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Abstract: Mesoscale climate and hydrology modeling studies have increased in 

sophistication and are being run at increasingly higher resolutions. Data resolution 

sufficiently finer than that of the computational model is required not only to support 

sophisticated linkages and process interactions at small scales but to assess their 

cumulative impact at larger scales. The global distributions at fine spatial and temporal 

scales can be described by means of various senor imagery data collected through remote 

sensing techniques, sensor image and photo programs, scanning and digitizing skills for 

existing maps, etc. The availability of global sensor imagery maps facilitates assimilation 

in land surface models to account for terrestrial dynamics. This study focuses on the use of 

global imagery data for development and construction of surface boundary conditions 

(SBCs) specifically designed for mesoscale regional climate model (RCM) applications. 

The several SBCs are currently presented in a RCM domain for the continent of Asia at  

30-km spacing by using sensor imagery data. Geographic Information System (GIS) 

software application tools are mainly used to convert data information from various raw 

data onto RCM-specific grids. The raw data sources and processing procedures are 

elaborated in detail, by which the SBCs can be readily constructed for any specific RCM 

domain anywhere in the world. 
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1. Introduction 

The Fourth Assessment Report of the United Nations Intergovernmental Panel on Climate Change 

(IPCC AR4) [1] has brought to the fore the severity of impacts of global climate changes. In Asia, at 

its current rate climate change is expected to put close to 50 million extra people at risk of hunger by 

2020, rising to an additional 130 million in 2050. Glaciers in the Himalayas could, at a similar rate, 

disappear altogether by 2035. Further, the IPCC AR4 [1] notes that Europe’s vast reaches of low lying 

coast are vulnerable to rising sea levels likely to threaten up to 2.5 million people. As global warming 

and extreme weather pose a severe threat to the safety of life and property over the whole world, 

climate information from regional climate models (RCMs) has become regarded as a primary tool to 

address climate and weather variability, changes, and impacts at local and regional scales. Since 

numerous RCMs have been developed and applied, the next-generation Weather Research and 

Forecasting (WRF) model (http://www.wrf-model.org/) was developed by a broad community of 

government and university researchers [2-4]. The WRF was based upon the most advanced 

supercomputing technologies and promises greater efficiency in computation and flexibility in new 

module incorporation. The climate extension of the WRF (CWRF) has been developed by the Illinois 

State Water Survey in collaboration with the WRF Working Groups for incorporating inclusively all 

WRF functionalities for numerical weather prediction (NWP) while enhancing the capability for 

climate applications [5].  

For all RCMs, one essential component is the representation of surface-atmosphere interactions, 

which generally requires specification of surface boundary conditions (SBCs). A comprehensive set of 

SBCs based on best observational data is desired for RCM general applications to all effective, 

dynamically coupled or uncoupled, combinations of the surface modules as well as portable to any 

specific region of the world. A critical requirement in constructing the SBCs for the RCM use is that 

each field must be globally defined with no missing value and physical consistency must be 

maintained across all relevant parameters. Missing data, if any, must be appropriately filled. The 

mesoscale weather and climate models, both global and regional, have increased in sophistication and 

are being run at increasingly higher resolutions. Hence, the raw data should be available at the finest 

possible resolution and global observation for assimilation in land surface models to improve 

predictability. The global distributions at fine spatial and temporal scales can be available by various 

sensor imagery data such as remote sensing observations, sensor photography images, scanned and 

digitized maps, and so on. This will facilitate a more realistic representation of surface heterogeneity 

effects. When the data resolution is sufficiently finer than the RCM grid, the subgrid effects can be 

further incorporated using composite, mosaic or statistical-dynamical approaches [6-10]. With a large 

volume of global imagery data of the Earth’s terrestrial surface becoming available, precisely 

monitoring the dynamics of the land surface state variables becomes possible [11].  

