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Abstract: New design and optimization of charge pump rectifiers using diode-connected 

MOS transistors is presented in this paper. An analysis of the output voltage and Power 

Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel  

diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high 

efficiency N-stage charge pump rectifier based on this new diode-connected MOS 

transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded 

EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse 

saturation leakage current. Compared with the traditional rectifier, the one based on the 

proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple 

coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging  

from −15 dBm to −4 dBm, PCEs of the charge pump rectifier with only 3-stage are more 

than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less 

than 1%. Therefore, the rectifier is especially suitableto passive UHF RFID tag IC and 

implantable devices. 

Keywords: radio frequency identification; passive transponders; diode-connected MOS 

transistor; rectifier; power conversion efficiency 
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1. Introduction  

The rapidly increasing range of applications of radio frequency identification (RFID) technology 

includes supply chain management, access control to buildings, public transportation, airport baggage 

handling, and express parcel logistics [1-3]. Use of a RFID system is a good approach for automated 

identification of products. The need for lower cost, higher data rates, and longer communication 

distances is increasing, while severe regulation of transmission power and bandwidth have to be met. 

RFID tags (or transponders) are often classified as passive or active. Passive tags are powered by an 

electromagnetic wave transmitted by the reader, while the active tag is powered by a battery. Passive 

tags have the advantages of low cost and long life. As the passive tag is remotely powered by a 

reader’s RF signal, it must be able to operate at very low power levels (~µW) [1,3]. 

In 1999 the FCC allocated the Medical Implant Communication Service (MICS) band to 

the 402–405 MHz range. However, due to the low transmitted power of the MICS band  

(EIRP = 25 μW), this band cannot be used to power implanted system. This has motivated research on 

implantable transceiver architectures operating in other ISM bands, such as in the 902 to 928 MHz  

and 2.4 GHz ISM bands [4-6]. For example, [6] presented a wireless neural interface which harvests 

RF power from a standard commercial ultra-high frequency (UHF, 902 MHz–928 MHz) RFID reader. 

The ultra-high-frequency (UHF) passive RFID tag or implantable device has to work at a 

considerably long distance from the transmitter (or reader). As the RF energy received by the tag (or 

implantable device) decreases rapidly with distance, the induced voltage across the tag antenna is often 

very small [6-9]. In order to obtain a high output voltage, an N-stage charge pump rectifier (also called 

a charge pump multiplier) is typically used [6,10,11]. Schottky diodes with low potential barrier are 

widely used for achieving a high output voltage and a high Power Conversion Efficiency (PCE), but 

Schottky diodes are not compatible with the standard CMOS process. Instead of Schottky diodes, 

diode-connected MOS transistors with very low threshold voltages are used in the N-stage voltage 

multiplier [7,8]. The weakness of using MOS transistors is that the threshold voltage is increased by 

the body effect. There were many publications regarding the design of RF rectifiers using  

diode-connected MOS transistors [7,8,12-17], however, there have been almost no technical papers 

regarding the design issue of providing a new diode-connected CMOS for substituting the Schottky 

diode. For example, the design strategy and efficiency optimization of UHF micro-power rectifiers 

using diode-connected MOS transistors with very low threshold voltage is presented in [7], but it 

didn’t solve the problems generated by the substrate bias effect of diode-connected MOS transistors. 

In this paper, a novel diode-connected MOS transistor for replacing the Schottky diode was 

presented, and a high efficiency N-stage charge pump voltage rectifier circuit based on this new  

diode-connected MOS transistor was designed and implemented. Section 2 starts with the analysis of 

the N-stage rectifier using Schottky diodes. Section 3 describes the design and optimization of a new 

diode-connected MOS transistor. Section 4 gives simulation results for the N-stage rectifier using the 

novel diode-connected MOS transistor, and compares our new design with the traditional rectifier 

through these simulation results. Section 5 compares the simulation results with the theoretical 

analysis. Section 6 concludes our research efforts. 
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2. Analysis of an N-Stage Rectifier 

Figure 1 shows an N-stage charge pump voltage rectifier consisting of a 2N peak value detector [1]. 

