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Abstract: Determination of the soil coverage by crop residues after ploughing is a 

fundamental element of Conservation Agriculture. This paper presents the application of 

genetic algorithms employed during the fine tuning of the segmentation process of a digital 

image with the aim of automatically quantifying the residue coverage. In other words, the 

objective is to achieve a segmentation that would permit the discrimination of the texture 

of the residue so that the output of the segmentation process is a binary image in which 

residue zones are isolated from the rest. The RGB images used come from a sample of 

images in which sections of terrain were photographed with a conventional camera 

positioned in zenith orientation atop a tripod. The images were taken outdoors under 

uncontrolled lighting conditions. Up to 92% similarity was achieved between the images 

obtained by the segmentation process proposed in this paper and the templates made by an 

elaborate manual tracing process. In addition to the proposed segmentation procedure and 

the fine tuning procedure that was developed, a global quantification of the soil coverage 

by residues for the sampled area was achieved that differed by only 0.85% from the 

quantification obtained using template images. Moreover, the proposed method does not 
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depend on the type of residue present in the image. The study was conducted at the 

experimental farm ―El Encín‖ in Alcalá de Henares (Madrid, Spain). 

Keywords: computer vision; conservation agriculture; estimation of coverage by crop 

residue; genetic algorithms; texture segmentation 

 

1. Introduction 

All around the World, most farmers till the soil in order to prepare it for sowing. When tilling prior 

to sowing, the residues from the previous harvest (mulch and stubble), animal manure and weeds are 

buried at the same time that the soil is aerated and warmed up. However, this form of cleaning and 

stirring up the soil leaves it more exposed to erosion by wind and water. This makes farming a major 

cause of degradation of agricultural land and is a serious environmental problem worldwide. 

Conservation Agriculture [1] involves a set of agricultural practices and concepts organized around 

two basic principles: 

(1) Minimal disturbance of the soil and no-tillage, while leaving the soil covered with the residue 

from the previous harvest. 

(2) Conservation of permanent coverage of the soil, using own crops or cover crops, manure  

or mulch. 

Conservation Agriculture proposes to apply minimum tillage, or eliminate it entirely, thereby 

contributing to the preservation of organic matter in soil and the reduction of erosion by wind and 

water. It follows that residue is, for Conservation Agriculture, a valuable resource in protecting the soil 

from the impact of erosion from precipitation and subsequent runoff. Retention of residue is therefore 

recommended as an important part of soil management. This does not imply the retention of excessive 

amounts of residue, but just the amount sufficient to protect the soil, the excess being useful as animal 

feed. Crop residues were initially classified along with the parameter that indicated the ―dry weight per 

unit area of ground with cover‖ but it was soon shown that the percentage of soil covered by residue is 

better related to erosion control than the dry weight measurements [2]. As far back as 1993, some 

researchers [3] recommended the development and application of appropriate techniques for measuring 

the percentage of covered versus bare soil in order to improve the precision of research results in 

Conservation Agriculture, in addition to achieving adequate residue management and monitoring done 

by the farmer. It is therefore of great importance to be able to rely on mechanisms that can simply and 

accurately map the distribution of residue covering an area. 

As with many tasks executed in the field, maps of zones (consisting of stubble, mulch, weed, etc.) 

are constructed from a systematic sampling in which information is gathered for some location/point 

on the ground in order to infer the remaining points by some interpolation method. In the case of crop 

residues, the experts cross the ground while executing a visual inspection of the zone. This evaluation 

is tedious and prone to estimation errors typical of tasks in which it is not possible (or is difficult) to 

review prior evaluations and in which perception has a tendency to adapt to the dominant state of 

affairs. In other words, an initial high estimate of residue coverage may have been considered to be 
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average if the majority of data points sampled until the occurrence of that estimate, exhibited a high 

value for the residue. 

The process of making estimates in the field can be improved if a sample of geo-referenced 

photographs is made so that a specialist can subsequently estimate in the lab the degree of crop residue 

coverage at each point. This approach to constructing a residue coverage/distribution map has a 

number of advantages: 

(1) Information gathering (sampling) can be done by an operator without having to take an entire 

team to the field. 

(2) The specialist can review the pictures and reexamine as often as necessary his evaluation criteria. 

(3) This opens the possibility of developing an application to automatically determine the amount 

of coverage in each photo, that is, at each sampling point. 

Several techniques for mapping crop residue exist in the literature: visual estimate method,  

line-transect method, point intercept method, meter stick method, spiked wheel method and 

thephotographic method. In fact, methods employed to date can be grouped in two categories:  

(1) traditional manual-visual methods [4-6] and (2) image analysis methods. 

