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Abstract: This paper reports the design of an electronic nose (E-nose) prototype for 

reliable measurement and correct classification of beverages. The prototype was developed 

and fabricated in the laboratory using commercially available metal oxide gas sensors and a 

temperature sensor. The repeatability, reproducibility and discriminative ability of the 

developed E-nose prototype were tested on odors emanating from different beverages such 

as blackcurrant juice, mango juice and orange juice, respectively. Repeated measurements 

of three beverages showed very high correlation (r > 0.97) between the same beverages to 

verify the repeatability. The prototype also produced highly correlated patterns (r > 0.97) 

in the measurement of beverages using different sensor batches to verify its reproducibility. 

The E-nose prototype also possessed good discriminative ability whereby it was able to 

produce different patterns for different beverages, different milk heat treatments (ultra high 

temperature, pasteurization) and fresh and spoiled milks. The discriminative ability of the 

E-nose was evaluated using Principal Component Analysis and a Multi Layer Perception 

Neural Network, with both methods showing good classification results.  

Keywords: electronic nose design; beverage classification; principal component analysis; 

multi layer perception 
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1. Introduction  

The electronic nose (E-nose) has been tested in many fields where odors and gases play a role. Its 

applicability as been tested in such diverse fields as the food industry, environmental studies, the 

automotive industry, microbiology and so on. E-noses have been used to monitor cultivation  

processes [1], and indoor air quality [2,3], to discriminate between polymer samples as a means to 

reduce the unpleasant odor of new cars in the automotive industry [4], to monitor volatile compounds in 

the effluent of a domestic wastewater treatment plant [5] and many more applications. However, in 

recent times more published literature has described the use of E-noses in food analysis, which includes 

process monitoring, shelf life investigation, freshness evaluation, authenticity assessment and other 

quality control studies [6]. The application of E-noses in food analysis is due to their high sensitivity 

and strong data correlation with conventional methods such as human sensory evaluation, as well as the 

fact they offer shorter analysis times, lower costs, non-destructive testing and also the fact that the tests 

can be automated.  

The majority of the work on E-noses in food analyses was conducted using commercially available 

sensing systems. Discussions on commercially available E-nose models such as FOX (Alpha Mos) and 

Cyranose and Znose and their applications in a variety of food analyses can be found in [7–13]. Despite 

the numerous E-nose selections commercially available in the market, most researchers are still 

fabricating their own E-nose prototypes. This is mainly due to the high price of commercial E-noses and 

the limitations of their methods. For example, E-noses vary in price from US $ 10,000 to US $ 33,300. 

Besides their higher prices, commercial E-noses come equipped with specific sampling procedures, 

tools and accessories are sometimes not suitable for a particular research objective. Therefore, by 

fabricating their own E-nose prototypes, researchers have full control over the design, including sensor 

selection, sampling procedures, data acquisition, control and analysis, respectively.  

Efforts to fabricate E-noses can be found in many literatures. Most were developed using metal oxide 

sensors from Figaro Gas Sensors (Osaka, Japan). This is due to these sensors’ features, which are low 

cost, long life, high sensitivity and the fact they only require simple heating and measuring circuits. El 

Babri et al. [14] developed an E-nose system consisting of a sensor array, sensor cell, sampling vessel 

and measurement rig and data acquisition system. The sensors array comprised six metal oxide gas 

sensors from Figaro Sensors—TGS823, TGS825, TGS826, TGS831, TGS832 and TGS882—with a 

temperature sensor and a humidity sensor. The E-nose was used to monitor the freshness over time of 

sardines stored at 4 °C by grouping the sardines into three categories: fresh, medium and aged.  

Panigrahi et al. [15] designed an E-nose system comprised of five components—sampling chamber, fan 

and pump controller/timer unit, sensor support and interface unit, power supply unit—and a data 

acquisition system. Seven metal oxide sensors—TGS2611.5(%1), TGS2611.5(%2), TGS2602, 

TGS880, TGS822, TGS812, TGS4160—and one integrated sensor sensitive to temperature and relative 

humidity were used. The system was employed to analyze the volatile compounds emanating from beef 

strip loins stored at 4 °C and 10 °C as a means to classify them into two groups (unspoiled and spoiled). 