There is no universal, complete set of SBCs because different modules may require more or less 

surface parameters to be specified. The input parameter requirement generally depends on the 

formulation complexity of the surface modules. The CWRF have incorporated into the Common Land 

Model (CLM) [12], a state-of-the-art model for Soil-Vegetation-Atmosphere Transfer (SVAT). For 

construction of the primary SBCs in CLM that play an important role in surface-atmosphere 

interaction, this study has collected many raw datasets at high resolution with global sensor imagery 
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observations freely available. Among the static SBCs, fundamental input fields, independent or 

defining other derivatives, are orography and vegetation parameters. The surface orography parameters 

that examine subgrid topography effects on momentum and radiation dynamics include the mean and 

standard deviation of the terrain elevation at both subgrid-scale and resolved-scale (SOAVE, SOSTD, 

ROAVE, and ROSTD), and the anisotropy parameter and the angle of the maximum gradient of 

resolved-scale orography (ROANI and ROANG). The vegetation fields consist of the land cover 

category (LCC), the fractional vegetation cover (FVC), and the leaf area index (LAI) to determine 

contribution partitioning between bare soil and vegetation for fluxes crucial to land-atmosphere 

interactions.  

The existing sensor observational databases have various resolutions, a wide range of map 

projections, and different data formats, and often contain missing values or inconsistencies between 

variables. This presents significant challenges and requires labor-intensive efforts to process the data 

onto the RCM-specific grid mesh and input data format. This study employs the Geographic 

Information System (GIS) software application tools, ArcInfo and ArcMap, from Environmental 

Systems Research Institute, Inc., particularly to determine the geographic conversion information from 

a specific map of each raw data to the identical RCM grid system. The information includes location 

indices, geometric distances, and fractional areas of all input cells contributing to each RCM grid. The 

grid representative mean values are usually determined by a bilinear interpolation method in terms of 

the geometric distances and a mass conservative approach as weighted by the fractional areas. For 

LCC, a categorical field, this study first calculates the total fractional area of each distinct surface 

category contributing to a given RCM grid and then chooses the dominant one that occupies the largest 

fraction of the grid. 

2. General Information 

The SBCs data quality, value representation, and visual display largely depend on the RCM 

computational domain and grid resolution. For climate applications of the Asia region, the domain is 

centered at 30.0°N and 110.0°W using the Lambert Conformal Conic map projection and 30-km 

horizontal grid spacing, with total grid numbers of 301 (west-east) × 251 (south–north). Figure 1(a) 

shows the country map overlaid with latitude and longitude lines projected on the Lambert Conformal 

Conic map, and Figure 1(b) denotes the 301 × 251 dimensional 30-km spacing grids over the Asia 

RCM domain. The domain covers the most parts of Asia and represents the regional climate that 

results from interactions between the planetary circulation and surface processes, including orography 

and vegetation fields. In this study, the fundamental SBCs using sensor imagery observations are 

constructed and displayed on this RCM domain, suitable for Asia applications. 

For convenience, the geographic location of a point is hereafter referred as a ―pixel‖ for raw data 

and a ―grid‖ for the RCM result. A given pixel or grid value represents the area surrounding the point 

as defined by its respective horizontal spacing. The following section elaborates in detail on raw data 

sources and processing procedures used to construct any specific RCM domain over the globe. Most 

procedures use ArcInfo and ArcMap commands. In particular, IMAGEGRID and GRIDPOLY convert 

input data from the sensor image to the ArcGIS raster grid and to the polygon coverage formats, 

respectively; PROJECT remaps the raw input data onto the RCM grid projection; UNION and CLIP 
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geometrically intersect polygon features of input data with the RCM grid mesh and extract the 

fractional area of each pixel contributing to the grid; GRID DOCELL and IF statements conditionally 

merge, replace, or adjust different input datasets for an improved product. Even relatively finer 

resolution (8-km) input data, LAI, has missing value pixels due to cloud contamination and 

atmospheric effects, which are filled by the spatial average over the nearby data pixels having the same 

land cover category within a certain radius around a missing point. The number of pixels and the range 

of radius used for filling depend on the resolution of the raw input data. Since the 30-km LAI for the 

RCM are generated from the two different resolution data of the 1-km FVC and the 8-km LAI, the  

1-km data are integrated onto the 8-km map and then a smoothing filter is introduced to remove 

abnormal values due to inconsistency of the two data at individual pixels (see Section 3.4 for details). 

