6.3 kHz [27]. Phase-locking leads to a linewidth of only 1 Hz [29]. This excellent frequency stability
makes THz-QCLs ideal candidates for local oscillators in heterodyne detection systems [30,31].

3. Active Photonic Crystal

PhCs offer unique properties for the manipulation of light on a sub-wavelength scale: the full
dispersion relation can be designed. Compared to normal microdisks or microtoroids, the degree of
control is much higher. The standard PhC geometry is a two dimensional array of holes in a thin
membrane. These structures are compatible with standard planar processing technologies. Defects are
used to realize high-Q cavities with small modal volumes. These resonators achieve quality factors in
the range of 106 [32].

Here, we do not use defect states of a PhC but band edges states. They are characterized by
an extremely flat dispersion relation resulting in a low group velocity. These slow light regions
can be used to confine light efficiently inside a resonator; no defects are required [33]. A strong
gain enhancement is predicted due to the group velocity anomaly [34]. For the simulations we use
exclusively two-dimensional models throughout this work. The real devices are embedded in metallic
waveguides [35], which prevent out-of-plane scattering. Therefore, effects such as bandgap narrowing,
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typically present in a dielectric slab waveguide [36], can be neglected. The actual devices can be
described very well using solely 2D models [37,38].

The PhC used in this work is an array of isolated pillars surrounded by air. The pillars are arranged
in a hexagonal lattice, a schematic is illustrated in the inset of Figure 2(a). This type of PhC shows
full bandgaps for TM-polarized light [36], the polarization emitted by QCLs. The pillars are modeled
with a ratio r/a of 0.3, where r is the pillar radius and a the PhC period. The refractive index is set to
3.65, a measured value for GaAs in the THz regime [39]. A calculated bandstructure for the PhC used
in our devices is presented in Figure 2(a). The flat regions at the M and the K-point can be used as
the lasing modes. The wide, forbidden bands around the high symmetry points ensure a stable single
mode emission.

The corresponding finite-difference time-domain calculations using the MIT Electromagnetic
Equation Propagation package [40] for a perfect, loss-less structure are illustrated in Figure 2(b). The
two modes at the M and the K-point are clearly visible. The simulated Q-values for the lasing modes in
our device are on the order of 103. This low quality factor is further reduced by losses due to the metallic
waveguide to typically 102 [17,35]. Such a low value is hardly tolerable for purely passive resonant
microsensors. It would lead to a linewidth of 25 GHz in our case. However, the lasing linewidth is not
limited by the waveguide losses. As already mentioned in Section 2, the linewidth of a THz-QCL in CW
mode is on the order of 0.1 MHz [27].

Figure 2. (a) Calculated bandstructure of the PhC for r/a = 0.3 and npillar = 3.65 using the
MIT Photonic Bands package [39,41]. The full bandgaps for TM-polarized light are clearly
visible. The designed lasing points are M and K in the lowest band. (b) Predicted modes
using finite-difference time-domain calculations [40]. The two lasing modes show a quality
factor of 103. The inset shows a schematic of the computational cell; the source is positioned
in the central pillar, the probe at the side of the cell.

The fabricated resonator consists of 15 µm high pillars which are embedded in a metallic waveguide.
The distance between the pillars is 26.6 µm, the period of the PhC. The metal confines the optical mode
in the vertical direction. A schematic of the PhC sensor is shown in Figure 3(a). The pillars are fabricated
directly from the active THz quantum-cascade layer sequence. In this configuration, the pillars provide
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the required optical gain and confine the mode in lateral direction via slow light. The metallic waveguide
is used to apply bias to each pillar. It is also required to achieve a vertical mode confinement as the pillar
height is one order of magnitude smaller than the emission wavelength. Details about the fabrication are
given in [38].

Figure 3. (a) Schematic of the active PhC sensor. The size of our resonator is
comparable with passive microsensors in the visible [11]. The height is 15 µm, the diameter
around 200 µm. (b) Resonance frequency shift for Band 1 and 2. Higher bands show a
stronger effect of the resonance position on the refractive index.

(a) (b)

The dimensions of the structure are on the order of typical microchannels [42]. The large, open space
between the individual pillars is essential for the sensor application, as it allows for a free propagation
of the gas through the resonator. The injected gas changes the resonance condition of the PhC. The
expected frequency variation as a function of the refractive index is illustrated in Figure 3(b). As the
figure of merit we use the theoretical sensitivity S ′ = −1/f df/dn, where f is the frequency and n the
refractive index. This allows us to compare our sensor to published devices across different frequency
regimes. Calculation yield a S ′ of 0.025 for Band 1 [7], which is comparable to PhC gas sensors in the
visible [43]. The sensitivity can be improved drastically if higher bands are used. Simulations show that
Band 2 has an increased S ′ by one order of magnitude, as illustrated in Figure 3(b).

4. Results and Discussion

4.1. Gas Sensing

In this first experiment, we demonstrate an integrated optical microsensor with an embedded light
source. There is no need to couple an external light source into the resonator. The information is
encoded in the line position and not in an absolute intensity, making the light collection very simple. In
combination with an electrical pumping of the source, we achieve a simple and robust system. Oxygen
and argon are used as the unknown gases. Neither gas has any sharp absorption line around the lasing
frequency. We sense only the direct change of the refractive index due to the additional gas in between the
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pillars. Therefore, a comparable frequency shift is expected in both cases. We perform here non-specific
sensing [44,45].