Another laboratory-made E-nose was fabricated by Zhang et al. [16] to detect the freshness of beef over 

time. The developed E-nose system can be considered as a simple one consisting of a sensing chamber 

and data acquisition system. Six metal oxide sensors: TGS2610, TGS2600, TGS2611, TGS2620, 

TGS2602 and TGS2442, were used in the design. Other laboratory-fabricated E-noses can be found in 
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Daqi et al. [17], Brezmes et al. [18] and Brudzewski et al. [19]. Most of the laboratory fabricated  

E-noses comprise eight or less gas sensors with various selectivity and various sampling procedures 

designed for the specific intended applications. Some have more accessories, while some have less. 

Regardless of the differences, all the fabricated E-noses have shown encouraging performance in the 

tested applications. Further study reveals that the performance of laboratory made E-noses is 

comparable to that of commercial E-noses available on the market. Inspired by this, we decided to 

develop our own E-nose for classification and regression analyses of beverage aromas. This paper 

describes in detail the development and presents the results of several experiments conducted to 

evaluate the reliability of our E-nose prototype to produce correct measurements.  

2. Method and System 

The method and system of the developed system is divided into two parts, namely the electronic 

nose system and the analytical tools, respectively. The details are explained below.  

2.1. Electronic Nose System  

The E-nose was developed using the C++ programming language and fabricated at the Digital 

Signal Processing Laboratory, Universiti Kebangsaan Malaysia. The program interacted with the 

cleaning or sampling process activation, read and interpreted the digital values, computed the features 

of the sensor responses and stored the values in a file for analysis. The E-nose consists of five key 

components: sampling chamber, sensor chamber, data acquisition system and controller unit, power 

supply and graphic user interface on a computer. Figure 1 shows the block diagram of the E-nose 

system. Details of each of these components are explained in the following sections. 

Figure 1. The E-nose system. 

 

2.1.1. Sampling Chamber 

The sampling chamber is a 100 mL conical flask equipped with a rubber stopper. The stopper has 

two holes and each one is attached to a plastic tube. One of the tubes provides a route for the odor from 

the sampling chamber to the sensor chamber, while the other tube provides a route for the odor in the 
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sensor chamber to the sampling chamber. To increase flow, a miniature air diaphragm pump (CTS 

series, 165 kPa, 508 mmHg, Hargraves Technologies Corp., Mooreville, NC, USA), is used to suck 

odors from the sampling chamber to the sensor chamber. 

2.1.2. Sensor Chamber 

The sensor chamber has 8.5 cm × 12 cm × 3 cm dimensions, is airtight and was constructed from 

Perspex
®

 glass, which is non-reactive to chemical or food vapors. Fourteen thick film metal oxide 

sensors (Figaro USA, Inc.) and one temperature sensor (National Semiconductor, Santa Clara, CA, 

USA) were mounted on a PCB and drilled into the floor of the sampling chamber. All sensors were 

arranged in an oval and symmetrical form. There are no rules applied in selecting the types of sensor 

and quantity used [20–22]. However, sensors must be of different sensitivity to ensure the E-nose 

selectivity. The type of sensors used and their corresponding sensitivity to a particular gas are listed in 

Table 1.  

Table 1. List of sensors used to develop the E-nose system. 