The input is assumed to be sinusoidal, with                [10]. To reduce the ripple voltage, the 

load capacitance CL is assumed to be large enough, so as to make the time constant much bigger than 

the input signal cycle: 
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where UL is output voltage, IL is load current. 

The equivalent circuit of the diode working at high frequency consists of two parts, which are an 

ideal diode and a parasitic capacitance CD, connected in parallel [11]. According to the V-I 
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where, VT is the thermal voltage, IS is the reverse saturation current. 

Because the capacitance doesn’t dissipate power, we ignore the parasitic capacitance when we study 

the large-signal characteristics. For the 2Nnd diode, we have: 
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As the approximation shown in Figure 2, we assume          ≈ 2.8 − 0.9   , where      
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Equation (3) can be rewritten as: 
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Figure 1. N-stage charge pump voltage rectifier. 

 

Figure 2. Linear approximation of exponential trigonometric function. 

 

Integrating Equation (4) in one cycle gives: 
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So, the output voltage is: 
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Assuming that the load resistor RL and IS of Equation (6) are 10 KΩ and 1a A (1a = 10
−18

) 

respectively, the input impedance of the rectifier is 10 KΩ. The characteristic output voltage response 

is shown in Figure 3. Figure 3(a) shows that the output voltage increases approximately linearly with 

the RF input power. Figure 3(b) shows that the output voltage increases with rectifier stages N. 

Figure 3. Output voltage curves of the charge pump rectifier (a) Output voltage with 

different input power (b) Output voltage with different number of charge pump stage.  

 

(a)       (b) 

 

Because the charge pump multiplier is usually used under light load conditions, the primary 

emphasis is placed on the law of output voltage with different output load current. As shown in  

Figure 4, output voltage decreases logarithmically with the load current increase. 

Figure 4. Output voltage of charge pump rectifier with different load currents. 
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The power dissipated on the load in one cycle is: 
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The power conversion efficiency is given by: 
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Figure 5 shows the power conversion efficiency with different RF input power. PCE increases with 

the input power, but PCE tends to saturation as the rate of the increase gradually decreases. 

Figure 5. Power conversion efficiency with different input power. 
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3. Design and Analysis of a New Diode-Connected MOS Transistor 

3.1. Design of Diode-Connected CMOS with Low Turn-On Voltage 

When replacing a diode with a diode-connected MOS transistor, we have to assure that the new 

structure will turn on when it is forward-biased and will cut off when it is reverse-biased, so not only 

should the NMOS substrate connect to the lowest voltage, but also the PMOS substrate should connect 

to the highest voltage. 

As shown in Figure 6, the substrate of a diode-connected PMOS is connected to its source. Then, 

when VL is higher than VR, there will be a current from VL to VR. It means that the diode turns on 

when it is forward-biased. On the other hand, when VR is higher than VL, the voltage of drain is higher 

than that of the substrate, so the drain-body junction starts to conduct. It means that the diode doesn’t 

cut off when it is reverse-biased. 

Figure 6. Diode-connected PMOS. 

 
 

This can be solved by connecting the substrate of PMOS to the highest potential. But this will cause 

two problems in practice: 

(1) MOS transistor works in dynamic status, so it is difficult to decide the highest voltage. 

(2) Substrate bias effect will result in an increase of the threshold voltage, and make the turn-on 

voltage increase ultimately.  

The structure of improved diode-connected CMOS for replacing the Schottky diode is shown in 

Figure 7. The improved diode-connected CMOS could decrease the turn-on voltage and ensure that the 

substrate is connected to the highest voltage. 

Figure 7. The schematic diagram of improved diode-connected CMOS. 
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In Figure 7, M0 supplies an exiguity bias current via bias voltage BIAS. So VG will bias at a level 

of VR-VTH, where VTH is the drain-body junction turn-on voltage. PMOS M2 and M3 are used to 

assure that the substrate of M1 is connected to the highest voltage. If VL is higher than VR, M2 will 

turn on while M3 will cut off, and the potential of M1, M2 and M3’s substrate VSUB will rises up to 

VL. Otherwise, if VR is higher than VL, M3 will turn on while M2 will cut off, and the potential of M1, 

M2 and M3’s substrate VSUB will rise up to VR. All these ensure that the substrate of M1, M2 and M3 

is always connected to the highest potential, so that the drain-body junction is reverse-biased all  

the time. 