Among those methods that involve image analysis we encounter highly manual methods like the 

one proposed in [4], in which a slide is projected onto a screen with a grid overlaid on it followed by 

manual determination of the location of residue, or more recent methods which estimate the proportion 

of residue through comparison with residue templates for which this percentage is known. In this latter 

case, 10 to 20 images are used to establish the percentage of coverage by residue of a plot of field, with 

an error of about 25%. The work described in [7] includes images of residue patterns made by wheat, 

maize, sorghum and soybeans. 

Another interesting technique is that proposed in [8]. In this case RGB images from a 30 frames per 

second video take are used. The authors then used an estimation method [9] based on the study of an 

image from a random selection of different pixels of that image whereby the classification algorithm 

uses artificially generated images simulating the residue of small and differently sized wooden slivers 

as templates. The video image, once digitized, is compared with the artificial template of wooden 

slivers to determine if the plots being examined contain residue. The initial estimations by the authors 

employed 0.2 mm wide by 0.2 mm high pixels and varying the pixel dimension yielded different 

values for the percentage of coverage. Clearly, the method is very dependent on how the simulation 

progresses when using wooden slivers. 

In [10] the authors presented the development of a quantification method that focused on applying a 

threshold on the histogram derived from gray scale images, the objective being to achieve a binary 

image that isolated the residue. In a manner similar to the work described in [8], they randomly 

explored a series of pixels within an image such that the evaluation of larger number of pixels reduced 

the error. At an early stage, and based on the analysis of textures for differentiating bare and covered 

ground [9], they produced an algorithm that used specific operations on matrices in order to determine 

the texture of a continuous array of pixels. This algorithm never functioned adequately owing to the 

wide spread of existing textures which prevented its fast and precise execution. The same authors later 

generated artificial images in order to compare the performance of different methods for quantifying 

the coverage by residue [11]. 



Sensors 2011, 11                            

 

 

6483 

On the other hand, in the last years remote sensing has supplied quite good results in the crop 

residue mapping [12-14], providing a rapid estimation of crop residue cover for big areas. But unlike 

traditional ground-based methodology, remote sensing is an expensive technique. In addition, aerial 

imagery and satellite data lack the necessary spatial resolution, and their acquisition depends heavily 

on weather conditions (e.g., clouds and fog). Even more, remote sensing derived residue products must 

be validated against ground reference measurements; it is therefore essential to have an approach that 

facilitates standardization and consistency in the ground data collection. 

To sum up, the ground methods propounded so far are on the whole tedious and require, in the case 

of manual-visual methods, that a group of specialists travel to the field. The image analysis methods 

are in their turn also fairly manual. Within this context, we propose to address the quantification of 

crop residues with a two-stage strategy: 

(1) Photographic sampling in which geo-referenced images of the area are obtained with the aid of 

a GPS receiver. This stage does not require the presence of skilled personnel and can be 

executed by an operator, and it is also possible to obtain the images using equipment mounted 

on a vehicle. During the acquisition of images, it will not be necessary to control lighting. 

(2) Quantification in the lab of residue coverage in each image using an automatic segmentation 

process that isolates zones of residue in such fashion that the number of residue pixels versus 

the total number of pixels in the image can be counted (thereby yielding the percentage of 

coverage). The proposed procedure separates zones of residue from other elements of the image, 

such as shadows, soil, vegetation cover, etc. Once the residue coverage has been quantified for 

each image, it is possible to automatically generate by means of an interpolation procedure a 

map of the crop residue coverage for the entire sampled area. 

This article presents the proposed segmentation process developed to automatically separate the 

zones within digital images covered by residue from the other elements present in the image. This 

procedure is the central component of a system for automatically generating maps of crop residue 

coverage (stage 2). 

The next section details the proposed approach. Section 3 describes the tuning process carried out to 

optimize the segmentation parameters. Section 4 presents the most interesting results of this work 

while Section 5 presents the most relevant conclusions.  

2. Experimental Section 

2.1. Characteristics of the Set of Images Used  

The study was conducted at the experimental farm ―El Encín‖ of the Instituto Madrileño de 

Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA, Alcalá de Henares, Madrid). The 

color images (RGB images) show zones with different levels of wheat residue (stubble) which were 

taken in the field under uncontrolled lighting conditions in February 2008, using a conventional 

Olympus C5050Z camera. Some examples are shown in Figure 1. Each image captures an area of 0.5 m 

by 0.5 m surrounding the sampling location/point. Fine tuning and verification of the procedure was 

done using 64 photographs that initially had a resolution of 2,560 × 1,920 pixels but were resampled  

to 640 × 480 pixels in order to reduce processing time. Figure 1 shows that in addition to residue, other 
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elements such as vegetation cover, stones, soil, shadows, etc. have to be taken into account during the 

segmentation process. 