Sensor Target gas 

TGS813 Combustible Gases (methane, propane, butane) 

TGS821 Hydrogen 

TGS822 Organic Solvent Vapors (ethanol) 

TGS825 Hydrogen Sulfide 

TGS826 Ammonia 

TGS830 Chlorofluorocarbons 

TGS2180 Water vapor 

TGS2600 Air Contaminants (hydrogen, carbon monoxide) 

TGS2602 Air Contaminants (VOCs and odorous gases ) 

TGS2610 LP Gas and its component gases 

TGS2611 Methane 

TGS2612 Methane and LP Gases 

TGS2620 Alcohol and Solvent Vapors 

TGS6812 Hydrogen, Methane and LP Gas 

LM35DZ Temperature sensor 

 

The Figaro sensors require a simple heating and measuring circuit to work. The heating circuit was 

built inside the sensor and needs to be heated to certain temperature (40 °C) by providing a constant dc 

voltage. At an elevated temperature, the sensor is expected to be sensitive to a particular gas present in 

the air. In the presence of a detectable gas, the sensor conductivity increases and the measuring circuit 

converts the change in conductivity to a voltage signal. Figures 2 to 4 show the measuring circuits for 

the TGS8xx, TGS2xxx and TGS6812 sensors, respectively. The TGS8xx sensor requires two voltage 

inputs to operate: the 5 V heater voltage (VH) is required to stabilize the sensing circuit inside the 

sensor while the 12 V circuit voltage (VC) is required for measuring the sensor output. The sensor’s 

output response measured in voltage (Vout) can be measured across the 10 kΩ load resistor (RL). The 

TGS2xxx sensors require one voltage input (5 V) for both VH and VC voltage by connecting 1 kΩ load 

resistor, the sensor response can be measured across it. For the TGS6812 sensor, a LM1117T voltage 
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regulator is used to provide 3 V heater voltage by regulating the 5 V voltage source. A 200 Ω variable 

resistor was adjusted to certain resistance by observing the Vout of the sensor in the laboratory air 

condition which is free of combustible gases. The miniature air diaphragm pump was mounted on the 

outside of the sensor chamber and operates to clean the sensor chamber by sucking out the odors from 

the sensor chamber during the cleaning cycle. 

 

Figure 2. Measuring circuit for TGS8xx sensor. 

 

Figure 3. Measuring cicuit for TGS2xxx sensor. 

 

Figure 4. Measuring circuit for TGS6812 sensor. 

 

2.1.3. Data Acquisition and Controller Unit 

The data acquisition and controller (DAC) unit consists of AD708JN amplifiers, DG406DJ analog 

multiplexer, PIC16F877A microcontroller and MAX232 for serial interfacing. Voltage output from 

sensor is connected to the AD708JN operational amplifier. The gain of the operational amplifier was 

determined on a one to one basis, depending on the strength of each sensor’s response. The amplified 

voltage signals of the 14 sensors were connected to the DG406DJ analog multiplexer and the output of 

the analog multiplexer was connected to channel 0 of the PIC16F877A microcontroller. A program to 

read, perform analog to digital conversion, receive and transmit data was written in assembly language 

(MPLAB IDE, version 7.20) and embedded into the PIC16F877A microcontroller. Figure 5 shows the 

12V
Vc

RL

10k

GND

VH
5V

1

2

3 4

5

6

Vout

0

GND

GND
1

5V

RL
1k

Vout

2

GND

3

RH RS

1k

3

D

2

4
Vout

200

1k

VH

GND

VR

3V

C

1



Sensors 2011, 11                            

 

 

6440 

block diagram of the DAC and Figure 6 shows the flowchart of the program embedded into the 

microcontroller. 

 

Figure 5. The block diagram of the developed Data Acquisition and Controller Unit. 

 

Figure 6. The flowchart of the program embedded into the PIC16F877a microcontroller. 
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2.1.4. Measurement Protocol 

 

The measurement starts by first performing the baseline correction of the sensors by purging the 

sensors with ambient air for 200 s. Ambient air without any pretreatment was used as a means to 

reduce the accessories of the e-nose system. From observations, the use of ambient air is sufficient to 

completely remove odors from the sensor chamber, hence producing a steady baseline. This ensures 

that the sensors are completely free from possible contaminant odors from previous measurements. 

Then the sampling chamber which contains the sample was attached to the sensor chamber and the 

odor was sucked into the airtight sensor chamber for 200 s. When the sampling period was over, the 

sensor chamber was cleaned again for another 200 s by purging ambient air into the sensor chamber. 