When VL is high, M1 works in the linear region and the turn-on resistance is small, so VR can be as 

high as VL. On the other hand, when VL is low, VG is about VR-Vin. The absolute value of VGD of M1 

will be smaller than its threshold voltage, and M1 will cut off. In this way, we realize a diode which 

will turns on when it’s forward-biased with small voltage. In this diode, M0 is high voltage  

zero-threshold NMOS, whose threshold voltage is 0.31 V. M1, M2 and M3 are all high-voltage 

PMOS, whose threshold voltage is −0.92 V. The drain-body junction turn-on voltage of all these 

transistors is 0.7 V. It is notable that the absolute value of the threshold voltage VTH of the PMOS is 

higher than the drain-body junction turn-on voltage Vth. This new diode-connected CMOS has  

some advantages: 

(1) The problem of body-potential connecting is solved by the body-switching technique.  

(2) The control of M1’s gate voltage is realized by a simple bias circuit, which makes M1 be in the 

linear region rather than the saturation region when it is turned on. Therefore, this structure has 

a small forward voltage, which is applicable to a UHF RFID tag. When the voltage amplitude 

of the antenna in UHF RFID tag is small, high conversion efficiency and high output voltage 

are important to the rectifier of a UHF RFID tag. 

3.2. Analysis and Optimization of Parasitic Effect for the New Diode-Connected CMOS 

M2 and M3 always work in the linear region, in order to connect the substrate voltage. So they 

don’t need big (W/L), actually, it’s 2/1 in this design. For M1, if the number of the multiple transistors 

is bigger, i.e., the W/L will be bigger, the turn-on resistance will be smaller, and then the turn-on 

voltage will be lower. However, bigger (W/L) brings a greater reverse leakage current, so we need a 

tradeoff between turn-on voltage, reverse leakage current and area. Figure 8 shows the different  

turn-on voltage (when conduction current is 100 µA) and different reverse leakage current (when 

reverse voltage is 1 V) with different number of parallel connection transistors. From Figure 8, we can 

see that the reverse leakage current gets greater with the increase of the number m of parallel 

connection transistors, and the reverse current is directly proportional to the m value. From the analysis 

above, 10 could be the probable number of multiple transistors. When the number is 10, the turn-on 

voltage is only 315 mV, and the reverse leakage current is 415 nA. 
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Figure 8. Characteristic curve of diode-connected CMOS (a) Turn-on voltage with 

different m (b) Reverse leakage current with different m. 

 

(a)       (b) 

 

As shown in Figure 7, CP = CGS1 is a relatively large parasitic capacitance, and is about 0.1 pf. 

When VL changes, because of the coupling of CP, the gate voltage of M4 VG will also change. Two 

situations are analyzed here under the condition that the RF input was a 900-MHz sinusoid. 

(1) If VL decreases suddenly, the gate voltage of M4 VG will decrease too. Then drain-body 

junction of M4 turns on, and CP is charged to VR-VTH (where VTH is the turn-on voltage of 

M4’s drain-body junction) by the current of drain-body junction of M4. If VG rises rapidly, the 
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too. It means that the reverse leakage current will be small. Besides, the charging rate depends 

on the current through the drain-body junction of M4. If the drain—body junction area is large, 

the turn-on current will be big, thus the charging rate will be high. Because the area of M4’s 
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as big as possible, so as to decrease the reverse leakage current. Assuming that the falling 

amplitude of VL is V, the charging current to CP through the drain-body junction I is constant, 

charging time is t, and the capacitance seen from VG is CX, we have: 
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current I0 through M0. As the parasitic capacitance of MOS transistors, VR changes little when 

it tends to stability. Therefore, VR can be regarded as ground in the AC analysis. The parasitic 

capacitances of M1 are consisted the gate-drain parasitic capacitance Cgd1 and gate-source 

parasitic capacitance Cgs1. The effect of VL on VG is Cgs1 × VL/(Cgs1＋Cgd1). Cgs1 and 

Cgd1 is nearly equal. So if the rise amplitude is V, VG rise up about 1/2 V: 

tIV
2

1
0       (11)

 

When V is 1, t is ten percent of the RF signal cycle, I0 is 450 µA. For bias transistor M0, I0 is huge 

and will make the power consumption much bigger, so it’s not advisable to increase I0. Fortunately, 

we could solve this problem by a compensatory capacitance Cc. With the Cc, the effect of VL on VG is 

Cgs1 × VL/(Cgs1＋Cgd1+Cc), reducing the power consumption caused by coupling effect of parasitic 

capacitances. Actually we add a 10 pf capacitance between VR and VG in this design. The final 

schematic diagram of the optimized diode-connected MOS is shown in Figure 9. 