Figure 1. Examples of images taken at different sampling locations. 

 

2.2. Image Segmentation Procedure 

In computer vision, segmentation is a process by which an image is partitioned into multiple regions 

(pixel clusters) [15]. The aim of segmentation is to obtain a new image in which it is easy to detect 

regions of interest, localize objects, or determine characteristic features such as edges. As a result, the 

image obtained by the segmentation process is a collection of disjoint regions covering the entire 

image whereby all the pixels of a particular region share some characteristic or property such as color, 

intensity, or texture. Furthermore, a standard digital camera captures the spectrum in three dimensions 

corresponding to the three primary colors: red (R) (in the range of wavelengths from 560  

to 700 nm), green (G) (480 to 600 nm) and blue (B) (380 to 480 nm), which make up the final RGB 

image. Normally each pixel is coded using 24 bits, which implies 8 pixels per RGB plane, by which it 

is possible to code 256 intensities per pixel in each plane. 

For the problem at hand the segmentation must be able to isolate the texture of the soil from the 

residue. The proposed procedure for the segmentation process uses a linear combination of the RGB 

planes of the original image (Equation (1)) followed by a subsequent thresholding (Equation (2))— 

a method that has delivered good results with similar problems [16-18], even though in the research 

described by these references, the objective was to segment weed zones. Specifically, the proposed 

segmentation process is divided into two steps: 

(1) Application of Equation (1) allows one to obtain, starting with the three matrices coding the 

RGB image, a gray scale matrix in which the value for the intensity of each pixel (i,j) will 

depend on the value of the intensity for that pixel in each plane, weighted by some constant 

coefficients (cr, cg and cb).  

(2) The binary image will be obtained by applying a threshold according to Equation (2) to the gray 

scale image obtained in the previous step. 
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In short, the values of the coefficients cr, cg and cb as well the threshold value crucially determine 

the optimal segmentation—the best separation of residue from the remaining elements in the image. 

Fine tuning of these parameters has been achieved by means of a genetic algorithm—which will be 

explained in more detail in the next section—using 64 template images. The aim of the ―genetic‖ 

tuning method is to determine the set of values (cr, cg, cb, threshold) by which the optimal 

segmentation can be achieved i.e., by which images most similar to the template images can be obtained. 

When it comes to evaluating methods for the quantification of residue, we need a method for 

obtaining the real percentage of coverage by residue that a sample point of ground has. This is a 

control method for obtaining the reference value of a sample. One of the methods developed for 

obtaining the ―true coverage‖ of residue, and one which is used sparingly because of it is extremely 

time-consuming, consists in projecting the image onto a screen on top of which a transparency is 

overlaid which can then be used to trace the zones of residue coverage. The transparency is then 

scanned and the number of black pixels is counted. The ratio of this number to the total number of 

pixels yields the residue coverage fraction with an error of +/− 1% [5]. 

Figure 2. Images of sampled locations and binary template images manually produced by  

a specialist. 
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Applying some simplifications to the previous method yielded 64 starting templates that enable the 

fine tuning of the proposed segmentation procedure. To produce the templates, a specialist proceeded 

as follows: (1) Print the image at high resolution and quality (2) Lay a transparency on top of the 

image (3) Using a black marker, trace the residue observed on the image (4) Digitize the transparency 

at high resolution using a scanner and white paper as background. Figure 2 shows some examples of 

the templates that were produced. 

2.3. Fine Tuning of the Segmentation Parameters  

There is an extensive literature dealing with optimization algorithms, notable among these being 

the gradient methods which converge on the nearest solution following an increasing or decreasing 

gradient (maximization or minimization) without the ability to discern a local from a global solution. 

New heuristic methods have been proposed as alternatives during the last two decades, among which 

genetic algorithms stand out, having become very popular on account of their flexibility and ability to 

resolve complex and diverse problems. Genetic algorithms are part of the practice of Evolutionary 

Computation, which in addition to genetic algorithms includes evolutionary programming, evolutionary 

strategy, and genetic programming, in other words diverse methodologies for stochastic computation 

inspired by evolutionary biology. 

Focusing on the genetic algorithms, these are defined as stochastic global optimization methods 

based on the principles of natural selection and evolution [19,20]. In accordance with Darwin’s theory 

of evolution, evolution in genetic algorithms proceeds by promoting the survival of the fittest. 