The cleaning and sampling time of the measurement process were determined based on the obtained 

sensor responses that have been tested. It was found that 200 s cleaning time and 200 s sampling time 

were sufficient to clean and to sample the beverages’ odor. Thus, the total time required for the 

cleaning and sampling process are 10 min (600 s = 200 s + 200 s + 200 s). In the process, the voltage 

reading of the sensors were also acquired and saved. During measurement, the temperature of the 

sensor chamber was monitored at 40 °C. The E-nose was set to repeatedly measure odors emanating 

from three different beverages. The beverages used were blackcurrant juice, mango juice and orange 

juice, all products of a local Malaysian food manufacturer. In this experiment, 50 mL of juice were 

used and 10 measurements were conducted for each juice. The measurements were conducted 

according to the described protocol. 

2.2. Analytical Tools 

The following sections describe the analytical analyses conducted on the developed E-nose. The 

analyses include the repeatability and reproducibility tests and also the discrimination tests of the 

developed E-nose.  

2.2.1. Repeatability and Reproducibility 

As analytical instruments, E-noses must have high repeatability and reproducibility. Repeatability is 

defined as the ability to produce the same pattern for a sample on the same array over short intervals of 

time, while reproducibility can be defined as the ability of different sensor batches or different 

instruments to produce the same pattern for the same sample [23]. The repeatability and reproducibility 

of the E-nose are assessed by calculating the correlation coefficients of the features from one 

measurement to the other measurements of the same sample.  

2.2.2. Discriminative Ability 

In many applications, the E-nose is coupled with pattern recognition algorithms to solve 

classification problems. The idea behind E-nose-based classification relies on the ability of the gas 

sensors to produce dissimilar patterns for different substances. To investigate the ability of the 

developed E-nose to discriminate different substances, three experiments were conducted. The first 

experiment was conducted to investigate the ability of the E-nose to discriminate between five 

different beverages: blackcurrant juice, orange juice, mango juice, soy milk and fresh milk. For each 
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beverage, measurements were conducted on different packs of the same product. Altogether 51 data 

sets were collected which consisted of the measurements of 12 blackcurrant juice, 10 mango juice, 10 

orange juice, 10 soy milk and nine fresh milk samples. The second experiment was conducted to 

investigate the ability of the E-nose to differentiate between UHT and pasteurized milk. For this 

experiment, 18 packs of UHT milk and 22 packs of pasteurized milk were used. The third experiment 

was conducted to investigate the ability of the E-nose to differentiate between fresh and spoiled milk. 

Twenty three packets of milk were used in the experiment. The measurement of fresh milk was carried 

out during the first hour of opening while the measurement of spoiled milk was carried out 24 hours 

after opening under room temperature storage conditions. These measurements resulted in 23 fresh 

milk data and 23 spoiled milk data points. In all experiments, 25 mL of sample were used and all 

samples were at ambient temperature during measurement. To analyze the patterns produced by the  

E-nose, two pattern recognition algorithms: unsupervised Principal Component Analysis (PCA) and 

supervised Multi Layer Perception (MLP) neural network were used. These analyses were conducted 

using the stats tools in Matlab 2007a. 

Principal Component Analysis 

The PCA is a common pattern recognition algorithm used to analyze data obtained from E-nose 

systems [24,25]. In particular, PCA is used to reduce the complexity of data (features of the E-nose 

responses) by computing a new, much smaller set of uncorrelated variables which best represent the 

original data. This is done by projecting the high dimensional data set in a dimensional reduced space 

based on the uncorrelated and orthogonal eigenvectors of the covariance matrix computed from the  

E-nose features. These eigenvectors were called principal components (PC) of the features and were 

arranged in sequence where the first principal component was the one with the greatest amount of 

variance, followed by the second greatest and so on. The plot of the original data in the new space 

defined by the first few principal components will give visual interpretation on how the original data 

are scattered. In particular, the plot will shows features that have small variation appear together while 

the features with large variation appear distant. Therefore PCA is able to expose some clusters of the 

data naturally. The PCA is a straightforward analysis, which is validated through conducting several 

experiments, measurements and testing the data.  