Figure 1. Asia RCM domain overlaid with (a) latitude and longitude and (b) the 301 × 251 

dimensional 30-km spacing grids. 
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3. Surface Boundary Conditions 

The various surface orography parameters (SOAVE, SOSTD, ROAVE, ROSTD, ROANI, and 

ROANG) have been introduced for use of analysis on orographic turbulence effects under stable 

atmospheric conditions by using the terrain elevation model through the multi sensor imagery dataset. 

The vegetation characteristic fields (LCC, FVC, and LAI) for use of prediction on fluxes crucial to 

land-atmosphere interactions have been constructed by using satellite remote sensing data. The details 

about the raw data sources and processing procedures for each SBCs for RCM uses in the Asia domain 

are discussed below. 

3.1. Surface Orography Parameters 

These fields are constructed from the U.S. Geological Survey (USGS) HYDRO1k Digital Elevation 

Model (DEM) with a 1-km nominal cell size (http://eros.usgs.gov/#/Find_Data/Products_and_Data_ 

Available/HYDRO1K), which is developed at the U.S. Geological Survey’s Earth Resources 

Observation and Science (EROS) Data Center to provide to users, on a continent by continent basis, 

hydrologically correct DEMs for use in continental and regional scale modeling and analyses. It is 
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based on the Global 30-arc-second elevation dataset (GTOPO30) derived from several different raster 

and vector sources of topographic information. The GTOPO30 data were produced jointly by several 

national and international organizations. National Imagery and Mapping Agency (NIMA) produced 

Digital Terrain Elevation Data (DTED) which was used for the source of most parts of Eurasia in 

GTOPO30. DTED is a raster topographic data collected through remote sensing techniques, aerial 

image sensor photography, digitization of interpolated contour lines on existing maps, and actual  

on-site surveying measurements. The DEM data is available in the band interleaved by line (BIL) 

image format on the Lambert Azimuthal equal area projection. For construction of surface orography 

parameters, the raw imagery data are converted into ArcGIS raster grid format and then remapped onto 

the RCM projection. Subsequently, the ArcInfo/GRID commands, ZONEALMEAN and ZONALSTD, 

are used to calculate the mean and standard deviation of the subgrid-scale elevations, SOAVE and 

SOSTD, respectively, within each RCM grid. The mean and deviation from the centroid of each grid 

are picked up by ArcInfo’s Arc Macro Language (AML) program Gridspot70 for SOAVE and SOSTD.  

Given a grid spacing Δx, the subgrid variability effects of topography are currently not accounted in 

most RCMs. Subgrid orography effects need to be incorporated in RCMs through certain 

parameterizations especially in mesoscale global models. The values of the surface orography 

parameters depend crucially on the resolution of the raw topography data derived for a target model 

grid that has a lower resolution than the source data pixel. It is necessary to filter the subgrid-scale 

orography variables in a proper scale to avoid numerical noise for the model integrations. For the 

numerical stability the terrain height is filtered to remove 4-grid waves, and the subgrid effects are 

denoted based on the mean terrain averaged over an area of (4Δx)
2
 surrounding each grid center. Thus 

the resolved mesoscale orographic parameterizations are here calculated from the terrain elevation  

(hi in meters) by the HYDRO1k DEM with a 1-km nominal cell size. Following Rontu [13], the 

resolved resolved-scale mean elevation, ROAVE (H4x in meters), is calculated for 4 grid-lengths 