Basically, a population of ―individuals‖–in this case adequately coded potential solutions to problems 

—are made to evolve towards an optimal solution by means of the selective pressure exerted by 

selection operators or by crossover and mutation, using a cost or fitness function to measure the quality 

of solutions which iteratively proceed to the replacement of generations, in other words, the various 

operators and functions guide the search for a solution. 

For the problem at hand the population of solutions is composed of individuals representing 

different combinations of values of the segmentation parameters (cr, cg, cb, threshold). The basic 

scheme behind genetic algorithms includes selection operators, crossover and mutation, and a binary 

representation of the parameters to optimize, although the method can be extended without major 

structural modifications, to any other alphabet in accordance with the nature of the problem. In our 

case, a non-binary encoding was elected so that the parameters cr, cg, cb are encoded using  

floating-point numbers and threshold is encoded using an integer value, thereby limiting size of a 

chromosome or individual. The initial population has been randomly generated.  

Regarding the termination criterion, two termination conditions are established. Specifically the  

fine-tuning process will stop when: (1) a fitness value of the population reach a value under 0.05 or  

(2) the fitness does not improve after 50 generations. 

The population is composed of 100 individuals. We used proportional selection, also known as 

roulette wheel selection, which is stochastic in nature. A two point crossover operator was selected as 

the operator to implement crossover. In other words, once two parents have been chosen, their children 

will grow initially as replicas of their parents and will only crossover with a probability fixed by the 

user. When recombination takes place the two point crossover process selects two points at random 
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within the chromosome, based on which sequences of bits in each offspring are interchanged so as to 

produce new individuals. The crossover probability was fixed at 0.8. The elitism operator is then 

invoked to prevent the loss of good solutions. For the mutation operator we have chosen to use 

Gaussian mutation in which each gene (which in our case encodes the value of a single parameter) is 

added to a random value taken from a distribution having 0 median and a variance calculated as a 

function of the parameters scale and shrink. The parameter scale determines the deviation from the 

initial generation and shrink determines how the variance diminishes with each generation. In our case, 

the value of scale was fixed at 0.5 and shrink was also fixed at 0.5. Finally, the fitness function for 

each individual measures the degree of similarity between the binary image obtained from the 

segmentation process with the parameters coded by the solution individual (A) and the pattern image 

(B) (Equation (3)): 

 

(3)  

Equation (3) has values in the range [0,1] with 0 corresponding to complete similarity (identical 

images) and 1 corresponding to complete dissimilarity. 

Figure 3. Original and binary images of weeds. 

 

When segmentation parameters were being fine-tuned, some images were encountered that 

displayed areas covered by plant cover (see Figure 3) and this adversely affected the convergence of 

the fine tuning method. To resolve this, an extra step was added to the segmentation procedure with the 

aim of detecting and eliminating pixels associated with vegetation cover appearing in the image. 

Summarizing, the modified segmentation procedure proceeds as follows: 

(1) The vegetation cover in the initial image is isolated using Equations (1) and (2) together with 

the parameters proposed in [21], thereby obtaining a binary image. The results for several of the 

original images are shown in Figure 3. 
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(2) Segmentation is applied to the initial image using Equations (1) and (2), with values for the 

constants cr, cg, cb, and threshold obtained from the tuning process, or with values coded in the 

solution individual when the fitness function is being evaluated. 

(3) The final binary image showing zones of residue coverage in white is obtained by subtracting 

the image generated in the first step from the binary image obtained in the second step. 

Finally, in order to enhance the images obtained in the previous steps by reducing noise, we applied 

a 5 × 5 median filter which is the most effective method for reducing noise while preserving  

edges [15]. 

3. Results and Discussion 

Two types of fine-tuning were carried out. In the first case, and to verify the suitability of the 

genetic algorithm, the fine-tuning of the segmentation parameters (cr, cg, cb and threshold) was done 

separately for each image. It was observed that the best segmentation parameters differed for each 

sample image. As a result, the best value for the fitness function - depending on the input image—

varies between 0.08 and 0.24, which translates to a similarity between the segmented image and the 

template image varying between 76% and 92%. 

In the second case the fine-tuning of the genetic algorithm used 20 images selected at random (the 

training set), the goal being to determine the segmentation parameters that yielded the best average 

performance for this set, as well as to subsequently verify the performance of the segmentation 

parameters when applied to the full set of 64 images. The values obtained as a result of fine tuning are 

shown in Table 1. 

Table 1. Final values of the segmentation parameters for a training set of 20 images 

selected at random. 

Parameter Value 

cr −8.3675 

cg 0.7128 

cb 8.9926 

threshold 93.316 

Applying these values to the set of 64 starting images, an average of 0.2138 was obtained for the 

fitness function. This corresponds to a similarity of 76.82% between the templates produced by the 

specialist and the images generated by the proposed segmentation method. Maximum similarity 

occurred at 92.13%. 