Multi-Layer Perception Neural Network 

The most popular ANN used in classification is Multilayered Feed Forward (MLP) neural network 

trained by Back-Propagation (BP) algorithm. As the name implies, the MLP has many layers 

consisting of one input layer, one or more hidden layers and one output layer. Each layer has its own 

neurons, where neurons in the same layer are not connected with each other but all the neurons of one 

layer feed the neurons of the following layer. Details regarding MLP and the BP algorithm can be 

found elsewhere [26]. The MLP trained by BP algorithm is a supervised ANN, meaning that it requires 

training by using a set of known data (training data) systematically until the error between real and 

generated target is minimized. Throughout the learning process, MLP will update its weights or 

parameters according to the input-target specified by the training data. The updated weights or 

parameters generated in the learning phase are used to classify new data accordingly. 
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3. Results and Analytical Discussion 

3.1. Performance Evaluation on Feature Extraction and Pre-Processing 

Figure 7 shows a voltage response obtained by the TGS822 from the measurement of orange juice. 

From the voltage response, the average voltage value at 380 s to 400 s (Vmax) and the average voltage 

value at 180 s to 200 s (Vmin) were computed. From these values, the relative response of the sensor 

given by Vr = (Vmax − Vmin)/Vmin was calculated. The Vr values obtained from 14 sensors were called 

features and were used in the analysis to investigate the repeatability, reproducibility and 

discriminative ability of the developed E-nose.  

Figure 7. The typical orange juice voltage response captured by the TGS822. 

 

 

 

 

3.2. Repeatative and Reproductive Analysis 

The voltage responses of 14 sensors were obtained from repeated measurements on the same 

sample and different samples. This observation was supported by the correlation coefficient computed 

on the feature series for the three beverages as presented in Table 2. Based on the correlation 

coefficients tabulated in Table 2, it can be concluded that the developed E-nose possesses very high 

repeatability characteristics. This was proved by the correlation coefficient of the features which scores 

nearly 1 for all measurements conducted on the three beverages. The correlation coefficients computed 

between blackcurrant and mango, blackcurrant and orange and mango and orange are 0.032, 0.376 and 

0.908, respectively. These values indicate that the pattern of blackcurrant is obviously different from 
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Table 2. The r values obtained for 10 measurements of blackcurrant, mango and orange juices. 

Beverages 
Correlation coefficient 

M1M2 M2M3 M3M4 M4M5 M5M6 M6M7 M7M8 M8M9 M9M10 

Blackcurrant 0.997 0.998 0.998 0.997 0.996 0.992 0.998 0.995 0.999 

Mango 0.997 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

Orange 0.996 0.981 0.984 0.975 0.970 0.984 0.998 0.999 0.996 
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The correlation coefficient is further computed to evaluate the repeatability characteristics as shown 

in Tables 3 and 4, respectively. The first computation is the correlation coefficients of the 

measurements to their average value (MA) and the second computation is the relative standard 

deviation (RSD) of each sensor and the average of them. The correlation coefficients obtained by  

10 measurements of three different beverages were above 0.92. This observation proved that the 

correlation coefficient of the features showed very high repeatability and reproducibility characteristics 

for the three beverages. In the RSD computation, it was observed that each sensor has different RSD 

value varies from 1.7 to 20.9 for the three beverages. The average RSD values for 10 repeated 

measurements of the three beverages are 6.97 (blackcurrant), 11.04 (mango) and 12.40 (orange), 

respectively. The small RSD values indicate that the sensors show relatively good precision, hence 

confirm the repeatability of the measurements. However, it is assumed that the 0 responses of the 

sensors have no significant contribution to the odor patterns of the beverage. Thus, 0 responses sensors 

were excluded from computing the average RSD for the 10 measurements of each beverage. 