(4Δx) using double smoothing method: 
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ii hh (in meters) is 9-point averaged elevation including the point and its 8 neighbor points 

based on 1-km DEM (hi), Δx is the RCM grid-length which is 30 km for the current model, and N4x is 

the number of 1-km DEM pixels within a 4Δx-resolution grid. As defined in Rontu [13], the standard 

deviation of resolved-scale elevations, ROSTD (m in meters), for the difference between h9i and H4x 

is calculated as: 
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where xi Hh  49  is h9i departure from H4x, and Nx is the number of 1-km data points for each 

Δx-resolution grid. Figure 2 compares geographic distributions of mean terrain elevations, and standard 

deviations of terrain elevations at subgrid-scale and resolved-scale. 
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Figure 2. The comparison of geographic distributions of surface orography parameters 

over the Asia RCM domain. (a) and (b) denote mean terrain elevations at subgrid-scale and 

resolved-scale, respectively; (c) and (d) denote standard deviations of terrain elevations at 

subgrid-scale and resolved-scale, respectively. 
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Other parameters for resolved-scale orography are anisotropy, ROANI ( ), characterizing the 

anisotropy of orography, and direction angle, ROANG ( ), representing the mean slope within each 

grid. The parameters ROANI ( ) and ROANG ( ) are based on the orographic gradient correlation 

tensor by Lott and Miller [14]: 
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where xi and xj are the two principle coordinates of the model grids. Note that the parameters with 

overbar (hereafter) are model grid average values. Following Rontu et al. [15], the two intermediate 

parameters are defined respectively as: 
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Thus, the anisotropy ROANI ( ) is finally calculated as:  
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The anisotropy is zero for a two-dimensional ridge and increases for circular-shaped mountains. 

The direction angle ROANG (   in radian) between the maximum gradient of resolved-scale 

orography and the ix -axis of the model grid is defined as: 
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Figure 3 illustrates the geographic distributions of anisotropy and direction angle over the Asia 

RCM domain. 

Figure 3. The geographic distributions of (a) anisotropy and (b) direction angle at 

resolved-scale over the Asia RCM domain. 
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3.2. Land Cover Category 

The RCM uses the 24-category USGS land cover classification (see Table 1) developed from the 

April 1992–March 1993 Advanced Very High Resolution Radiometer (AVHRR) satellite-derived 

Normalized Difference Vegetation Index (NDVI) composites. This data is based on a flexible data 

base structure and seasonal land cover regions concepts. The regions are composed of relatively 

homogeneous land cover associations which exhibit distinctive phenology, and have common levels of 

primary production. The raw data are available at 1-km spacing on the geographic coordinate system 

in BIL image format (http://edc2.usgs.gov/glcc/glcc.php), converted into the ArcGIS raster grid and 
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polygon coverage, and remapped onto the RCM projection. The fractional area of each pixel 

contributing to the grid is extracted after the result is intersected with the RCM grid mesh. The 

contributing area for each of the 24 LCCs is summed over all pixels of the same category within each 

RCM grid. The category contributing the largest area is chosen as the LCC for the grid. When the 

fractional area of water bodies is less than 0.5 but dominates the grid, the category chosen is the one 

contributing the second largest area.  

Figure 4 illustrates the LCC geographic distribution over the RCM domain. Note that the USGS raw 

data do not contain LCC types 4 (mixed dryland/irrigated cropland & pasture) and 20 (herbaceous 

tundra) over the globe, and additionally LCC type 23 (bare ground tundra) is not chosen for LCC 

majority category in the Asia RCM domain. Therefore, the final LCC includes only 21 categories of 

LCCs over the present RCM domain. 