The experiments are all performed under equal conditions. The lasers are operated in pulsed mode at
a frequency of 30 kHz and a duty cycles of 5%. The temperature and the applied bias are kept constant
during the entire measurement. The spectra are recorded using a Fourier-transform infrared spectrometer,
which is purged with dry air. Due to the low operating temperature of THz-QCLs, we have to keep the
samples inside a vacuum cryostat and cool them to 5 K [10]. The gas is injected using a digital injection
scheme. One gas cycle corresponds 0.16 L of gas at a pressure of 10 mbar and room temperature. The
volume of the cryostat is approximately 0.45 L.

The injected gas builds a thin ice film due to the low heat sink temperature of the THz-QCL. The
reduction in the refractive index contrast between the pillars and the surrounding medium leads to
a red-shift of the emission frequency. A series of measured spectra for argon with increasing gas
concentration is presented in Figure 4(a). The line shift from its original position for argon and oxygen is
illustrated in Figure 4(b). An almost linear tuning is achieved for both gases. For higher concentrations
a saturation of the frequency shift appears. The lower saturation concentration of argon is an effect of its
higher atomic mass, which enhances deposition to cold surfaces [46].

As neither argon nor oxygen have any sharp absorption lines close to the lasing frequency, the total
frequency shift is identical and very small. In addition, the PhC used shows a weak dependence of
the resonance frequency on the surrounding medium. Therefore, the detuning for both gases is limited
to 1.5 GHz or 10−3 times the central lasing frequency. This total shift is comparable to PhC tuning
experiments in the visible by xenon or nitrogen sublimation [47]. Microsensor in the near-infrared show
similar values for the frequency shift of the cavity resonance [5,48–50].

Figure 4. (a) PhC Spectrum at an applied bias of 18.4 V. There is a clear red-shift with
an increasing argon concentration. The two modes visible prior to gas tuning are caused by
breaking the six-fold symmetry due to processing imperfections [51]. (b) Line shift for argon
and oxygen. Both gases show an almost linear frequency shift with increasing concentration.
It saturates at 1.5 GHz or 10−3 times the center frequency.
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4.2. Discussion and Outlook

Before this sensor can leave the lab and be used in every day life, it is necessary to improve its
performance. The most obvious drawback is the low operation temperature of THz-QCL. Especially
the use of a cryostat limits the applicability. New electron transport schemes could already improve the
maximum lasing temperature of THz-QCLs significantly [10]. The modeling of the active region based
on non-equilibrium Green’s functions [52,53] or Monte-Carlo simulations [54,55] shows an excellent
agreement with the experiment. Based on this simulations new active regions are proposed, which are
capable of room temperature operation [56,57].

The sensitivity of the detector can be improved in a much simpler way. The first device is realized
in the lowest PhC band. There, the optical mode shows the strongest overlap with the pillars which
favors the laser realization. Higher bands show a stronger dependence of the resonance condition as a
function of the refractive index. Changing the operation from Band 1 to Band 2 in the PhC bandstructure
increases the sensitivity already by one order of magnitude. However, the energy confinement is reduced
in higher bands.

The bid advantage of this sensor concept is its simplicity and potential selectivity. It is an electrically
pumped, active sensor. There is no need to couple light into a high-Q cavity. The information is encoded
in the line position and not in an absolute intensity. The frequency change happens instantly with
variations of the gas concentration and is fully reversible. Due to the realization in the THz frequency
region, it is possible to make full use of the chemical fingerprint of different molecules. The emission
frequency of the bare laser is defined purely by geometry [38]. Therefore, it is easy to design it close to
an absorption line. This sharp absorptions lead to an noticeable index change only in a narrow frequency
range. Far away from such a resonance, the refractive index is unchanged. The sensor can be sensitive to
only one molecule within a mixture of unknown gases. The refractive index of water vapor at 10 mbar
is presented in Figure 5 as an example.

Figure 5. Refractive index of water vapor at 10 mbar and 10−6 mol [16]. The individual
water absorption lines lead to a strong dispersion.
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The narrow linewidth of THz-QCLs leads to an extremely low detection limit. A THz-QCL with
an emission frequency of 2.5 THz and an unstabilized linewidth of 0.1 MHz correspond to a passive
resonator with a quality factor of 2.5 × 107. If we assume the same unstabilized linewidth, we achieve
theoretically a minimum detectable index change for the device described of 1.6× 10−5 RIU (refractive
index unit).

5. Conclusions

We have realized a gas sensor operating in the THz spectral region. The device is based on an active
PhC which is fabricated directly from the gain region of a THz-QCL. Thereby, the PhC can be pumped
electrically, leading to laser emission. There is no need to couple an external source into the cavity. An
injected gas shifts the resonance frequency of the PhC and thereby the emission frequency of the laser.
This first experiment shows the possibility of non-specific gas sensing with oxygen and argon as the two
unknown gases. A maximum frequency shift of 1.5 GHz, corresponding to 10−3 of the center lasing
frequency, has been measured. The device is operated in the lowest PhC band, which gives a theoretical
sensitivity S ′ of 0.025. In the next step, the operating point of the active PhC will be shifted to higher
bands. Thereby, the sensitivity is increased by one order of magnitude.
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