Table 3. The r values obtained for 10 measurements of blackcurrant, mango and orange juices. 

Beverages 
Correlation coefficient 

M1MA M2MA M3MA M4MA M5MA M6MA M7MA M8MA M9MA M10MA 

Blackcurrant 0.992 0.991 0.998 0.982 0.988 0.960 0.980 0.991 0.982 0.928 

Mango 0.996 0.997 0.998 0.999 0.999 0.999 0.998 0.999 0.999 0.999 

Orange 0.997 0.997 0.997 0.999 0.989 0.999 0.999 0.998 0.998 0.998 

Table 4. The RSD obtained for 10 measurements of blackcurrant, mango and orange juices. 

Beverages 
Relative Standard Deviation (%) 

822 813 821 2,602 2,180 826 2,620 825 830 6,812 2,610 2,600 2,612 2,611 Avg. 

Blackcurrant 12.7 4.7 0.0 4.9 5.0 6.2 0.0 6.0 8.6 0.0 0.0 0.0 0.0 7.7 6.97 

Mango 1.7 11.7 18 2.3 0.0 2.3 12.8 7.1 18.3 0.0 0.0 17.3 0.0 18.9 11.04 

Orange 13.4 17.0 1.3 9.6 0.0 8.3 20.9 15.5 13.9 0.0 0.0 20.9 0.0 3.23 12.40 

Figure 8. The Vr obtained with old and new sensor batches.  
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To investigate the reproducibility of the developed E-nose, all 14 sensors were replaced by a new 

batch and their ability to measure odor emanating from fruit juices were investigated. For this 

experiment, 50 mL of blackcurrant, mango and orange juices were used and one measurement was 

conducted using each of the two different sensor batches for the three juices. Figure 8 displays the 

features obtained by the E-noses using old and new sensor batches for blackcurrant (bc), mango (m) 

and orange (o). The features obtained by all 14 sensors show repetatability for the different juices, with 

mango and orange emanating strong aromas while blackcurrant emanated a weak aroma, respectively. 

The plots show that the developed E-nose has good reproducibility with good correlation coefficient 

scores for the old and new sensor batchs (r = 0.976 for blackcurrant, r = 0.990 for mango and r = 0.999 

for orange).  

3.3. Analysis of Discriminating Ability of the E-Nose by PCA 

Figure 9 shows the projections of PCA results on the analysis of blackcurrant juice, mango juice, 

orange juice, soy milk and fresh milk. The data were plotted in a two dimensional plane formed by the 

first two PCs, that is PC1 and PC2, which captured 99.7% of the data variance. Samples were grouped 

together into three clusters, where orange and mango are clearly separated from blackcurrant, fresh 

milk and soy. This means that blackcurrant, fresh milk and soy share relatively comparable patterns 

and have totally different patterns than orange and mango. Further analysis reveals that orange and 

mango emanated strong aromas (high voltage responses) while blackcurrant, fresh milk and soy 

emanated weak aromas (low voltage response). Therefore the high voltage responses captured by 

orange and mango dominate the PCA of the five beverages, making the weak aroma beverages appear 

together and strong aroma beverages appear apart. To prove this, we excluded orange and mango from 

the data set and perform PCA on the blackcurrant, fresh milk and soy data only. Figure 10 shows the 

results indicating that the PC1 and PC2 are able to clearly separate blackcurrant, fresh milk and soy 

data. However, the loading values of individual sensors such as TGS2602, TGS822, TGS825, 

TGS2600, TGS813 and TGS2620 have a significant contribution to the discrimination of the five 

beverages, as shown in Figure 11.  

Figure 9. PCA plot of five different beverages. 
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Figure 10. PCA plot of blackcurrant juice, soy milk and fresh milk.  