Figure 4. The geographic distribution of 21 LCC categories over the Asia RCM domain. 
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3.3. Fractional Vegetation Cover 

The FVC is one ecological parameter that determines contribution partitioning between bare soil 

and vegetation for surface evapotranspiration, photosynthesis, albedo, and other fluxes crucial to  

land-atmosphere interactions. Following Zeng et al. [16,17], the time-invariant FVC is derived from 

the 10-day April 1992–March 1993 composites of the global 1-km AVHRR NDVI product. The 

annual maximum NDVI (Np,max) for each LCC are chosen to minimize the effect of cloud 

contamination on data quality. For each pixel, the vegetation cover is computed by:  

svc
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v
NN

NN
C






,

max,
 (8)  

where Nc,v is the NDVI value for a complete coverage of a specific USGS LCC over the pixel and Ns 

for bare soil.  
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Table 1. Comparison of Nc,v between USGS and IGBP Land Cover Legends. 

USGS land use/land cover legend IGBP land cover legend 

Type Description vcN ,  Type Description vcN ,  
Occupation 

ratio (%) 

1 Urban and Built-Up Land 0.62 13 Urban and Built-Up 0.62 100 

2 
Dryland Cropland and 

Pasture 
0.61 12 Croplands 0.61 100 

3 
Irrigated Cropland and 

Pasture 
0.61 

12 Croplands 0.61 94.41 

14 
Cropland/Natural Vegetation 

Mosaic 
0.65 5.59 

5 Cropland/Grassland Mosaic 0.65 

12 Croplands 0.61 1.33 

14 
Cropland/Natural Vegetation 

Mosaic 
0.65 98.67 

6 Cropland/Woodland Mosaic 0.65 14 
Cropland/Natural Vegetation 

Mosaic 
0.65 100 

7 Grassland 0.49 10 Grasslands 0.49 100 

8 Shrubland 0.60 

6 Closed Shrublands 0.60 14.81 

7 Open Shrublands 0.60 81.00 

8 Woody Savannas 0.62 4.19 

9 Mixed Shrubland/Grassland 0.59 

6 Closed Shrublands 0.60 15.28 

7 Open Shrublands 0.60 76.53 

10 Grasslands 0.49 8.19 

10 Savanna 0.60 
8 Woody Savannas 0.62 50.48 

9 Savanna 0.58 49.52 

11 Deciduous Broadleaf Forest 0.70 

2 Evergreen Broadleaf Forest 0.69 20.41 

4 Deciduous Broadleaf Forest 0.70 68.26 

5 Mixed Forest 0.68 11.33 

12 
Deciduous Needleleaf 

Forest 
0.63 4 Deciduous Needleleaf Forest 0.63 100 

13 Evergreen Broadleaf Forest 0.69 2 Evergreen Broadleaf Forest 0.69 100 

14 Evergreen Needleleaf Forest 0.63 1 Evergreen Needleleaf Forest 0.63 100 

15 Mixed Forest 0.68 5 Mixed Forest 0.68 100 

16 Water Bodies  17 Water Bodies  100 

17 Herbaceous Wetland 0.56 11 Permanent Wetlands 0.56 100 

18 Wooded Wetland 0.56 11 Permanent Wetlands 0.56 100 

19 
Barren or Sparsely 

Vegetated 
0.60 16 Barren or Sparsely Vegetated 0.60 100 

21 Wooded Tundra 0.61 
7 Open Shrublands 0.60 68.11 

8 Woody Savannas 0.62 31.89 

22 Mixed Tundra 0.60 16 Barren or Sparsely Vegetated 0.60 100 

23 Bare Ground Tundra 0.60 16 Barren or Sparsely Vegetated 0.60 100 

24 Snow or Ice  15 Snow and Ice  100 

Note: Land cover types 4 (Mixed Dryland/Irrigated Cropland & Pasture) and 23 (Herbaceous Tundra) do 

not exist in the global dataset. 
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Using a commercial imagery database, Zeng et al. [16] determined Nc,v by examining percentiles of 

the Np,max histogram for each LCC of the International Geosphere Biosphere Programme (IGBP) 

classification [18,19]. Liang et al. [20] calculated the Nc,v values for the 24 USGS LCCs from those of 

the 17 IGBP categories by intersecting the USGS and IGBP land cover maps and computing the 

fractional areas of individual IGBP categories contributing to each USGS category. The final Nc,v is the 

average of all contributing IGBP values weighted by their corresponding fractional areas. 