It is important to notice that when the fine-tuning was carried out separately for each image, the 

initial population was randomly generated and the parameters cr, cg, cb could have taken on any real 

value. After studying the results of these initial experiments, we decided to incorporate restrictions for 

the values of the parameters based on their expected range of values. The aim was reducing the search 

space, improving the convergence of the fine tuning method. As a result, the parameters cr, cg, cb took 

on any real value in the range [−10, 10] while the threshold took on integer values in the range 0  

to 255. 
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Figure 4 shows various images produced by the segmentation process (second row) as compared to 

the template (first row). For the images shown the quantification errors are, from left to right, −4.42%, 

+5.61% and +9.35% respectively. 

Figure 4. The first row shows negatives of the template images produced manually. The 

second row shows images obtained from the finely-tuned segmentation method.  

 

Figure 5 shows a comparative chart which plots for each of the 64 images (along the x-axis), their 

corresponding coverage (along the y-axis) obtained with the template and with the computed image 

produced by the finely tuned segmentation process. Figure 6 displays the percentage difference of the 

coverage, between the template images and the computed images. Most values lie within an error 

range of 5% and only few points exhibit errors exceeding 10%. 

Figure 5. Plot of the percentages of coverage obtained from the template images (green) 

and from the computed images (pink). 
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Figure 6. Plot of the differences in percentage of coverage between the template images 

and the computed images. 

 

In many cases it is not necessary to have a map of the distribution of residue, as one can use the 

sample images to estimate the residue coverage. Using the 64 template images, a calculation of the 

coverage yields a total value of 49.63% for the sampled area. If the same calculation is done using the 

images obtained by applying the proposed segmentation process after it was finely tuned by the genetic 

algorithm, one achieves a coverage percentage of 50.48%. In other words, the automatic quantification 

method measures the coverage of residue with an error of 0.85% with respect to the manual approach. 

This difference in percentage of coverage is much less than the error sustained when doing  

pixel-to-pixel comparisons between the templates and computed images—the error in quantification 

decreases with the number of pixels. This is the effect of error compensation by which the 

quantification from some images err on the negative side and for some on the positive side. All in all, 

if one can count on a sufficient number of images, it is possible for the proposed method to produce a 

value for the quantification of coverage by residue that is very close to the real value. 

Finally, regarding the number of generations, about 250 generations were necessary to reach one of 

the termination conditions for the independent fine-tuning of each image. Obviously, the situation was 

more complex when the objective was determining the segmentation parameters that yielded the best 

average performance for the 20 images of the training set. In this case, about 10,000 generations were 

necessary to reach a termination condition. 

4. Conclusions 

This paper has presented an automated method for determining the crop residue coverage of 

farmland following the harvest, by means of the segmentation of sample color images using genetic 

algorithms to fine tune the segmentation parameters. 

The segmentation of residue appearing in images poses the problem of discriminating between this 

texture and other elements in addition to bare soil. For this reason the images that were taken without 

control of illumination display elements of a different nature such as vegetation cover, stones, 

shadows, etc. 
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The proposal to isolate zones of residue in an image consists of a 3-step segmentation process that 

include: the discrimination of zones of vegetation cover using a procedure developed previously by the 

research team; the generation of a binary image starting from the color RGB planes and a thresholding 

operation; finally the elimination in the final image of those pixels corresponding to zones of plant 

cover. The result is a binary image displaying only the zones of crop residue in white. 

In order to fine tune the segmentation parameters, that is, the coefficients of the linear combination 

(of RGB values) and the threshold, a genetic algorithm was used to search for the best values. During 

fine tuning, 64 images were used and a template was manually produced for each one. These templates 

were used as a reference for establishing the fitness function value and for verifying the performance 

of the proposed method. 

The results obtained were very good. The segmentation was achieved using images taken in 

conditions of uncontrolled lighting–that exhibited a worse case similarity with the template image  

of 76% and a best case similarity of 92%. Likewise, the value for the quantification of total coverage 

by residue of the sampled field was 49.63% using the template images and 50.48% using the computed 

images. In other words, one can determine percentage cover by crop residue of the sampled field with 

a difference of only 0.85% between the template images and the computed images. 

Finally, the fine tuning method proposed is general so it can be easily used to adjust digital images 

of other crop residues. Furthermore, the wheat residue is a very common cover in Conservation 

Agriculture. Even more the residues of many other crops are very similar to wheat ones. In 

consequence, we can conclude that the presented work covers a wide variety of situations and crops, 

providing a general method. 
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