 

 

 

Figure 11. The loading values for analysis of the five beverages. 
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Figure 12. PCA plot of UHT and pasteurized milk. 
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scattered on the left side of the separating line while the UHT ones were scattered on the right side of 

the separating line. This observation shows that the developed E-nose was able to produce different 

patterns for different milk heat treatments. Again, the loading values of sensors TGS826, TGS822, 

TGS825, TGS2602, TGS2180, TGS2600, TGS2610, TGS2612, TGS2611 and TGS2620 provide a 

significant contribution to the discrimination of pasteurized and UHT milks, respectively, as shown in 

Figure 13. 

Figure 13. The loading values for analysis on pasteurized and UHT milks. 
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that fresh milk data appear together and are distant from the spoiled milk data, which are scattered over 

a wider area.  

Figure 14. The PCA plot of fresh and spoiled milk. 

 

The plots also revealed that the fresh milk and spoiled milk are linearly separable on principal 

component 1, hence proving that the developed E-nose is able to discriminate between fresh and 

spoiled milk. Again, for discrimination between fresh and spoiled milks the sensors such as TGS826, 

TGS822, TGS825, TGS2600 and TGS2610 play a significant role, as shown in Figure 15.  

Figure 15. The loading values for analysis on fresh and spoiled milks. 
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sensors which show no significant response to the sample is necessary, but if the E-nose was 

developed as an analytical tool for various applications, the use more sensors is an advantage. For 

example, the PCA analysis on the data which contain measurements of pasteurized and UHT milks of 

all 14 sensors, only the TGS8XX sensor and only the TGS26XX and TGS 6812 sensors, respectively 

are shown in Figures 16 to 18.  

It was observed that the 14 sensors produced the best separation between UHT and pasteurized 

milks. The TGS8XXs able to discriminate the milks into two groups with few measurements were 

mixed. The same observation was seen in PCA plot for TGS26XX and TGS6812 measurements where 

the milks were scattered in two areas with few measurements falling into the other area. Based on 

these results, we can conclude that more sensors will improve the discriminative ability of an E-nose. 

 

Figure 16. PCA plot for 14 sensors data. 

 

 
 

Figure 17. PCA plot for TGS8XX sensor. 
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Figure 18. PCA plot for TGS26XX and TGS6812 sensors. 
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Table 5. MLP classification results of five beverages. 

Beverages 
Predicted as 

Success Rate 
Blackcurrant Mango Orange Soy Fresh milk 

Blackcurrant 6 0 0 0 0 100% 

Mango 0 5 0 0 0 100% 

Orange 0 0 5 0 0 100% 

Soy 0 0 0 5 0 100% 

Fresh milk 0 0 0 0 4 100% 

Table 6. MLP classification results of UHT and pasteurized milks. 

Milk type 
Predicted as 

Success Rate 
UHT Pasteurized 

UHT 7 2 77.8% 

Pasteurized 0 11 100% 

Table 7. MLP classification results of fresh and spoiled milks. 

Milk type 
Predicted as 

Success Rate 
Fresh milk Spoiled milk 

Fresh milk 13 0 100% 

Spoiled milk 0 11 100% 

4. Conclusions  

The paper has presented the design of an Electronic Nose system using 14 Metal Oxide 

Semiconductor gas sensors from Figaro Sensor (Japan). All the parts of the E-nose system were 

designed and fabricated in the laboratory. The developed E-nose has been tested to confirm its 

repeatability, reproducibility and discriminative ability which are important characteristics of an 

analytical instrument. Measurements on three beverages: blackcurrant juice, mango juice and orange 

juice repeatedly produced similar patterns with high correlation for the same beverage and produced 

different patterns with lower correlation for different beverages, consequently confirming its 

repeatability characteristics. The developed E-nose also produces repeatable responses in the 

measurement of three beverages using different sensor batches, hence confirm its reproducibility 

characteristics. The developed E-nose is also able to produce different patterns for different samples. 

The analysis using PCA and MLP on the patterns produced by the E-nose demonstrated that the  

E-nose has good discriminative ability, which is an important characteristic. Based on the results we 

concluded that the developed E-nose is a reliable analytical instrument.  
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