Figure 9. Schematic diagram of optimized diode-connected CMOS. 
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get the curves of output voltage, PCE and ripple coefficient with different the input powers as shown 

in Figure 12. 

Figure 10. A improved 3-stage charge pump rectifier. 

 

Figure 11. Traditional CMOS charge pump rectifier. 
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explained by Figure 9: when the output voltage is very high, the reverse voltage on the drain-body 

junction diode of the bias transistor M0 is close to its reverse breakdown voltage, so the current of M0 

can no longer be calculated in accordance with the mirror current. However, in practice, we can limit 

the output voltage smaller than 8 V through a regulator, so as to protect the chip. 

Figure 12. The curves of output voltage, PCE, power consumption and ripple coefficient 

with different the input power (a) Output voltages with different input power (b) PCEs 

with different input power (c) Power consumption with different input power (d) Ripple 

coefficients with different input power.  

 

(a)       (b) 

 

(c)       (d) 

5. Comparison between the Simulation Results and the Theoretical Analysis  

The comparison between Figure 12(a) and Figure 3(a) is plotted in the same figure, as shown in the 

Figure 13, which indicates their trends are identical, meaning the theoretical analysis in Figure 3(a)  

is correct. 
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Figure 13. Comparison of the output voltage of the theoretical analysis and simulation results. 

 

 

The relationship between PCE and input voltage is simulated, when the RF input is a 900-MHz 

sinusoid and output load is 20 kΩ. According to the simulation results, we get the PCE of the charge 

pump multiplier curve with different input voltages as shown in Figure 14. The comparison between 

Figures 5 and 14 is plotted in the same figure, as shown in Figure 15, which indicates some 

differences. The simulation results show that PCE increases at the beginning of the input power and 

then decreases, whereas, the theoretical analysis in Figure 5 shows that PCE increases all the time and 

tends to saturation. The explanation is as follows: in this paper, we use a diode-connected NMOS and 

mirror NMOS. Their reverse voltage on drain-body junction rises with input voltage, their leakage 

current increases when the reverse voltage is close to its breakdown voltage, this bring superfluity 

power consumption. While in the theoretical model, we don’t take into account of breakdown model, 

which is the origin of difference between PCE curves.  

Figure 14. PCE of the 3-stage rectifier with different input power. 
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Figure 15. Comparison of the PCE of the theoretical analysis and simulation results. 

 

6. Conclusions 

The output voltage and PCE of the N-stage rectifier based on the equivalent model of diode are 

discussed. To optimize the output voltage and PCE, we analyze the disadvantages of the traditional  

diode-connected MOS rectifier, and propose a novel diode-connected MOS transistor for UHF  

micro-power rectifiers. The turn-on voltage of the novel structure is only 315 mV, and its reverse 

saturation leakage current is 415 nA.The proposed diode-connected MOS transistor has been 

successfully applied in passive RFID tags for PMOS bridge rectifiers [12] and N-stage charge  

pump rectifiers. 

After that, a charge pump multiplier using the presented diode-connected MOS is designed and 

fabricated in the SMIC 0.18-µm three-metal two-poly mixed signal CMOS technology with embedded 

EEPROM process. Compared with a traditional rectifier, this circuit has higher PCE, higher output 

voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power 

ranging from −15 dBm to −4 dBm, PCEs of the charge pump rectifier with only 3-stagesare stable 

between 30% and 47%, achieving much higher efficiency than charge pump rectifier designs reported 

in journals or conferences. For example, [16] also employed the SMIC 0.18-μm process, but the PCEs 

are stable between 26% and 36%. Such performances might open promising perspectives for the 

deployment of passive RFID tag IC and implantable device in standard CMOS process without 

Schottky diodes. 
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