Corresponding Nc,v values and occupation rates for the USGS and IGBP categories are listed in Table 1. 

The resultant Cv point data at 1-km spacing are converted to polygon coverage data, remapped onto 

the RCM projection, and intersected with the RCM grid mesh. The fractional area of each pixel 

contributing to the grid is extracted. The final FVC is obtained by the area-weighted averaging of Cv 

values for all pixels within each RCM grid. Figure 5 illustrates the FVC geographic distributions 

derived from the AVHRR NDVI over the Asia RCM domain. 

Figure 5. The geographic distributions of FVC derived from the April 1992–March 1993 

AVHRR over the Asia RCM domain. 
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3.4. Leaf Area Index 

The LAI is defined as the total one-sided area of all green canopy elements over vegetated ground 

area, which are constructed from the global monthly mean distributions of green vegetation leaf area 

index, based on the July 1981–December 1999 AVHRR NDVI data at 8-km spacing on the Interrupted 

Goode Homolosine projection provided by Boston University [21,22]. LAI has missing value pixels 

due to cloud contamination and atmospheric effects, which are filled by the spatial average over 

nearby data pixels having the same LCC within a certain radius starting from 16 km (24 pixels) around 

a missing point and increasing until a 3-pixel minimum is obtained. Filled data are converted into the 

raster grid, then the polygon coverage, and remapped onto the RCM projection. After this result is 

further adjusted to be confined by the USGS LCC (see Section 3.2) for a consistent representation of 

water bodies, the adjusted raw data (Lraw) with respect to unit ground area is divided by local 

vegetation cover Cv to define the green leaf area index (Lgv) with respect to vegetated area only 

following Zeng et al. [17]. There is inconsistency between Cv and Lraw data at individual pixels mainly 
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because Cv was derived based on the 24 USGS LCCs at 1-km spacing, but Lraw in terms of six 

alternative biomes with distinct vegetation structures at an 8-km interval. For the RCM, the 1-km Cv 

data are integrated onto the 8-km Lraw map to compute Lgv guess values and then a smoothing filter is 

introduced to remove abnormal values due to inconsistency between Cv and Lraw data at individual 

pixels. Liang et al. [20] designed the filter through trial and error by examining the frequency 

distribution of abnormal Lgv values and considering the canopy displacement height in the CLM for 

each USGS LCC. The point value that exceeds the filter threshold listed in Table 2 is filled by the 

average over nearby data pixels having the same LCC within a certain radius starting from 16 km  

(24 pixels) around the point and increasing until a 3-pixel minimum is obtained. 

Table 2. Parameters in deriving LAI for each USGS Land Cover. 

Type USGS land cover legend 
FVC 

(1 km) 

Displacement 

height (m) 

Lgv filter 

threshold 

1 Urban and Built-Up Land 0.735 0.667 7 

2 Dryland Cropland and Pasture 0.875 0.667 7 

3 Irrigated Cropland and Pasture 0.804 0.667 7 

5 Cropland/Grassland Mosaic 0.729 0.667 7 

6 Cropland/Woodland Mosaic 0.869 0.667 7 

7 Grassland 0.711 0.667 6 

8 Shrubland 0.381 0.333 5 

9 Mixed Shrubland/Grassland 0.391 0.333 5 

10 Savanna 0.848 0.667 7 

11 Deciduous Broadleaf Forest 0.871 13.333 8 

12 Deciduous Needleleaf Forest 0.920 13.333 8 

13 Evergreen Broadleaf Forest 0.953 23.333 8 

14 Evergreen Needleleaf Forest 0.895 13.333 8 

15 Mixed Forest 0.875 13.333 8 

16 Water Bodies – 0.667 – 

17 Herbaceous Wetland 0.947 13.333 6 

18 Wooded Wetland 0.835 0.667 8 

19 Barren or Sparsely Vegetated 0.073 0.333 4 

21 Wooded Tundra 0.714 0.667 6 

22 Mixed Tundra 0.323 0.333 6 

23 Bare Ground Tundra 0.018 0.333 6 

24 Snow or Ice – 0.667 – 

Note: Land cover types 4 (Mixed Dryland/Irrigated Cropland & Pasture) and 23 (Herbaceous Tundra) 

do not exist in the global dataset. 

 

In addition, Lgv data contain large uncertainties in winter due to cloud contamination, especially for 

the USGS LCC types 13 and 14 (evergreen broadleaf and needleleaf forests). Following Zeng et al. [17], 

Lgv values in winter months for these two categories are adjusted by: 
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),max( max,gvgvgv LcLL   (9)  

where correction coefficient c is 0.8 and 0.7 for LCC types 13 and 14 respectively, and Lgv,max is the 

maximum Lgv. For the climatology, the maximum can be determined from all monthly values during 

the entire period, while for interannual variations it is taken in three consecutive years. 

After extreme value removal and winter adjustment at each 8-km pixel, the new Lgv is multiplied by 

its respective Cv and then intersected with the RCM grid mesh. The fractional area of each pixel 

contributing to the grid is extracted. The area-weighted averaging of all pixels within each RCM grid 

results in the new LAI per unit ground, which will be divided by local FVC (see Section 3.3) to 

produce the final LAI. Figure 6 depicts January, April, July, and October mean LAI distributions of the 

AVHRR climatologies over the RCM domain. 

Figure 6. The geographic distributions of mean LAI based on the original 1981–1999 

AVHRR climatology data in January, April, July, and October over the Asia RCM domain. 
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4. Conclusions 

The increase in resolution of regional climate and mesoscale atmospheric models can be facilitated 

by availability of sensor imagery observations in global distributions at the finest spatial and  

temporal scales. A large volume of global sensor imagery data of the Earth’s terrestrial surface can 

improve model predictability by supporting better model parameterizations for dynamics of the land 

surface-atmosphere interactions and increasingly sophisticated assimilation schemes in land surface 

models. This study focuses on the construction of fundamental SBCs desired for general RCM 

applications to all effective, dynamically coupled or uncoupled, combinations of the surface modules, 

as well as portability to any specific region of the world. The new SBCs development motivated by the 

limitations and inconsistencies of existing SBCs can be readily incorporated into any RCM suitable for 

climate and hydrology modeling studies. The primary SBCs constructed by using sensor imagery data 

include surface orography parameters such as means and deviations of terrain elevation at both 

subgrid-scale and resolved-scale, along with anisotropy and direction angle, and vegetation parameters 

such as land cover category, fractional vegetation cover, and leaf area index. A critical requirement in 

constructing the SBCs for RCM use is that each variable must be defined globally with physical 

consistency across all relevant parameters. This study tried to appropriately manage and rectify 

existing databases that have various resolutions, a wide range of map projections, different data 

formats, and often contain missing values or inconsistencies between variables. The GIS application 

tools such as ArcInfo and ArcMap are mainly used to process vast amount of raw data and to 

determine the geographic conversion information from a specific map projection of raw data to the 

identical RCM grid system. Given that data quality and value representation depend on the RCM 

computational domain and grid resolution, all the SBCs are constructed onto the 30-km RCM domain 

suitable for the continent of Asia. The raw data sources and processing procedures for the SBCs can be 

readily used for any specific RCM domain in the world. Even for choosing the best-available data 

quality, comprehensive processing procedures, and consistency between alternatives, the SBCs so 

constructed carry over uncertainties inherent in the raw data. Future studies will be required to assess 

impacts of the SBCs treatments, and an upcoming paper will address the RCM climate sensitivity to 

these SBCs.  
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